unary.h 18.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18
#include "paddle/phi/common/int_array.h"
19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51 52 53 54 55 56
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out);

57
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
58

59 60
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

61
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
62

63 64 65 66 67 68
void CumInferMeta(const MetaTensor& x,
                  int axis,
                  bool flatten,
                  bool exclusive,
                  bool reverse,
                  MetaTensor* out);
69

Z
zyfncg 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

R
Ruibiao Chen 已提交
83 84 85 86
void EigvalsInferMeta(const MetaTensor& x,
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

87 88
void EinsumInferMeta(const std::vector<const MetaTensor*>& inputs,
                     const std::string& equation,
89
                     MetaTensor* out,
90 91
                     std::vector<MetaTensor*> inner_cache,
                     std::vector<MetaTensor*> xshape);
92

H
hong 已提交
93 94 95 96
void ExpandInferMeta(const MetaTensor& x,
                     const IntArray& shape,
                     MetaTensor* out);

Z
zyfncg 已提交
97 98 99 100 101
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

102 103 104 105 106 107
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

108 109 110 111
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out);

112 113 114 115 116 117 118 119
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out);

Z
zyfncg 已提交
120 121 122 123 124
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
125 126
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
127

128 129
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

130 131 132
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
133

W
WJJ1995 已提交
134 135
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
136 137
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

138 139 140 141 142 143 144 145
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

146 147 148 149 150 151
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out);

152 153
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

154 155 156 157 158
void MatrixRankInferMeta(const MetaTensor& x,
                         bool use_default_tol,
                         bool hermitian,
                         MetaTensor* out);

159 160 161 162 163
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out);

F
From00 已提交
164 165 166 167 168 169 170 171 172 173
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

174 175
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

176 177 178 179 180 181
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

182 183 184 185
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
186 187 188 189 190 191 192

void NanmedianInferMeta(const MetaTensor& x,
                        const IntArray& axes,
                        bool keep_dim,
                        MetaTensor* out,
                        MetaTensor* median_index);

H
hong 已提交
193 194 195 196 197 198
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
199

Z
zyfncg 已提交
200 201 202 203 204 205
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

206
void Pad3dInferMeta(const MetaTensor& x,
207
                    const IntArray& paddings,
208 209 210 211 212 213
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
214 215 216 217 218
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

H
hong 已提交
219 220 221 222 223
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
                               int upscale_factor,
                               const std::string& data_format,
                               MetaTensor* x_grad);

224 225 226 227 228
void PixelUnshuffleInferMeta(const MetaTensor& x,
                             int downscale_factor,
                             const std::string& data_format,
                             MetaTensor* out);

229 230 231 232 233 234 235 236
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

251 252 253 254 255
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

269
void ReshapeInferMeta(const MetaTensor& x,
270
                      const IntArray& shape,
271 272 273 274
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
275
                                const IntArray& shape,
276
                                MetaTensor* out,
277
                                MetaTensor* xshape,
278
                                MetaConfig config = MetaConfig());
279

280 281 282 283
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

C
chenenquan 已提交
284
void RollInferMeta(const MetaTensor& x,
285
                   const IntArray& shifts,
C
chenenquan 已提交
286 287 288
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

289 290 291 292 293 294 295 296 297 298 299
void RReluInferMeta(const MetaTensor& x,
                    float lower,
                    float upper,
                    bool is_test,
                    MetaTensor* out,
                    MetaTensor* noise);

void RReluGradInferMeta(const MetaTensor& out_grad,
                        const MetaTensor& noise,
                        MetaTensor* x_grad);

300 301
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

302 303
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
304 305 306 307 308 309 310
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
311

Z
zyfncg 已提交
312
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
313

H
hong 已提交
314 315 316 317 318 319 320 321 322
void SliceRawInferMeta(const MetaTensor& input,
                       const std::vector<int64_t>& axes,
                       const IntArray& starts,
                       const IntArray& ends,
                       const std::vector<int64_t>& infer_flags,
                       const std::vector<int64_t>& decrease_axis,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

Z
zyfncg 已提交
323
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
324

Z
zyfncg 已提交
325
void SplitInferMeta(const MetaTensor& x_meta,
326
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
327 328 329
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
330

331 332
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
333 334
                      MetaTensor* out,
                      MetaTensor* xshape);
335

336 337 338 339 340 341 342 343 344 345
void StridedSliceRawInferMeta(const MetaTensor& x,
                              const std::vector<int>& axes,
                              const IntArray& starts,
                              const IntArray& ends,
                              const IntArray& strides,
                              const std::vector<int>& infer_flags,
                              const std::vector<int>& decrease_axis,
                              MetaTensor* out,
                              MetaConfig config = MetaConfig());

346 347
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
348 349 350
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
351 352 353
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

354 355 356 357 358
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
359

Z
zyfncg 已提交
360 361 362 363 364 365 366
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

H
hong 已提交
367 368 369 370 371 372 373
void TemporalShiftInferMeta(const MetaTensor& x,
                            int seg_num,
                            float shift_ratio,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config = MetaConfig());

Z
zyfncg 已提交
374
void TileInferMeta(const MetaTensor& x,
375
                   const IntArray& repeat_times,
Z
zyfncg 已提交
376 377 378
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

379 380 381 382 383 384 385 386 387
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
388 389 390
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

391 392 393 394
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
395 396 397
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
398

H
hong 已提交
399 400 401 402
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

403 404 405 406 407
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
408 409
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
410
                     std::vector<MetaTensor*> outs);
Z
zyfncg 已提交
411 412 413 414 415 416 417

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
418

419 420 421 422 423 424 425
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
426

427 428 429 430 431 432 433 434 435
void UniqueConsecutiveInferMeta(const MetaTensor& x,
                                bool return_inverse,
                                bool return_counts,
                                const std::vector<int>& axis,
                                int dtype,
                                MetaTensor* out,
                                MetaTensor* index,
                                MetaTensor* counts);

C
csy0225 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
void UniqueInferMeta(const MetaTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     MetaTensor* out,
                     MetaTensor* indices,
                     MetaTensor* index,
                     MetaTensor* counts);

void UniqueRawInferMeta(const MetaTensor& x,
                        bool return_index,
                        bool return_inverse,
                        bool return_counts,
                        const std::vector<int>& axis,
                        DataType dtype,
                        bool is_sorted,
                        MetaTensor* out,
                        MetaTensor* indices,
                        MetaTensor* index,
                        MetaTensor* counts);

459
void UnsqueezeInferMeta(const MetaTensor& x,
460
                        const IntArray& axes,
461
                        MetaTensor* out,
462
                        MetaTensor* xshape,
463
                        MetaConfig config = MetaConfig());
464

C
csy0225 已提交
465 466 467 468 469
void UnStackInferMeta(const MetaTensor& x,
                      int axis,
                      int num,
                      std::vector<MetaTensor*> outs);

H
hong 已提交
470
void OneHotRawInferMeta(const MetaTensor& x,
471
                        const Scalar& depth,
H
hong 已提交
472 473 474 475 476 477
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

478 479
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

480 481 482 483 484
void ChannelShuffleInferMeta(const MetaTensor& x,
                             int groups,
                             const std::string& data_format,
                             MetaTensor* out);

485 486
void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out);

487
}  // namespace phi