Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
7613129e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7613129e
编写于
1月 25, 2022
作者:
Y
YuanRisheng
提交者:
GitHub
1月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
change infermeta and remove makePtenTenosr in reshape (#39186)
上级
09104d02
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
81 addition
and
111 deletion
+81
-111
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+1
-1
paddle/fluid/operators/reshape_op.cc
paddle/fluid/operators/reshape_op.cc
+17
-85
paddle/pten/api/include/kernel_signature.h
paddle/pten/api/include/kernel_signature.h
+1
-1
paddle/pten/core/dense_tensor.cc
paddle/pten/core/dense_tensor.cc
+13
-0
paddle/pten/core/dense_tensor.h
paddle/pten/core/dense_tensor.h
+2
-0
paddle/pten/infermeta/binary.cc
paddle/pten/infermeta/binary.cc
+7
-2
paddle/pten/infermeta/binary.h
paddle/pten/infermeta/binary.h
+6
-2
paddle/pten/infermeta/unary.cc
paddle/pten/infermeta/unary.cc
+10
-0
paddle/pten/infermeta/unary.h
paddle/pten/infermeta/unary.h
+5
-0
paddle/pten/kernels/math_kernel.cc
paddle/pten/kernels/math_kernel.cc
+1
-1
paddle/pten/kernels/math_kernel.h
paddle/pten/kernels/math_kernel.h
+7
-7
paddle/pten/kernels/reshape_kernel.cc
paddle/pten/kernels/reshape_kernel.cc
+2
-3
python/paddle/utils/code_gen/api.yaml
python/paddle/utils/code_gen/api.yaml
+9
-9
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
7613129e
...
...
@@ -557,7 +557,7 @@ class ReduceOp : public framework::OperatorWithKernel {
if
(
ctx
.
InputVar
(
"X"
)
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
!
reduce_all
)
{
return
framework
::
KernelSignature
(
"sum"
,
{
"X"
},
{
"dim"
,
"
keep_dim"
,
"out_dtype
"
},
{
"Out"
});
"sum"
,
{
"X"
},
{
"dim"
,
"
out_dtype"
,
"keep_dim
"
},
{
"Out"
});
}
return
framework
::
KernelSignature
(
"sum_raw"
,
{
"X"
},
{
"dim"
,
"keep_dim"
,
"reduce_all"
,
"out_dtype"
},
...
...
paddle/fluid/operators/reshape_op.cc
浏览文件 @
7613129e
...
...
@@ -38,33 +38,6 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
inline
std
::
vector
<
int
>
get_new_shape
(
const
std
::
vector
<
const
Tensor
*>
&
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
PADDLE_ENFORCE_EQ
(
tensor
->
dims
(),
framework
::
make_ddim
({
1
}),
platform
::
errors
::
InvalidArgument
(
"If the element type of 'shape' in ReshapeOp is Tensor, "
"the element's shape must be [1]. But received the element's shape "
"is [%s]"
,
tensor
->
dims
()));
if
(
platform
::
is_gpu_place
(
tensor
->
place
())
||
platform
::
is_xpu_place
(
tensor
->
place
()))
{
framework
::
Tensor
temp
;
paddle
::
framework
::
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
temp
.
data
<
int32_t
>
()));
}
else
{
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
tensor
->
data
<
int32_t
>
()));
}
}
return
vec_new_shape
;
}
class
ReshapeOp
:
public
framework
::
OperatorWithKernel
{
public:
ReshapeOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
...
...
@@ -370,30 +343,6 @@ class ReshapeKernel {
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
// framework::DDim out_dims = out->dims();
auto
pt_x
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
in
);
// we can't MakePtenDenseTensor by out, because the out of reshape may have
// multiple states, some can MakePtenDenseTensor but other's cannot:
// 1. out tensor is not initialized
// 2. out tensor is input (complete inplace)
// 3. out tensor is view of input
// We can't MakePtenDenseTensor for case 2, so we solve this case by
// creating a temporary tensor here:
pten
::
DenseTensorMeta
meta
{
pten
::
TransToPtenDataType
(
in
->
type
()),
in
->
dims
(),
in
->
layout
()};
auto
pt_out_tmp
=
std
::
make_shared
<
pten
::
DenseTensor
>
(
pten
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
ctx
.
GetPlace
()),
std
::
move
(
meta
));
pten
::
DenseTensor
*
pt_out
=
nullptr
;
if
(
in
!=
nullptr
&&
out
!=
nullptr
&&
in
->
Holder
()
!=
nullptr
&&
out
->
Holder
()
!=
nullptr
&&
in
->
Holder
()
->
ptr
()
==
out
->
Holder
()
->
ptr
())
{
pt_out
=
pt_x
.
get
();
}
else
{
pt_out
=
pt_out_tmp
.
get
();
}
auto
list_new_shape_tensor
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"ShapeTensor"
);
...
...
@@ -410,55 +359,46 @@ class ReshapeKernel {
framework
::
Tensor
temp
;
paddle
::
framework
::
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
pt_vec_shape
.
push_back
(
std
::
move
(
*
(
paddle
::
experimental
::
MakePtenDenseTensor
(
temp
))));
pt_vec_shape
.
push_back
(
std
::
move
(
temp
));
}
else
{
pt_vec_shape
.
push_back
(
std
::
move
(
*
(
paddle
::
experimental
::
MakePtenDenseTensor
(
*
tensor
))));
pt_vec_shape
.
push_back
(
*
tensor
);
}
}
pt_scalar_shape
=
pten
::
ScalarArray
(
pt_vec_shape
);
}
else
if
(
shape_tensor
)
{
std
::
unique_ptr
<
pten
::
DenseTensor
>
pt_shape
;
pten
::
DenseTensor
pt_shape
;
if
(
platform
::
is_gpu_place
(
shape_tensor
->
place
())
||
platform
::
is_xpu_place
(
shape_tensor
->
place
()))
{
framework
::
Tensor
temp
;
paddle
::
framework
::
TensorCopySync
(
*
shape_tensor
,
platform
::
CPUPlace
(),
&
temp
);
pt_shape
=
paddle
::
experimental
::
MakePtenDenseTensor
(
temp
);
pt_shape
=
std
::
move
(
temp
);
}
else
{
pt_shape
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
shape_tensor
)
;
pt_shape
=
*
shape_tensor
;
}
pt_scalar_shape
=
pten
::
ScalarArray
(
*
pt_shape
.
get
()
);
pt_scalar_shape
=
pten
::
ScalarArray
(
pt_shape
);
}
else
{
auto
&
shape_attr
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
pt_scalar_shape
=
pten
::
ScalarArray
(
shape_attr
);
}
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CPUDeviceContext
>
();
pten
::
ReshapeKernel
(
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
*
pt_x
.
get
(),
pt_scalar_shape
,
pt_
out
);
pten
::
ReshapeKernel
(
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
*
in
,
pt_scalar_shape
,
out
);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
pten
::
ReshapeKernel
(
dev_ctx
,
*
pt_x
.
get
(),
pt_scalar_shape
,
pt_
out
);
pten
::
ReshapeKernel
(
dev_ctx
,
*
in
,
pt_scalar_shape
,
out
);
}
#endif
#ifdef PADDLE_WITH_XPU
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
XPUDeviceContext
>
();
pten
::
ReshapeKernel
(
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
*
pt_x
.
get
(),
pt_scalar_shape
,
pt_
out
);
pten
::
ReshapeKernel
(
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
*
in
,
pt_scalar_shape
,
out
);
}
#endif
// non-inplace need move all result from pt_out to out, inplace need set
// result dims.
if
(
in
!=
out
)
{
paddle
::
experimental
::
SharesStorage
(
pt_out
,
static_cast
<
Tensor
*>
(
out
));
}
else
{
out
->
Resize
(
pt_out
->
dims
());
}
}
};
...
...
@@ -469,25 +409,22 @@ class ReshapeGradKernel {
auto
*
d_x
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
d_x
->
mutable_data
(
ctx
.
GetPlace
(),
d_out
->
type
());
auto
pt_d_x
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
d_x
);
auto
pt_d_out
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
d_out
);
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CPUDeviceContext
>
();
pten
::
ReshapeGradKernel
(
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
*
pt_d_out
.
get
(),
pt_d_x
.
get
()
);
*
d_out
,
d_x
);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
pten
::
ReshapeGradKernel
(
dev_ctx
,
*
pt_d_out
.
get
(),
pt_d_x
.
get
()
);
pten
::
ReshapeGradKernel
(
dev_ctx
,
*
d_out
,
d_x
);
}
#endif
#ifdef PADDLE_WITH_XPU
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
XPUDeviceContext
>
();
pten
::
ReshapeGradKernel
(
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
*
pt_d_out
.
get
(),
pt_d_x
.
get
()
);
*
d_out
,
d_x
);
}
#endif
}
...
...
@@ -500,27 +437,22 @@ class ReshapeDoubleGradKernel {
auto
*
dd_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"DDOut"
);
dd_out
->
mutable_data
(
ctx
.
GetPlace
(),
dd_x
->
type
());
auto
pt_dd_x
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
dd_x
);
auto
pt_dd_out
=
paddle
::
experimental
::
MakePtenDenseTensor
(
*
dd_out
);
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CPUDeviceContext
>
();
pten
::
ReshapeDoubleGradKernel
(
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
*
pt_dd_x
.
get
(),
pt_dd_out
.
get
());
static_cast
<
const
pten
::
CPUContext
&>
(
dev_ctx
),
*
dd_x
,
dd_out
);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
CUDADeviceContext
>
();
pten
::
ReshapeDoubleGradKernel
(
dev_ctx
,
*
pt_dd_x
.
get
(),
pt_dd_out
.
get
()
);
pten
::
ReshapeDoubleGradKernel
(
dev_ctx
,
*
dd_x
,
dd_out
);
}
#endif
#ifdef PADDLE_WITH_XPU
if
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
device_context
<
platform
::
XPUDeviceContext
>
();
pten
::
ReshapeDoubleGradKernel
(
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
*
pt_dd_x
.
get
(),
pt_dd_out
.
get
());
static_cast
<
const
pten
::
XPUContext
&>
(
dev_ctx
),
*
dd_x
,
dd_out
);
}
#endif
}
...
...
paddle/pten/api/include/kernel_signature.h
浏览文件 @
7613129e
...
...
@@ -102,8 +102,8 @@ using scale_kernel = void (*)(const DeviceContext&,
using
sum_kernel
=
void
(
*
)(
const
DeviceContext
&
,
const
DenseTensor
&
,
const
std
::
vector
<
int64_t
>&
,
bool
,
DataType
,
bool
,
DenseTensor
*
);
using
subtract_kernel
=
void
(
*
)(
const
DeviceContext
&
,
...
...
paddle/pten/core/dense_tensor.cc
浏览文件 @
7613129e
...
...
@@ -126,6 +126,19 @@ void DenseTensor::set_meta(DenseTensorMeta&& meta) {
meta_
=
std
::
move
(
meta
);
}
void
DenseTensor
::
set_meta
(
const
DenseTensorMeta
&
meta
)
{
PADDLE_ENFORCE
(
meta
.
valid
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"Input meta is invalid, please check the meta attribute."
));
meta_
.
dims
=
meta
.
dims
;
meta_
.
dtype
=
meta
.
dtype
;
meta_
.
is_scalar
=
meta
.
is_scalar
;
meta_
.
layout
=
meta
.
layout
;
meta_
.
lod
=
meta
.
lod
;
meta_
.
offset
=
meta
.
offset
;
}
/* @jim19930609: This interface will be further modified util we finalized the
design for Allocator - Allocation
For now, we have to temporarily accommodate two independent use cases:
...
...
paddle/pten/core/dense_tensor.h
浏览文件 @
7613129e
...
...
@@ -131,6 +131,8 @@ class DenseTensor : public TensorBase,
/// \param meta The meta information of the tensor.
void
set_meta
(
DenseTensorMeta
&&
meta
);
void
set_meta
(
const
DenseTensorMeta
&
meta
);
/// \brief Test whether the metadata is valid.
/// \return Whether the metadata is valid.
bool
valid
()
const
noexcept
override
{
return
meta_
.
valid
();
}
...
...
paddle/pten/infermeta/binary.cc
浏览文件 @
7613129e
...
...
@@ -131,8 +131,13 @@ DenseTensorMeta MatmulInferMeta(const DenseTensorMeta& x_meta,
}
DenseTensorMeta
ElementwiseInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
DenseTensorMeta
&
y_meta
,
int
axis
)
{
const
DenseTensorMeta
&
y_meta
)
{
return
ElementwiseRawInferMeta
(
x_meta
,
y_meta
,
-
1
);
}
DenseTensorMeta
ElementwiseRawInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
DenseTensorMeta
&
y_meta
,
int
axis
)
{
DenseTensorMeta
return_meta
(
x_meta
.
dtype
,
x_meta
.
dims
,
x_meta
.
layout
);
if
(
x_meta
.
dims
!=
y_meta
.
dims
)
{
auto
x_dims
=
x_meta
.
dims
;
...
...
paddle/pten/infermeta/binary.h
浏览文件 @
7613129e
...
...
@@ -42,6 +42,10 @@ DenseTensorMeta MatmulInferMeta(const DenseTensorMeta& x_meta,
bool
trans_y
);
DenseTensorMeta
ElementwiseInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
DenseTensorMeta
&
y_meta
,
int
axis
);
const
DenseTensorMeta
&
y_meta
);
DenseTensorMeta
ElementwiseRawInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
DenseTensorMeta
&
y_meta
,
int
axis
);
}
// namespace pten
paddle/pten/infermeta/unary.cc
浏览文件 @
7613129e
...
...
@@ -232,6 +232,16 @@ DenseTensorMeta ReshapeInferMeta(const DenseTensorMeta& x_meta,
return
InferMetaFromVecValue
(
x_meta
,
shape
.
GetData
());
}
/* Why not use ReduceInferMeta directly?
Because we need make InferMetaFunction's args follow the design of api.yaml
*/
DenseTensorMeta
SumInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
bool
keep_dim
)
{
return
ReduceInferMeta
(
x_meta
,
axis
,
keep_dim
,
dtype
);
}
DenseTensorMeta
ReduceInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
...
...
paddle/pten/infermeta/unary.h
浏览文件 @
7613129e
...
...
@@ -58,4 +58,9 @@ DenseTensorMeta ReduceInferMeta(const DenseTensorMeta& x_meta,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
DataType
dtype
=
DataType
::
UNDEFINED
);
DenseTensorMeta
SumInferMeta
(
const
DenseTensorMeta
&
x_meta
,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
bool
keep_dim
);
}
// namespace pten
paddle/pten/kernels/math_kernel.cc
浏览文件 @
7613129e
...
...
@@ -33,8 +33,8 @@ template <typename T, typename Context>
void
SumKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DataType
out_dtype
,
bool
keep_dim
,
DenseTensor
*
out
)
{
bool
reduce_all
=
false
;
SumRawKernel
<
T
>
(
dev_ctx
,
x
,
dims
,
keep_dim
,
reduce_all
,
out_dtype
,
out
);
...
...
paddle/pten/kernels/math_kernel.h
浏览文件 @
7613129e
...
...
@@ -50,8 +50,8 @@ template <typename T, typename Context>
void
SumKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
dims
,
bool
keep_dim
,
DataType
out_dtype
,
bool
keep_dim
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
...
...
@@ -110,7 +110,7 @@ template <typename T, typename Context>
DenseTensor
Add
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
auto
out_meta
=
ElementwiseInferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
out_meta
=
Elementwise
Raw
InferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
AddKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
...
...
@@ -120,7 +120,7 @@ template <typename T, typename Context>
DenseTensor
Subtract
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
auto
out_meta
=
ElementwiseInferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
out_meta
=
Elementwise
Raw
InferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
SubtractKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
...
...
@@ -130,7 +130,7 @@ template <typename T, typename Context>
DenseTensor
Divide
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
auto
out_meta
=
ElementwiseInferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
out_meta
=
Elementwise
Raw
InferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
DivideKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
...
...
@@ -140,7 +140,7 @@ template <typename T, typename Context>
DenseTensor
Multiply
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
auto
out_meta
=
ElementwiseInferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
out_meta
=
Elementwise
Raw
InferMeta
(
x
.
meta
(),
y
.
meta
(),
-
1
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
MultiplyKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
...
...
@@ -163,10 +163,10 @@ DenseTensor Sum(const Context& dev_ctx,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
bool
keep_dim
)
{
auto
out_meta
=
ReduceInferMeta
(
x
.
meta
(),
axis
,
keep_dim
,
dtype
);
auto
out_meta
=
SumInferMeta
(
x
.
meta
(),
axis
,
dtype
,
keep_dim
);
auto
dense_out
=
pten
::
Empty
<
T
,
Context
>
(
dev_ctx
,
std
::
move
(
out_meta
));
SumKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
axis
,
keep_dim
,
dtype
,
&
dense_out
);
SumKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
axis
,
dtype
,
keep_dim
,
&
dense_out
);
return
dense_out
;
}
...
...
paddle/pten/kernels/reshape_kernel.cc
浏览文件 @
7613129e
...
...
@@ -31,9 +31,8 @@ void ReshapeKernel(const Context& dev_ctx,
out
->
ResizeAndAllocate
(
out_meta
.
dims
);
return
;
}
out
->
Resize
(
x
.
dims
());
out
->
mutable_data
(
x
.
place
());
out
->
set_meta
(
out_meta
);
out
->
mutable_data
(
dev_ctx
.
GetPlace
());
pten
::
Copy
(
dev_ctx
,
x
,
false
,
out
);
out
->
Resize
(
out_meta
.
dims
);
out
->
ResetLoD
(
x
.
lod
());
...
...
python/paddle/utils/code_gen/api.yaml
浏览文件 @
7613129e
...
...
@@ -3,7 +3,7 @@
output
:
Tensor
infer_meta
:
func
:
ElementwiseInferMeta
param
:
[
x
,
y
,
-1
]
param
:
[
x
,
y
]
kernel
:
func
:
add
...
...
@@ -40,7 +40,7 @@
output
:
Tensor
infer_meta
:
func
:
ElementwiseInferMeta
param
:
[
x
,
y
,
-1
]
param
:
[
x
,
y
]
kernel
:
func
:
divide
...
...
@@ -135,7 +135,7 @@
output
:
Tensor
infer_meta
:
func
:
ElementwiseInferMeta
param
:
[
x
,
y
,
-1
]
param
:
[
x
,
y
]
kernel
:
func
:
multiply
...
...
@@ -166,19 +166,19 @@
output
:
Tensor
infer_meta
:
func
:
ElementwiseInferMeta
param
:
[
x
,
y
,
-1
]
param
:
[
x
,
y
]
kernel
:
func
:
subtract
-
api
:
sum
args
:
(const Tensor& x, const std::vector<int64_t>& axis={}, DataType dtype=DataType::UNDEFINED, bool keep_dim=false)
output
:
Tensor
infer_meta
:
func
:
Reduce
InferMeta
param
:
[
x
,
axis
,
keep_dim
,
dtype
]
kernel
:
infer_meta
:
func
:
Sum
InferMeta
param
:
[
x
,
axis
,
dtype
,
keep_dim
]
kernel
:
func
:
sum
param
:
[
x
,
axis
,
keep_dim
,
dtype
]
param
:
[
x
,
axis
,
dtype
,
keep_dim
]
data_type
:
x
-
api
:
zeros_like
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录