unary.h 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18 19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
52

53 54
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

55 56 57 58 59
void CopyToInferMeta(const MetaTensor& x,
                     Backend backend,
                     bool blocking,
                     MetaTensor* out);

60
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
61

62 63 64 65 66 67 68
void CumsumInferMeta(const MetaTensor& x,
                     int axis,
                     bool flatten,
                     bool exclusive,
                     bool reverse,
                     MetaTensor* out);

Z
zyfncg 已提交
69 70 71 72 73 74 75 76
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

H
hong 已提交
77 78
void DropoutInferMeta(const MetaTensor& x, MetaTensor* out, MetaTensor* mask);

Z
zyfncg 已提交
79 80 81 82 83 84 85 86 87 88
void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

89 90 91 92 93 94
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

Z
zyfncg 已提交
95 96 97 98 99
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
100 101
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
102

103 104
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

105 106 107
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
108

W
WJJ1995 已提交
109 110
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
111 112
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

113 114 115 116 117 118 119 120
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

121 122
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

F
From00 已提交
123 124 125 126 127 128 129 130 131 132
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

133 134 135 136 137 138
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

139 140 141 142
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
H
hong 已提交
143 144 145 146 147 148
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
149

Z
zyfncg 已提交
150 151 152 153 154 155
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

156 157 158 159 160 161 162 163
void Pad3dInferMeta(const MetaTensor& x,
                    const ScalarArray& paddings,
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
164 165 166 167 168
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

169 170 171 172 173 174 175 176
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

191 192 193 194 195
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

209 210
void ReshapeInferMeta(const MetaTensor& x,
                      const ScalarArray& shape,
211 212 213 214 215 216 217 218
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
                                const ScalarArray& shape,
                                MetaTensor* xshape,
                                MetaTensor* out,
                                MetaConfig config = MetaConfig());
219

220 221 222 223
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

C
chenenquan 已提交
224 225 226 227 228
void RollInferMeta(const MetaTensor& x,
                   const ScalarArray& shifts,
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

229 230
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

231 232
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
233 234 235 236 237 238 239
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
240

Z
zyfncg 已提交
241
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
242

Z
zyfncg 已提交
243
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
244

Z
zyfncg 已提交
245 246 247 248 249
void SplitInferMeta(const MetaTensor& x_meta,
                    const ScalarArray& num_or_sections,
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
250

251 252 253 254 255
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
                      MetaTensor* xshape,
                      MetaTensor* out);

256 257 258 259 260
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
261

Z
zyfncg 已提交
262 263 264 265 266 267 268 269 270 271 272 273
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

void TileInferMeta(const MetaTensor& x,
                   const ScalarArray& repeat_times,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

274 275 276 277 278 279 280 281 282
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
283 284 285
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

286 287 288 289
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
290 291 292
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
293

H
hong 已提交
294 295 296 297
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

298 299 300 301 302
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
303 304 305
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
                     std::vector<MetaTensor>* outs);
Z
zyfncg 已提交
306 307 308 309 310 311 312

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
313

314 315 316 317 318 319 320
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
321

322 323 324 325 326
void UnsqueezeInferMeta(const MetaTensor& x,
                        const ScalarArray& axes,
                        MetaTensor* xshape,
                        MetaTensor* out);

H
hong 已提交
327 328 329 330 331 332 333 334
void OneHotRawInferMeta(const MetaTensor& x,
                        int32_t depth,
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

335 336
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

337
}  // namespace phi