unary.h 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18
#include "paddle/phi/common/int_array.h"
19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51 52
void AsRealInferMeta(const MetaTensor& input, MetaTensor* output);

53 54
void AsComplexInferMeta(const MetaTensor& input, MetaTensor* output);

55 56 57 58 59 60
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out);

61
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
62

63 64
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

L
lyq 已提交
65 66
void ClipByNormInferMeta(const MetaTensor& x, float max_norm, MetaTensor* out);

67
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
68

69 70 71 72 73 74
void CropTensorInferMeta(const MetaTensor& x,
                         const IntArray& shape,
                         const IntArray& offsets,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());

75 76 77 78 79 80
void CumInferMeta(const MetaTensor& x,
                  int axis,
                  bool flatten,
                  bool exclusive,
                  bool reverse,
                  MetaTensor* out);
81

82 83 84
void DiagEmbedInferMeta(
    const MetaTensor& x, int offset, int dim1, int dim2, MetaTensor* out);

Z
zyfncg 已提交
85 86 87 88 89 90 91 92
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

93 94
void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v);

Z
zyfncg 已提交
95 96 97 98 99
void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

R
Ruibiao Chen 已提交
100 101 102 103
void EigvalsInferMeta(const MetaTensor& x,
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

104 105
void EinsumInferMeta(const std::vector<const MetaTensor*>& inputs,
                     const std::string& equation,
106 107 108 109 110 111 112
                     MetaTensor* out);

void EinsumRawInferMeta(const std::vector<const MetaTensor*>& inputs,
                        const std::string& equation,
                        MetaTensor* out,
                        std::vector<MetaTensor*> inner_cache,
                        std::vector<MetaTensor*> xshape);
113

H
hong 已提交
114 115 116 117
void ExpandInferMeta(const MetaTensor& x,
                     const IntArray& shape,
                     MetaTensor* out);

Z
zyfncg 已提交
118 119 120 121 122
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

123 124 125 126 127 128
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

129 130 131 132
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out);

C
Charles-hit 已提交
133 134 135 136 137 138 139
void FrameInferMeta(const MetaTensor& x,
                    int frame_length,
                    int hop_length,
                    int axis,
                    MetaTensor* out,
                    MetaConfig = MetaConfig());

140 141 142 143 144 145 146 147
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out);

Z
zyfncg 已提交
148 149 150 151 152
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
153 154
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
155

156 157
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

158 159 160
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
161

162 163
void InverseInferMeta(const MetaTensor& x, MetaTensor* out);

W
WJJ1995 已提交
164 165
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
166 167
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

168 169 170 171 172 173 174 175
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

176 177 178 179 180 181
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out);

182 183
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

184 185 186 187 188
void MatrixRankInferMeta(const MetaTensor& x,
                         bool use_default_tol,
                         bool hermitian,
                         MetaTensor* out);

189 190 191 192 193
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out);

F
From00 已提交
194 195 196 197 198 199 200 201 202 203
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

204 205
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

206 207 208 209 210 211
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

212 213 214 215
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
216 217 218 219 220 221 222

void NanmedianInferMeta(const MetaTensor& x,
                        const IntArray& axes,
                        bool keep_dim,
                        MetaTensor* out,
                        MetaTensor* median_index);

H
hong 已提交
223 224 225 226 227 228
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
229

Z
zyfncg 已提交
230 231 232 233 234 235
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

236
void Pad3dInferMeta(const MetaTensor& x,
237
                    const IntArray& paddings,
238 239 240 241 242 243
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
244 245 246 247 248
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

H
hong 已提交
249 250 251 252 253
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
                               int upscale_factor,
                               const std::string& data_format,
                               MetaTensor* x_grad);

254 255 256 257 258
void PixelUnshuffleInferMeta(const MetaTensor& x,
                             int downscale_factor,
                             const std::string& data_format,
                             MetaTensor* out);

259 260 261 262 263 264 265 266
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

281 282 283 284 285
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

299
void ReshapeInferMeta(const MetaTensor& x,
300
                      const IntArray& shape,
301 302 303 304
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
305
                                const IntArray& shape,
306
                                MetaTensor* out,
307
                                MetaTensor* xshape,
308
                                MetaConfig config = MetaConfig());
309

310 311 312 313
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

W
wanghuancoder 已提交
314 315 316 317
void ReverseArrayInferMeta(const std::vector<const phi::MetaTensor*>& x,
                           const std::vector<int>& axis,
                           std::vector<phi::MetaTensor*> out);

C
chenenquan 已提交
318
void RollInferMeta(const MetaTensor& x,
319
                   const IntArray& shifts,
C
chenenquan 已提交
320 321 322
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

323 324 325 326 327 328 329 330 331 332 333
void RReluInferMeta(const MetaTensor& x,
                    float lower,
                    float upper,
                    bool is_test,
                    MetaTensor* out,
                    MetaTensor* noise);

void RReluGradInferMeta(const MetaTensor& out_grad,
                        const MetaTensor& noise,
                        MetaTensor* x_grad);

334 335
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

336 337
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
338 339 340 341 342 343 344
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
345

Z
zyfncg 已提交
346
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
347

H
hong 已提交
348 349 350 351 352 353 354 355 356
void SliceRawInferMeta(const MetaTensor& input,
                       const std::vector<int64_t>& axes,
                       const IntArray& starts,
                       const IntArray& ends,
                       const std::vector<int64_t>& infer_flags,
                       const std::vector<int64_t>& decrease_axis,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

Z
zyfncg 已提交
357
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
358

Z
zyfncg 已提交
359
void SplitInferMeta(const MetaTensor& x_meta,
360
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
361 362 363
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
364

365 366
void SquaredL2NormInferMeta(const MetaTensor& x, MetaTensor* out);

367 368
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
369 370 371 372 373 374
                      MetaTensor* out);

void SqueezeWithXShapeInferMeta(const MetaTensor& x,
                                const std::vector<int>& axes,
                                MetaTensor* out,
                                MetaTensor* xshape);
375

376 377 378 379 380 381 382 383 384 385
void StridedSliceRawInferMeta(const MetaTensor& x,
                              const std::vector<int>& axes,
                              const IntArray& starts,
                              const IntArray& ends,
                              const IntArray& strides,
                              const std::vector<int>& infer_flags,
                              const std::vector<int>& decrease_axis,
                              MetaTensor* out,
                              MetaConfig config = MetaConfig());

386 387
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
388 389 390
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
391 392 393
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

394 395 396 397 398
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
399

Z
zyfncg 已提交
400 401 402 403 404 405 406
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

407 408 409 410 411 412
void SvdInferMeta(const MetaTensor& x,
                  bool full_matrices,
                  MetaTensor* u,
                  MetaTensor* s,
                  MetaTensor* vh);

H
hong 已提交
413 414 415 416 417 418 419
void TemporalShiftInferMeta(const MetaTensor& x,
                            int seg_num,
                            float shift_ratio,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config = MetaConfig());

Z
zyfncg 已提交
420
void TileInferMeta(const MetaTensor& x,
421
                   const IntArray& repeat_times,
Z
zyfncg 已提交
422 423 424
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

425 426 427 428 429 430 431 432 433
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
434 435 436
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

437 438 439 440
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
441 442 443
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
444

H
hong 已提交
445 446 447 448
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

449 450 451 452 453
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
454 455
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
456
                     std::vector<MetaTensor*> outs);
Z
zyfncg 已提交
457 458 459 460 461 462 463

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
464

465 466 467 468 469 470 471
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
472

473 474 475 476 477 478 479 480 481
void UniqueConsecutiveInferMeta(const MetaTensor& x,
                                bool return_inverse,
                                bool return_counts,
                                const std::vector<int>& axis,
                                int dtype,
                                MetaTensor* out,
                                MetaTensor* index,
                                MetaTensor* counts);

C
csy0225 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
void UniqueInferMeta(const MetaTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     MetaTensor* out,
                     MetaTensor* indices,
                     MetaTensor* index,
                     MetaTensor* counts);

void UniqueRawInferMeta(const MetaTensor& x,
                        bool return_index,
                        bool return_inverse,
                        bool return_counts,
                        const std::vector<int>& axis,
                        DataType dtype,
                        bool is_sorted,
                        MetaTensor* out,
                        MetaTensor* indices,
                        MetaTensor* index,
                        MetaTensor* counts);

505
void UnsqueezeInferMeta(const MetaTensor& x,
506
                        const IntArray& axes,
507 508
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());
509

510 511 512 513 514 515
void UnsqueezeWithXShapeInferMeta(const MetaTensor& x,
                                  const IntArray& axes,
                                  MetaTensor* out,
                                  MetaTensor* xshape,
                                  MetaConfig config = MetaConfig());

C
csy0225 已提交
516 517 518 519 520
void UnStackInferMeta(const MetaTensor& x,
                      int axis,
                      int num,
                      std::vector<MetaTensor*> outs);

H
hong 已提交
521
void OneHotRawInferMeta(const MetaTensor& x,
522
                        const Scalar& depth,
H
hong 已提交
523 524 525 526 527 528
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

529 530
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

531 532 533 534 535
void ChannelShuffleInferMeta(const MetaTensor& x,
                             int groups,
                             const std::string& data_format,
                             MetaTensor* out);

536 537
void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out);

538
}  // namespace phi