unary.h 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18
#include "paddle/phi/common/int_array.h"
19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51 52 53 54 55 56
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out);

57
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
58

59 60
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

61 62 63 64 65
void CopyToInferMeta(const MetaTensor& x,
                     Backend backend,
                     bool blocking,
                     MetaTensor* out);

66
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
67

68 69 70 71 72 73 74
void CumsumInferMeta(const MetaTensor& x,
                     int axis,
                     bool flatten,
                     bool exclusive,
                     bool reverse,
                     MetaTensor* out);

Z
zyfncg 已提交
75 76 77 78 79 80 81 82
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

H
hong 已提交
83 84
void DropoutInferMeta(const MetaTensor& x, MetaTensor* out, MetaTensor* mask);

Z
zyfncg 已提交
85 86 87 88 89 90 91 92 93 94
void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

95 96 97 98 99 100
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

101 102 103 104
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out);

105 106 107 108 109 110 111 112
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out);

Z
zyfncg 已提交
113 114 115 116 117
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
118 119
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
120

121 122
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

123 124 125
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
126

W
WJJ1995 已提交
127 128
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
129 130
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

131 132 133 134 135 136 137 138
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

139 140 141 142 143 144
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out);

145 146
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

147 148 149 150 151
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out);

F
From00 已提交
152 153 154 155 156 157 158 159 160 161
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

162 163
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

164 165 166 167 168 169
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

170 171 172 173
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
H
hong 已提交
174 175 176 177 178 179
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
180

Z
zyfncg 已提交
181 182 183 184 185 186
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

187
void Pad3dInferMeta(const MetaTensor& x,
188
                    const IntArray& paddings,
189 190 191 192 193 194
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
195 196 197 198 199
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

200 201 202 203 204 205 206 207
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

222 223 224 225 226
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

240
void ReshapeInferMeta(const MetaTensor& x,
241
                      const IntArray& shape,
242 243 244 245
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
246
                                const IntArray& shape,
247
                                MetaTensor* out,
248
                                MetaTensor* xshape,
249
                                MetaConfig config = MetaConfig());
250

251 252 253 254
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

C
chenenquan 已提交
255
void RollInferMeta(const MetaTensor& x,
256
                   const IntArray& shifts,
C
chenenquan 已提交
257 258 259
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

260 261
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

262 263
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
264 265 266 267 268 269 270
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
271

Z
zyfncg 已提交
272
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
273

Z
zyfncg 已提交
274
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
275

Z
zyfncg 已提交
276
void SplitInferMeta(const MetaTensor& x_meta,
277
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
278 279 280
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
281

282 283 284 285 286
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
                      MetaTensor* xshape,
                      MetaTensor* out);

287 288
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
289 290 291
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
292 293 294 295 296
                           const std::vector<int>& infer_flags,
                           const std::vector<int>& decrease_axis,
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

297 298 299 300 301
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
302

Z
zyfncg 已提交
303 304 305 306 307 308 309 310
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

void TileInferMeta(const MetaTensor& x,
311
                   const IntArray& repeat_times,
Z
zyfncg 已提交
312 313 314
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

315 316 317 318 319 320 321 322 323
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
324 325 326
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

327 328 329 330
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
331 332 333
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
334

H
hong 已提交
335 336 337 338
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

339 340 341 342 343
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
344 345 346
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
                     std::vector<MetaTensor>* outs);
Z
zyfncg 已提交
347 348 349 350 351 352 353

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
354

355 356 357 358 359 360 361
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
362

363
void UnsqueezeInferMeta(const MetaTensor& x,
364
                        const IntArray& axes,
365
                        MetaTensor* xshape,
366 367
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());
368

H
hong 已提交
369 370 371 372 373 374 375 376
void OneHotRawInferMeta(const MetaTensor& x,
                        int32_t depth,
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

377 378
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

379
}  // namespace phi