unary.h 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18 19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33 34
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.

35
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);
36

F
From00 已提交
37 38 39 40 41
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);

42 43
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

44 45 46 47
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);
48

F
From00 已提交
49 50 51 52 53 54
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);

55
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
56

57 58
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

59 60 61 62 63
void CopyToInferMeta(const MetaTensor& x,
                     Backend backend,
                     bool blocking,
                     MetaTensor* out);

64
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
65

66 67
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

68 69 70
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
71

72 73 74 75 76
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);

77 78
void ReshapeInferMeta(const MetaTensor& x,
                      const ScalarArray& shape,
79 80 81 82 83 84 85 86
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
                                const ScalarArray& shape,
                                MetaTensor* xshape,
                                MetaTensor* out,
                                MetaConfig config = MetaConfig());
87

88 89 90
void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
91
                         bool reduce_all,
92 93
                         DataType dtype,
                         MetaTensor* out);
94

95 96 97 98 99 100 101 102 103 104
void MeanRawInferMeta(const MetaTensor& x,
                      const std::vector<int64_t>& axis,
                      bool keep_dim,
                      bool reduce_all,
                      MetaTensor* out);

void MeanInferMeta(const MetaTensor& x,
                   const std::vector<int64_t>& axis,
                   bool keep_dim,
                   MetaTensor* out);
105 106 107 108 109 110

void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
111 112 113 114 115

void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

C
chentianyu03 已提交
116 117 118
void SplitInferMeta(const MetaTensor& x_meta,
                    const ScalarArray& num_or_sections,
                    const Scalar& axis,
119
                    std::vector<MetaTensor*> out,
C
chentianyu03 已提交
120
                    MetaConfig config = MetaConfig());
C
Chen Weihang 已提交
121

L
Leo Chen 已提交
122 123 124
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
                     std::vector<MetaTensor>* outs);
C
Chen Weihang 已提交
125 126 127
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

128 129 130 131 132 133 134
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
135

L
Linjie Chen 已提交
136 137 138 139 140
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

141 142
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);

H
hong 已提交
143 144 145
void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

146 147 148 149 150
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

151 152 153 154
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);

155
}  // namespace phi