nn.py 177.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network. 
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
Y
yuyang18 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'lod_reset',
    'lrn',
    'pad',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
Y
Yu Yang 已提交
96 97 98 99 100 101 102 103
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
104
       use_mkldnn=False,
Y
Yu Yang 已提交
105
       act=None,
J
Jacek Czaja 已提交
106
       is_test=False,
107
       name=None):
Y
Yu Yang 已提交
108
    """
109
    **Fully Connected Layer**
Y
Yu Yang 已提交
110

F
fengjiayi 已提交
111 112 113 114 115 116 117 118 119
    This function creates a fully connected layer in the network. It can take 
    multiple tensors as its inputs. It creates a variable called weights for 
    each input tensor, which represents a fully connected weight matrix from 
    each input unit to each output unit. The fully connected layer multiplies 
    each input tensor with its coresponding weight to produce an output Tensor. 
    If multiple input tensors are given, the results of multiple multiplications 
    will be sumed up. If bias_attr is not None, a bias variable will be created 
    and added to the output. Finally, if activation is not None, it will be applied 
    to the output as well.
C
caoying03 已提交
120

C
caoying03 已提交
121
    This process can be formulated as follows:
122 123 124

    .. math::

125
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
126 127 128

    In the above equation:

C
caoying03 已提交
129 130 131 132
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
133
    * :math:`Act`: The activation function.
C
caoying03 已提交
134
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
135 136

    Args:
R
ranqiu 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
154
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
155 156
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
157
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
158

159
    Returns:
F
fengjiayi 已提交
160
        Variable: The transformation result.
161 162

    Raises:
C
caoying03 已提交
163
        ValueError: If rank of the input tensor is less than 2.
164 165 166 167

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
168
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
169
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
170
    """
C
caoying03 已提交
171

C
caoying03 已提交
172
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
173 174 175 176

    dtype = helper.input_dtype()

    mul_results = []
177 178
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
179 180 181
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
182

Y
Yu Yang 已提交
183
        w = helper.create_parameter(
184 185
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
186
        helper.append_op(
187 188 189
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
190
            outputs={"Out": tmp},
M
mozga-intel 已提交
191 192
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
193 194 195 196
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
197
    else:
198 199 200 201 202 203 204
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
205 206


207 208 209
def embedding(input,
              size,
              is_sparse=False,
210
              is_distributed=False,
211 212 213
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
214
    """
215 216
    **Embedding Layer**

217
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
218 219
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
220 221 222

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
223 224

    Args:
225 226 227 228 229
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
230
        is_distributed(bool): Whether to run lookup table from remote parameter server.
231 232
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
233
            with zeros whenever lookup encounters it in :attr:`input`. If
234
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
235 236
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
237
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
238

239 240 241
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
242

243 244
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
245

C
chengduoZH 已提交
246
          dict_size = len(dataset.ids)
247
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
248
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
249 250 251 252 253 254
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
255 256
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
257 258 259 260 261
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
262 263 264 265 266
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
267 268 269 270 271
    return tmp


def dynamic_lstm(input,
                 size,
272 273
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
274 275 276 277 278 279 280
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
281 282
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
283 284 285 286 287 288
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
289
    .. math::
Y
Yibing Liu 已提交
290

291
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
292

293
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
294

295
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
296

297 298 299
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
300

Y
Yibing Liu 已提交
301
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
302

303
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
304
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
305 306 307
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
308
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
309 310
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
311 312
    all of which have the same size as the cell output activation vector :math:`h`.

313 314 315 316
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
317 318 319
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
320 321 322
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
323 324 325
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
326 327

    Args:
328 329 330 331
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
332 333
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
334 335 336 337 338 339 340
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

341
        param_attr(ParamAttr|None): The parameter attribute for the learnable
342
                               hidden-hidden weights.
Y
Yibing Liu 已提交
343 344 345

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
346 347 348
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
349 350 351
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
352

353
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
354
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
355
                                - The shape is (1 x 4D).
356
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
357 358
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
359
                                - The shape is (1 x 7D).
360
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
361 362
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
363 364
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
365
                              "identity"], default "sigmoid".
366
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
367 368
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
369
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
370 371
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
372 373
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
374 375

    Returns:
Y
Yibing Liu 已提交
376 377
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
378

Y
Yibing Liu 已提交
379
    Examples:
Y
Yibing Liu 已提交
380 381
        .. code-block:: python

Y
Yibing Liu 已提交
382 383
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
384
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
385 386
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
387
    """
388

Y
Yu Yang 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
403 404 405 406 407 408 409 410 411 412
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
413 414 415

    helper.append_op(
        type='lstm',
416
        inputs=inputs,
Y
Yu Yang 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
433 434 435 436 437 438 439 440 441 442 443
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
444 445
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
446 447 448
    """
    **Dynamic LSTMP Layer**

449 450 451 452 453 454
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
455 456 457 458 459

    The formula is as follows:

    .. math::

460
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
461

462
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
463

464
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
465

466
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
467

468
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
469

470
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
471

472
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
473

Y
Yibing Liu 已提交
474 475 476 477 478 479
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
480
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
481
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
482
          bias vector).
Y
Yibing Liu 已提交
483 484 485
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
486
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
487
    * :math:`h`: The hidden state.
488
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
489 490
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
491
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
492
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
493
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
494 495
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
496 497 498 499

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
500

Y
Yibing Liu 已提交
501 502 503 504 505 506 507 508 509 510 511 512
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
513
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
514 515
                               hidden-hidden weight and projection weight.

516 517
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
518 519
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
520 521
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
522 523
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
524 525 526 527 528 529
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
530
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
531 532 533
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
534
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
535 536 537 538 539 540 541 542 543
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
544
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
545 546
                              default "tanh".
        proj_activation(str): The activation for projection output.
547
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
548 549
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
550 551
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
552 553

    Returns:
554 555 556 557
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
558 559

    Examples:
560

Y
Yibing Liu 已提交
561 562
        .. code-block:: python

563 564 565 566
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
567
            hidden_dim, proj_dim = 512, 256
568
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
569
                                     act=None, bias_attr=None)
570 571 572
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
573 574 575 576
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
577
    """
578

Y
Yibing Liu 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
625 626 627 628 629 630 631 632 633
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
634
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
635

636
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
637
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
638

G
guosheng 已提交
639 640 641 642 643 644 645 646 647
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
648

G
guosheng 已提交
649
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
650

G
guosheng 已提交
651
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
652 653
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
654 655 656 657
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
658
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
659 660

    Args:
661 662
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
663
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
664
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
665 666
            is the hidden size.
        size(int): The dimension of the gru cell.
667
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
668 669
            hidden-hidden weight matrix. Note:

670
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
671
              :math:`D` is the hidden size.
672
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
673
              The first part are weights of the update gate and reset gate with
674
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
675
              candidate hidden state with shape :math:`(D \\times D)`.
676
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
677
            hidden-hidden bias.
678
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
679 680 681
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
682
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
683
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
684 685 686 687
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
688 689

    Returns:
G
guosheng 已提交
690
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
691
            and sequence length is the same with the input.
692

G
guosheng 已提交
693
    Examples:
694

G
guosheng 已提交
695 696
        .. code-block:: python

697 698 699 700
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
701
            hidden_dim = 512
702
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
703 704 705 706 707 708 709 710 711 712
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
713
    batch_size = input.shape[0]
G
guosheng 已提交
714 715 716
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
717 718 719
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
743 744 745
def gru_unit(input,
             hidden,
             size,
746 747
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
748
             activation='tanh',
749
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
750
    """
751
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
752

753 754
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
755

756
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
757

758
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
759

760
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
761 762

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
763 764 765
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
766 767
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

768 769
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
770 771 772
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
773 774 775 776 777

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
778 779
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
780 781 782 783
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
784

785 786 787 788 789 790
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
791

792
             # assuming we have x_t_data and prev_hidden of size=10
793
             x_t = fluid.layers.fc(input=x_t_data, size=30)
794 795
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
811 812
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
813

814 815 816 817
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
818
    # create bias
819
    if helper.bias_attr:
Y
Yu Yang 已提交
820 821 822
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
823
        inputs['Bias'] = bias
Y
Yu Yang 已提交
824 825 826

    helper.append_op(
        type='gru_unit',
827
        inputs=inputs,
Y
Yu Yang 已提交
828 829 830 831 832 833
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
834 835
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
836 837 838 839 840
        })

    return updated_hidden, reset_hidden_pre, gate


841
@templatedoc()
842
def linear_chain_crf(input, label, param_attr=None):
843 844 845 846 847 848 849 850 851 852 853 854 855 856
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
        ${log_likelihood_comment}

    """
Y
Yu Yang 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


882
@templatedoc()
883
def crf_decoding(input, param_attr, label=None):
884 885 886 887 888 889 890 891 892 893 894
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        param_attr(ParamAttr): The parameter attribute for training.
        label(${label_type}): ${label_comment}

    Returns:
        ${viterbi_path_comment}
    """
Y
Yu Yang 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
908
def cos_sim(X, Y):
Y
Yu Yang 已提交
909 910 911
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
912 913 914 915

    Args:
        X (Variable): The input X.
        Y (Variable): The input Y.
F
fengjiayi 已提交
916

917 918
    Returns:
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
919
    """
F
fengjiayi 已提交
920
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


934
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
935 936 937 938 939
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
940
    training. The dropout operator randomly sets (according to the given dropout
941 942 943 944
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
945 946
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
947 948 949 950 951 952 953
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
954 955

    Returns:
956
        Variable: A tensor variable is the shape with `x`.
957 958

    Examples:
959

960 961
        .. code-block:: python

962 963
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
964 965
    """

F
fengjiayi 已提交
966
    helper = LayerHelper('dropout', **locals())
967 968 969 970 971 972 973
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
974 975 976 977 978 979
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
980 981 982
    return out


F
fengjiayi 已提交
983
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
984
    """
Y
Yibing Liu 已提交
985 986
    **Cross Entropy Layer**

987 988 989
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
990 991

    1) One-hot cross-entropy:
F
fengjiayi 已提交
992
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
993

Y
Yibing Liu 已提交
994
        .. math::
Y
yangyaming 已提交
995

Y
Yibing Liu 已提交
996 997 998
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
999 1000
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1001 1002 1003 1004 1005

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1006
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1007 1008 1009
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1010 1011
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1012
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1013

Y
Yibing Liu 已提交
1014
    Args:
Y
yangyaming 已提交
1015
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1016 1017 1018 1019
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1020
        label (Variable|list): the ground truth which is a 2-D tensor. When
1021 1022 1023 1024
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1025
        soft_label (bool): a flag indicating whether to
1026 1027
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1028 1029 1030 1031 1032

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1033 1034 1035 1036 1037
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1038 1039 1040 1041 1042 1043

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1044
    """
F
fengjiayi 已提交
1045
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1046 1047 1048 1049 1050 1051
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1052
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1053 1054 1055
    return out


F
fengjiayi 已提交
1056
def square_error_cost(input, label):
Y
Yu Yang 已提交
1057
    """
1058 1059
    **Square error cost layer**

1060 1061
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1076 1077
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1078 1079

    Returns:
G
guosheng 已提交
1080
        Variable: The tensor variable storing the element-wise squared error \
1081
                  difference of input and label.
1082 1083 1084 1085 1086 1087 1088 1089

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1090
    """
F
fengjiayi 已提交
1091
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1101 1102
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1103 1104 1105
    return square_out


1106
@templatedoc()
Y
Yu Yang 已提交
1107 1108 1109 1110
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1111
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1112
    """
Y
yangyaming 已提交
1113
    This function computes and outputs the precision, recall and
1114
    F1-score of chunk detection.
1115 1116 1117 1118 1119 1120 1121

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1122

1123 1124 1125 1126
    Returns:
        tuple: tuple containing: (precision, recall, f1_score,
               num_infer_chunks, num_label_chunks,
               num_correct_chunks)
Y
Yu Yang 已提交
1127
    """
F
fengjiayi 已提交
1128
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1129 1130 1131 1132 1133

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1134 1135 1136
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1137 1138 1139 1140 1141 1142 1143 1144

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1145 1146 1147 1148
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1149 1150 1151
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1152 1153
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1154
        })
1155 1156
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1157 1158


1159
@templatedoc()
Y
Yu Yang 已提交
1160 1161 1162 1163 1164 1165 1166
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1167
                  act=None):
Y
Yu Yang 已提交
1168 1169 1170 1171
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1182

1183 1184
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1214
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N` 
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
    
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1261
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1273 1274 1275
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1276 1277
           stride=1,
           padding=0,
1278
           dilation=1,
Y
Yu Yang 已提交
1279 1280 1281
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1282
           use_cudnn=True,
1283
           use_mkldnn=False,
1284 1285
           act=None,
           name=None):
Y
Yu Yang 已提交
1286
    """
C
chengduoZH 已提交
1287
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1288 1289
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1290
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1291 1292 1293 1294 1295 1296 1297
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1298 1299 1300
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1301

1302
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1303

C
chengduoZH 已提交
1304 1305
    .. math::

C
refine  
chengduoZH 已提交
1306
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1307

T
tensor-tang 已提交
1308
    Where:
C
chengduoZH 已提交
1309

1310 1311 1312 1313 1314
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1315
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1316 1317 1318

    Example:

1319 1320
        - Input:

1321
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1322

1323
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1324

1325
        - Output:
T
tensor-tang 已提交
1326

1327
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1328

C
chengduoZH 已提交
1329
        Where
1330 1331

        .. math::
C
chengduoZH 已提交
1332

1333 1334
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1335 1336

    Args:
1337
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1338
        num_filters(int): The number of filter. It is as same as the output
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1361 1362
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1363 1364 1365
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1366 1367

    Returns:
G
guosheng 已提交
1368
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1369 1370
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1371
    Raises:
1372 1373
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1374

C
chengduoZH 已提交
1375 1376 1377
    Examples:
        .. code-block:: python

1378 1379
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1380 1381 1382
    """

    num_channels = input.shape[1]
1383 1384

    l_type = 'conv2d'
X
xzl 已提交
1385 1386
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1387
        l_type = 'depthwise_conv2d'
1388 1389 1390 1391

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1392 1393 1394 1395 1396 1397 1398
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1399 1400 1401
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1402
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1403

C
chengduoZH 已提交
1404 1405
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1423
        type=l_type,
Y
Yu Yang 已提交
1424 1425 1426 1427 1428
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1429 1430 1431
        attrs={
            'strides': stride,
            'paddings': padding,
1432
            'dilations': dilation,
C
chengduoZH 已提交
1433
            'groups': groups,
1434 1435
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1436
        })
Y
Yu Yang 已提交
1437 1438 1439 1440 1441 1442

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1461 1462 1463 1464 1465 1466
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1476 1477
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1478 1479 1480
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1481
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1507
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1508 1509
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1510
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1511 1512
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1513
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1514 1515
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1516
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1543 1544
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1600
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1601 1602 1603 1604

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1605
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1606
    """
Y
yangyaming 已提交
1607 1608 1609
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1621
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1622 1623 1624 1625 1626
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1627
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1628 1629 1630 1631 1632 1633 1634

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1635 1636
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1637

L
Luo Tao 已提交
1638 1639
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1640
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1641 1642 1643 1644 1645 1646 1647 1648
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1649

Y
yangyaming 已提交
1650
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1651 1652 1653 1654 1655
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1656 1657
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1658
    """
F
fengjiayi 已提交
1659
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1671 1672 1673 1674 1675
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1676 1677 1678
    return pool_out


F
fengjiayi 已提交
1679
def sequence_first_step(input):
L
Luo Tao 已提交
1680
    """
1681
    This function gets the first step of sequence.
L
Luo Tao 已提交
1682 1683 1684 1685

    .. code-block:: text

       x is a 1-level LoDTensor:
1686
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1687 1688 1689 1690 1691
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1692
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1693
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1694

L
Luo Tao 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1704

Y
yangyaming 已提交
1705
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1706 1707 1708
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1709 1710 1711
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1712
def sequence_last_step(input):
L
Luo Tao 已提交
1713
    """
1714
    This function gets the last step of sequence.
L
Luo Tao 已提交
1715 1716 1717 1718

    .. code-block:: text

       x is a 1-level LoDTensor:
1719
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1720 1721 1722 1723 1724
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1725
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1726
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1727

L
Luo Tao 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1737

Y
yangyaming 已提交
1738
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1739 1740 1741
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1742 1743 1744
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1745
@templatedoc()
Y
Yu Yang 已提交
1746
def pool2d(input,
C
chengduoZH 已提交
1747 1748
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1749 1750
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1751
           global_pooling=False,
C
chengduoZH 已提交
1752
           use_cudnn=True,
1753
           ceil_mode=False,
1754
           use_mkldnn=False,
C
caoying03 已提交
1755
           name=None):
Y
Yu Yang 已提交
1756
    """
F
fengjiayi 已提交
1757
    ${comment}
1758 1759

    Args:
F
fengjiayi 已提交
1760
        input (Variable): The input tensor of pooling operator. The format of 
F
fengjiayi 已提交
1761 1762 1763
                          input tensor is NCHW, where N is batch size, C is 
                          the number of channels, H is the height of the 
                          feature, and W is the width of the feature.
F
fengjiayi 已提交
1764 1765
        pool_size (int): The side length of pooling windows. All pooling 
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1766
        pool_type: ${pooling_type_comment}
1767 1768
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1769 1770 1771 1772
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
F
fengjiayi 已提交
1773 1774 1775
        name (str|None): A name for this layer(optional). If set None, the 
                        layer will be named automatically.

1776
    Returns:
F
fengjiayi 已提交
1777
        Variable: The pooling result.
F
fengjiayi 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
                            input=data, 
                            pool_size=2, 
                            pool_type='max', 
                            pool_stride=1, 
                            global_pooling=False)
Y
Yu Yang 已提交
1796 1797 1798 1799 1800
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1801

C
chengduoZH 已提交
1802 1803 1804 1805 1806
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1807 1808 1809 1810
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1811 1812
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1813

C
Add doc  
chengduoZH 已提交
1814
    l_type = 'pool2d'
1815 1816

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1817 1818 1819 1820
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1850
    pooling configurations mentioned in input parameters.
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1864

1865
    Returns:
1866
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1867 1868 1869 1870 1871
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1872

C
chengduoZH 已提交
1873 1874 1875 1876 1877
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1878 1879 1880
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1881

C
chengduoZH 已提交
1882 1883
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1884

1885 1886
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1887 1888 1889 1890
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1891
        type=l_type,
Y
Yu Yang 已提交
1892 1893 1894 1895 1896 1897 1898
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1899
            "paddings": pool_padding,
1900
            "use_cudnn": use_cudnn,
1901 1902
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1915
               data_layout='NCHW',
Y
Yang Yang 已提交
1916
               in_place=False,
1917
               use_mkldnn=False,
1918 1919
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1920
               moving_variance_name=None,
W
wanghaoshuang 已提交
1921
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1922 1923 1924
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

    Args:
        input (Variable): the input variable.
        act (str): activation type
        is_test (bool): whether to run batch_norm as test mode.
        momentum (float): momentum
        epsilon (float): epsilon, default 1e-05
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        data_layout (str): data layout, default NCHW
        in_place (bool): if True, do not create tmp variable
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): The name of this layer. It is optional.
        moving_mean_name (str): The name of moving mean variable name, optional.
        moving_variance_name (str): The name of moving variance name, optional.
        do_model_average_for_mean_and_var (bool):

    Returns:
        Variable: output of batch_norm layer.
Y
Yu Yang 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1967
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1968

1969 1970
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1971 1972 1973
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1974
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1975
        shape=param_shape,
1976 1977 1978 1979 1980 1981 1982
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1983
            trainable=False,
W
wanghaoshuang 已提交
1984
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1985
        shape=param_shape,
1986 1987
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1988 1989 1990 1991 1992 1993

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1994 1995
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1996

Y
Yang Yang 已提交
1997
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2015 2016 2017 2018 2019 2020
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
2021 2022 2023 2024

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2025
@templatedoc()
G
guosheng 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2036
    ${comment}
G
guosheng 已提交
2037 2038 2039

    The formula is as follows:

Y
yuyang18 已提交
2040
    ..  math::
G
guosheng 已提交
2041 2042 2043 2044 2045 2046 2047

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2048 2049 2050 2051 2052 2053 2054 2055
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2056

G
guosheng 已提交
2057 2058
    Args:
        input(Variable): The input tensor variable.
2059
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2060
            normalization.
2061
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2062
            normalization.
2063
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2064
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2065
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2066 2067 2068 2069 2070 2071
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2072
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2073 2074

    Returns:
Y
yuyang18 已提交
2075
        ${y_comment}
G
guosheng 已提交
2076 2077 2078

    Examples:

Y
yuyang18 已提交
2079 2080 2081
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2097
    if shift:
G
guosheng 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
2122
def beam_search_decode(ids, scores, name=None):
2123 2124 2125 2126 2127 2128 2129
    """
    ${beam_search_decode}

    Args:
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        name (str): The name of this layer. It is optional.
F
fengjiayi 已提交
2130

2131 2132 2133
    Returns:
        tuple: a tuple of two output variable: sentence_ids, sentence_scores
    """
Y
Yu Yang 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2154 2155 2156
                     padding=0,
                     stride=1,
                     dilation=1,
2157
                     groups=None,
C
caoying03 已提交
2158
                     param_attr=None,
2159
                     bias_attr=None,
C
chengduoZH 已提交
2160
                     use_cudnn=True,
2161
                     act=None,
C
caoying03 已提交
2162
                     name=None):
Y
Yu Yang 已提交
2163
    """
2164 2165 2166 2167 2168 2169 2170 2171
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2172 2173
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2174 2175 2176
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2177 2178 2179 2180 2181

    For each input :math:`X`, the equation is:

    .. math::

2182
        Out = \sigma (W \\ast X + b)
2183

2184
    Where:
2185 2186 2187

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2188 2189 2190 2191
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2192

2193 2194 2195 2196
    Example:

        - Input:

2197
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2198

2199
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2200 2201 2202

        - Output:

2203
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2204 2205

        Where
Y
Yu Yang 已提交
2206

2207 2208 2209 2210
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2211 2212

    Args:
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2246 2247

    Returns:
2248
        Variable: The tensor variable storing the convolution transpose result.
2249 2250

    Raises:
2251 2252
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2253 2254 2255 2256

    Examples:
       .. code-block:: python

2257 2258
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2259 2260 2261 2262 2263 2264
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
2265 2266 2267
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2268

C
chengduoZH 已提交
2269 2270 2271
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2272 2273 2274 2275 2276 2277 2278 2279
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
2280 2281 2282 2283 2284

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2285
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2286 2287 2288
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
2289

2290 2291
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2292 2293 2294
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2295
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2296 2297 2298 2299
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
2300
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2301 2302 2303 2304
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2305
            'groups': groups,
C
chengduoZH 已提交
2306 2307
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2308

2309 2310
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2311
    return out
Y
yangyaming 已提交
2312 2313


2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
def conv3d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=0,
                     stride=1,
                     dilation=1,
                     groups=None,
                     param_attr=None,
                     bias_attr=None,
                     use_cudnn=True,
                     act=None,
                     name=None):
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2338 2339 2340
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2341 2342 2343 2344 2345

    For each input :math:`X`, the equation is:

    .. math::

2346
        Out = \sigma (W \\ast X + b)
2347 2348 2349 2350 2351

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2352 2353 2354 2355
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
2356 2357 2358 2359 2360

    Example:

        - Input:

2361
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2362

2363
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2364 2365 2366

        - Output:

2367
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

        Where

        .. math::

           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1

    Args:
        input(Variable): The input image with [N, C, D, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain three integers, (image_D, image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution transpose result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

2422 2423
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
    """
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv3d_transpose must be Variable")
    input_channel = input.shape[1]

    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]

        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')

    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
C
chengduoZH 已提交
2471 2472 2473
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2474
            'groups': groups,
C
chengduoZH 已提交
2475 2476
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2477

2478 2479
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2480
    return out
Y
yangyaming 已提交
2481 2482


Y
yangyaming 已提交
2483
def sequence_expand(x, y, ref_level=-1, name=None):
2484
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2485 2486 2487 2488
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2489 2490 2491 2492 2493

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2494
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2495
                x.data = [[a], [b], [c], [d]]
2496 2497 2498
                x.dims = [4, 1]

            y is a LoDTensor:
2499 2500
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2501

Y
yangyaming 已提交
2502
            ref_level: 0
2503

Y
yangyaming 已提交
2504
            then output is a 1-level LoDTensor:
2505
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2506
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2507 2508 2509 2510
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2511
                x.data = [[a], [b], [c]]
2512 2513 2514
                x.dims = [3, 1]

            y is a LoDTensor:
2515
                y.lod = [[2, 0, 3]]
2516

Y
yangyaming 已提交
2517
            ref_level: -1
2518

Y
yangyaming 已提交
2519 2520 2521
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2522 2523 2524
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2525 2526
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2527
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2528
                        will be named automatically.
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2539
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2540
    """
Y
yangyaming 已提交
2541
    helper = LayerHelper('sequence_expand', input=x, **locals())
2542 2543 2544
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2545 2546 2547 2548 2549
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2550
    return tmp
2551 2552


Q
Qiao Longfei 已提交
2553 2554 2555
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
2556 2557 2558 2559 2560 2561 2562 2563

    Args:
        pre_ids (Variable): ${pre_ids_comment}
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        beam_size (int): ${beam_size_comment}
        end_id (int): ${end_id_comment}
        level (int): ${level_comment}
F
fengjiayi 已提交
2564

2565 2566
    Returns:
        tuple: a tuple of beam_search output variables: selected_ids, selected_scores
Q
Qiao Longfei 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
2596 2597 2598 2599
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2600
              param_attr=None,
C
caoying03 已提交
2601 2602
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2603 2604 2605 2606
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2607
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2608

2609
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2610

2611
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2612

2613
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2614 2615 2616

            h_t & = o_t tanh(c_t)

2617 2618 2619 2620 2621 2622
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2623 2624 2625

        .. math::

2626
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2627 2628 2629 2630 2631 2632 2633 2634

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2635
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2636 2637

    Args:
Y
yangyaming 已提交
2638 2639 2640 2641 2642 2643
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2644
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2645 2646
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2647 2648
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2649 2650
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2651 2652

    Returns:
Y
yangyaming 已提交
2653
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2654 2655

    Raises:
2656 2657 2658 2659
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2660 2661 2662 2663 2664 2665

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2666
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2667
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2668
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2685
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2686 2687 2688 2689
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2690 2691
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2692 2693 2694
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2695
    size = cell_t_prev.shape[1]
2696
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2697 2698
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2699
                param_attr=param_attr,
2700
                bias_attr=bias_attr)
Y
yangyaming 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2713
    return h, c
G
guosheng 已提交
2714 2715


C
caoying03 已提交
2716
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2717
    """
Y
yangyaming 已提交
2718
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2719 2720 2721

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2722
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2723 2724
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2725 2726
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2727
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2728
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2729
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2730 2731
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2732 2733 2734

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2735

G
guosheng 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2747 2748 2749 2750 2751 2752 2753 2754

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2755 2756 2757
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2758 2759
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2760 2761 2762 2763 2764
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2765
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2766 2767 2768 2769
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2770 2771


C
caoying03 已提交
2772
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2773
    """
Y
Yibing Liu 已提交
2774
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2775 2776 2777

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
2778 2779 2780
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
2781
            must be in the range :math:`[-rank(input), rank(input))`. If
Y
Yibing Liu 已提交
2782 2783
            :math:`dim[i] < 0`, the dimension to reduce is 
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
2784 2785
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2786
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
2787
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
2788
                       will be named automatically.
G
guosheng 已提交
2789 2790

    Returns:
Y
Yibing Liu 已提交
2791
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
2792

G
guosheng 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2803 2804
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2805 2806 2807 2808 2809 2810 2811

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2812 2813 2814
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2815 2816
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2817 2818 2819 2820 2821
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2822
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2823 2824 2825 2826
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2827 2828


C
caoying03 已提交
2829
def reduce_max(input, dim=None, keep_dim=False, name=None):
2830
    """
Y
yangyaming 已提交
2831
    Computes the maximum of tensor elements over the given dimension.
2832 2833 2834

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2835
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2836 2837 2838
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2839
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2840 2841
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2842
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2843 2844
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2845 2846 2847

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2848

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2860 2861 2862 2863 2864 2865 2866

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2867 2868 2869
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2870 2871
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2872 2873 2874 2875 2876
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2877
            'dim': dim if dim != None else [0],
2878 2879 2880 2881 2882 2883
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2884
def reduce_min(input, dim=None, keep_dim=False, name=None):
2885
    """
Y
yangyaming 已提交
2886
    Computes the minimum of tensor elements over the given dimension.
2887 2888 2889

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2890
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2891 2892 2893
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2894
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2895 2896
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2897
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2898 2899
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2900 2901 2902

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2903

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2915 2916 2917 2918 2919 2920 2921

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2922 2923 2924
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2925 2926
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2927 2928 2929 2930 2931
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2932
            'dim': dim if dim != None else [0],
2933 2934 2935 2936
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2937 2938


2939 2940 2941 2942 2943 2944
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2945
        dim (list|int|None): The dimensions along which the product is performed. If
2946 2947
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2948 2949
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2950 2951 2952
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2953
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2954
            layer will be named automatically.
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2969
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2970
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2971 2972 2973 2974 2975 2976 2977

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2978 2979 2980
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2981 2982
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2983 2984 2985 2986 2987
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2988
            'dim': dim if dim != None else [0],
2989 2990 2991 2992 2993 2994
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2995
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2996
    """
C
caoying03 已提交
2997
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2998 2999 3000

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3001 3002 3003 3004 3005
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3006
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3007
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3008
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3009 3010
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3023 3024
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3063
    .. math::
3064 3065

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3066 3067 3068 3069 3070

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3071
        x(Variable|list): The input tensor to l2_normalize layer.
3072
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3073 3074
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3075
        epsilon(float): The epsilon value is used to avoid division by zero, \
3076
            the defalut value is 1e-10.
3077
        name(str|None): A name for this layer(optional). If set None, the layer \
3078
            will be named automatically.
C
caoying03 已提交
3079 3080

    Returns:
3081
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3082 3083

    Examples:
3084

C
caoying03 已提交
3085 3086
        .. code-block:: python

3087 3088 3089 3090
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3091 3092
    """

F
fengjiayi 已提交
3093 3094
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3095 3096
    helper = LayerHelper("l2_normalize", **locals())

3097 3098
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3099
    helper.append_op(
3100 3101 3102 3103
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3104
        attrs={
3105 3106
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3107 3108
        })
    return out
3109 3110


3111
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3112
    """
Y
ying 已提交
3113 3114 3115 3116
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3117

C
chengduoZH 已提交
3118
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3119
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3120

3121 3122 3123 3124 3125
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3126
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3127

C
chengduoZH 已提交
3128
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3129
      performs in the following way.
G
guosheng 已提交
3130

3131
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3132
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3133
        last two dimensions and a batched matrix multiply supporting broadcast
3134
        applies on the two tensors.
G
guosheng 已提交
3135

Y
ying 已提交
3136 3137
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3138
    removed after matrix multiplication.
G
guosheng 已提交
3139 3140 3141

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3142 3143 3144
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3145
        name(str|None): A name for this layer(optional). If set None, the layer
3146
            will be named automatically.
G
guosheng 已提交
3147 3148

    Returns:
3149
        Variable: The product Tensor variable.
G
guosheng 已提交
3150

G
guosheng 已提交
3151 3152 3153
    Examples:
        .. code-block:: python

3154
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3155 3156
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3157

3158 3159
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3160

3161 3162
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3163

3164 3165
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3166 3167 3168 3169

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3170 3171
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3172

Y
ying 已提交
3173
            # x: [M], y: [N]
3174
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3175
    """
Y
ying 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3188
            y_shape = y_shape + [1]
Y
ying 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3205
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3206
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3207
    helper.append_op(
3208 3209 3210 3211 3212 3213 3214
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3215 3216


3217
def topk(input, k, name=None):
Q
qingqing01 已提交
3218 3219 3220 3221
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3222
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3223 3224 3225 3226 3227 3228
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3250 3251 3252
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
F
fengjiayi 已提交
3253 3254
        k(int):  The number of top elements to look for along the last dimension 
                 of input.
3255
        name(str|None): A name for this layer(optional). If set None, the layer
F
fengjiayi 已提交
3256 3257
                       will be named automatically. 
                       Default: None
Q
qingqing01 已提交
3258 3259

    Returns:
F
fengjiayi 已提交
3260 3261 3262 3263
        Tuple[Variable]: A tuple with two elements. Each element is a Variable. 
        The first one is k largest elements along each last 
        dimensional slice. The second one is indices of values 
        within the last dimension of input.
Q
qingqing01 已提交
3264

F
fengjiayi 已提交
3265 3266
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3267 3268 3269 3270 3271 3272 3273

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3274
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3292
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3293
    """
Y
ying 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3303

Y
ying 已提交
3304
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3305

3306
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3307 3308
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3309
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3310

3311
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3312 3313
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3314

3315 3316 3317
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3318
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3319
                          the length of reference string.
3320
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3321
                                     calculating edit distance.
3322
        name (str): The name of this layer. It is optional.
3323

W
wanghaoshuang 已提交
3324
    Returns:
W
wanghaoshuang 已提交
3325
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3326 3327 3328 3329 3330

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3331
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3332
            cost = fluid.layers.edit_distance(input=x,label=y)
3333
    """
3334
    helper = LayerHelper("edit_distance", **locals())
3335

3336
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3337
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3338 3339 3340 3341 3342 3343 3344
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3345
            attrs={"tokens": ignored_tokens})
3346 3347 3348 3349 3350
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3351
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3352
            attrs={"tokens": ignored_tokens})
3353 3354
        label = erased_label

3355 3356
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3357
    sequence_num = helper.create_tmp_variable(dtype="int64")
3358 3359 3360 3361
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3362 3363
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3364 3365
        attrs={"normalized": normalized})

3366
    return edit_distance_out, sequence_num
3367 3368 3369 3370 3371


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
3372 3373 3374 3375
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3393
        input.lod = [[4, 4]]
3394 3395 3396 3397 3398 3399 3400

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3401
        output.lod = [[2, 1]]
3402 3403 3404

    Args:

Y
ying 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3414
        name (str): The name of this layer. It is optional.
3415 3416

    Returns:
3417
        Variable: CTC greedy decode result. If all the sequences in result were
3418
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3419 3420 3421 3422 3423

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3424

3425
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3426
    """
3427
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3428
    _, topk_indices = topk(input, k=1)
3429 3430 3431 3432 3433 3434

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3435
        outputs={"Output": [ctc_out]},
3436 3437
        attrs={"merge_repeated": True,
               "blank": blank})
3438
    return ctc_out
3439 3440


F
fengjiayi 已提交
3441
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3442
    """
3443 3444
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3445
    to compute Connectionist Temporal Classification (CTC) loss.
3446 3447
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3448 3449 3450
    input tensor.

    Args:
3451
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3452 3453 3454 3455
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3456 3457 3458 3459
       label (Variable): The ground truth of variable-length sequence, 
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3460 3461
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3462 3463 3464 3465
       norm_by_times(bool, default false): Whether to normalize the gradients 
         by the number of time-step, which is also the sequence's length. 
         There is no need to normalize the gradients if warpctc layer was 
         follewed by a mean_op.
W
wanghaoshuang 已提交
3466 3467

    Returns:
3468 3469
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3470 3471

    Examples:
3472

W
wanghaoshuang 已提交
3473
        .. code-block:: python
3474

3475 3476 3477
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3478 3479

    """
F
fengjiayi 已提交
3480
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3507 3508 3509
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3510 3511 3512 3513 3514
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3515

3516
            out.lod  = [[0, 1, 3]]
3517 3518 3519 3520

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3521 3522 3523 3524 3525 3526 3527
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3528 3529 3530

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3531 3532

    Returns:
3533

3534 3535 3536 3537 3538
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3539
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3540
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3541 3542 3543 3544 3545 3546 3547 3548 3549
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3550 3551


3552 3553 3554 3555
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3556 3557 3558 3559 3560 3561 3562
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3563 3564 3565 3566 3567 3568 3569
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3570 3571 3572
        sample_weight (Variable|None): A Variable of shape [batch_size, 1] 
            storing a weight for each sample. The default weight for each 
            sample is 1.0.
3573 3574 3575
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3576

3577
    Returns:
Y
Yibing Liu 已提交
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3605
    """
Y
Yang Yu 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3650
    return cost / (num_neg_samples + 1)
3651 3652


Y
fix ci.  
ying 已提交
3653
def transpose(x, perm, name=None):
Y
ying 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3663 3664 3665
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3666 3667 3668 3669 3670 3671 3672 3673

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3674
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3675 3676
    """

Y
fix ci.  
ying 已提交
3677
    if len(perm) != len(x.shape):
Y
ying 已提交
3678 3679 3680
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3681 3682 3683 3684 3685 3686
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3687 3688

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3689
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3690 3691
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3692
        inputs={'X': [x]},
Y
ying 已提交
3693 3694 3695
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3696 3697


3698
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3699
    """
3700 3701 3702 3703 3704 3705 3706
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3735 3736 3737
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3738 3739 3740 3741 3742
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3772 3773 3774
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

3789
            output.lod = [[4, 4]]
3790 3791 3792 3793 3794

        The simple usage is:

        .. code-block:: python

3795 3796
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3797 3798

    """
W
wanghaoshuang 已提交
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3810
    helper = LayerHelper('im2sequence', **locals())
3811 3812
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3813
        type='im2sequence',
3814 3815 3816
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3817 3818 3819
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3820 3821
        })
    return out
3822 3823


Y
yuyang18 已提交
3824
@templatedoc()
3825
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
3826 3827
    """
    ${comment}
3828 3829

    Args:
Y
yuyang18 已提交
3830
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
3831 3832
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3833 3834 3835 3836 3837
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
3838
        ${out_comment}.
3839 3840

    Examples:
Y
yuyang18 已提交
3841 3842 3843 3844
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3857
    return helper.append_activation(out)
3858 3859


Y
yuyang18 已提交
3860
@templatedoc()
3861 3862
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
3863 3864 3865 3866 3867 3868 3869
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
3870 3871

    Args:
Y
yuyang18 已提交
3872 3873
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
3874 3875

    Returns:
Y
yuyang18 已提交
3876
        ${out_comment}.
3877 3878
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3879 3880 3881 3882 3883 3884

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3885 3886 3887 3888 3889 3890
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3891 3892 3893 3894 3895


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3896

3897 3898 3899 3900
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3901

3902 3903 3904
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3905

3906 3907 3908
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3909

3910
    The equation is as follows:
3911

3912
    1) Hard label (one-hot label, so every sample has exactly one class)
3913

3914 3915 3916 3917
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3918

3919 3920 3921
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3922

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
3944 3945
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
3962 3963
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
3964
    For each instance, it computes the smooth L1 loss element by element first
3965 3966
    and then sums all the losses. So the shape of ouput Variable is 
    [batch_size, 1].
3967

3968 3969
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3970
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3971
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
3972
            L1 loss op with same shape as :attr:`x`.
3973
        inside_weight (Variable|None):  A tensor with rank at least 2. This
Y
Yibing Liu 已提交
3974 3975 3976
            input is optional and should have same shape with :attr:`x`. If 
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied 
            by this tensor element by element.
3977
        outside_weight (Variable|None): A tensor with rank at least 2. This
Y
Yibing Liu 已提交
3978 3979 3980
            input is optional and should have same shape with :attr:`x`. If 
            provided, the out smooth L1 loss will be multiplied by this tensor 
            element by element.
3981 3982 3983
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float 
           scalar with default value 1.0.

3984
    Returns:
3985
        Variable: The output smooth L1 loss with shape [batch_size, 1].
3986 3987 3988 3989 3990

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
3991 3992
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
3993
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3994
            out = fluid.layers.smooth_l1(x=fc, y=label)
3995
    """
3996

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4012 4013 4014 4015


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4016
    This layer creates the one-hot representations for input indices.
4017 4018

    Args:
Y
Yibing Liu 已提交
4019 4020
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4021 4022

    Returns:
Y
Yibing Liu 已提交
4023
        Variable: The one-hot representations of input.
4024 4025

    Examples:
C
caoying03 已提交
4026
        .. code-block:: python
Y
Yibing Liu 已提交
4027 4028 4029
        
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4030 4031 4032 4033 4034 4035 4036 4037 4038
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4039 4040


Y
Yu Yang 已提交
4041
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4042
    """
Y
Yu Yang 已提交
4043
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
4044
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
4045 4046 4047 4048 4049 4050

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4051 4052
    Returns:
        Variable: The global run counter.
Y
Yu Yang 已提交
4053 4054
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4055 4056
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4057 4058 4059 4060 4061
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4062
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
4063 4064 4065
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4066 4067
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4068 4069 4070
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4071 4072


4073
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4074
    """
C
caoying03 已提交
4075 4076
    Gives a new shape to the input Tensor without changing its data.

4077 4078 4079 4080 4081
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4082

4083
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4084

4085 4086 4087 4088
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4089
    2. 0 means the actual dimension value is going to be copied from the
4090 4091 4092 4093
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4094 4095

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4096
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4097
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4098

4099
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4100 4101
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4102 4103
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4104
    dimensions.
C
caoying03 已提交
4105

4106
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4107 4108 4109 4110
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4111 4112

    Args:
4113
        x(variable): The input tensor.
C
caoying03 已提交
4114 4115
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4116 4117 4118 4119 4120
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4121 4122 4123 4124
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
4125
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4126

4127 4128
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4129 4130 4131

    Examples:
        .. code-block:: python
G
guosheng 已提交
4132

4133
            data = fluid.layers.data(
4134
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4135
            reshaped = fluid.layers.reshape(
4136
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4137 4138 4139 4140 4141
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4157 4158 4159 4160
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
4161 4162 4163
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
4164 4165 4166 4167 4168
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
4169 4170


Y
yangyaming 已提交
4171
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4172
    """
Y
Yibing Liu 已提交
4173 4174 4175 4176 4177 4178
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be 
    considered as target LoD first, otherwise :attr:`y.data` would be 
    considered as target LoD. If :attr:`y` is not provided, target LoD should 
    be specified by :attr:`target_lod`. If target LoD is specified by 
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4179 4180 4181 4182 4183 4184

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4185
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4186 4187 4188
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4189
            target_lod: [4, 2]
Y
yangyaming 已提交
4190 4191

            then we get a 1-level LoDTensor:
4192
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4193 4194 4195 4196 4197 4198
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4199
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4200 4201 4202 4203
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4204
                y.data = [[2, 4]]
Y
yangyaming 已提交
4205 4206 4207
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4208
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4209 4210 4211 4212 4213 4214
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4215
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4216 4217 4218 4219
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4220
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4221 4222 4223 4224
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4225
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4226 4227 4228 4229 4230
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
Y
Yibing Liu 已提交
4231 4232
        y (Variable|None): If provided, output's LoD would be derived 
                           from :attr:`y`.
Y
yangyaming 已提交
4233
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4234
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4235 4236

    Returns:
Y
Yibing Liu 已提交
4237
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4238 4239

    Raises:
Y
Yibing Liu 已提交
4240
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4307 4308
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4336 4337 4338 4339


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4340
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4341
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4342

G
guosheng 已提交
4343 4344 4345 4346
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4369
                         The length of :attr:paddings must be
G
guosheng 已提交
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4380

G
guosheng 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4395 4396 4397 4398 4399 4400 4401 4402 4403


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4404 4405
    called label-smoothing regularization (LSR).

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4429
                              be :math:`(1, class\_num)`.
4430 4431
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4432
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4460 4461 4462 4463


def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
4464
    Region of interest pooling (also known as RoI pooling) is to perform
4465 4466
        is to perform max pooling on inputs of nonuniform sizes to obtain
        fixed-size feature maps (e.g. 7*7).
4467 4468 4469 4470
    The operator has three steps:
        1. Dividing each region proposal into equal-sized sections with
           the pooled_width and pooled_height
        2. Finding the largest value in each section
4471 4472 4473 4474 4475 4476 4477
        3. Copying these max values to the output buffer

    Args:
        input (Variable): The input for ROI pooling.
        rois (Variable): ROIs (Regions of Interest) to pool over. It should
                         be a 2-D one level LoTensor of shape [num_rois, 4].
                         The layout is [x1, y1, x2, y2], where (x1, y1)
4478 4479
                         is the top left coordinates, and (x2, y2) is the
                         bottom right coordinates. The num_rois is the
4480 4481 4482 4483 4484 4485 4486 4487
                         total number of ROIs in this batch data.
        pooled_height (integer): The pooled output height. Default: 1
        pooled_width (integer): The pooled output width. Default: 1
        spatial_scale (float): Multiplicative spatial scale factor. To
                               translate ROI coords from their input scale
                               to the scale used when pooling. Default: 1.0

    Returns:
4488
        pool_out (Variable): The output is a 4-D tensor of the shape
4489 4490 4491
                             (num_rois, channels, pooled_h, pooled_w).

    Examples:
4492 4493
        .. code-block:: python

4494
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4540 4541
        .. code-block:: python

W
whs 已提交
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4553 4554


4555 4556 4557 4558 4559
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4560
    """
4561
    Resize a batch of images.
F
stash  
fengjiayi 已提交
4562

4563 4564 4565 4566 4567
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w), 
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4568

4569
    Args:
4570
        input (Variable): The input tensor of image resize layer,
4571 4572
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4573
        out_shape(list|tuple|Variable|None): Output shape of image resize
4574 4575
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4576
        scale(float|None): The multiplier for the input height or width.
4577 4578 4579
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4580 4581
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4582 4583
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4584 4585 4586 4587

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4588

4589 4590 4591
    Examples:
        .. code-block:: python

4592
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4593
    """
4594 4595 4596 4597
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4598 4599
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4600 4601
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4602 4603 4604 4605

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4606 4607 4608
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4609
    if out_shape is not None:
B
baiyf 已提交
4610 4611 4612
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4613 4614 4615 4616 4617 4618
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4619 4620 4621 4622
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4623 4624
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4625
        type=resample_methods[resample],
4626
        inputs=inputs,
4627 4628 4629 4630
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4631 4632


4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
@templatedoc(op_type="bilinear_interp")
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.

        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
    Resize a batch of images. The short edge of input images will be 
    resized to the given 'out_short_len'. The long edge of input images 
    will be resized proportionately to make images' length-width ratio 
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
        resample (str): resample method, default: BILINEAR.

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4689 4690 4691 4692 4693 4694 4695
def gather(input, index):
    """
    Output is obtained by gathering entries of the outer-most dimension 
    of X indexed by `index` and concatenate them together.

    .. math::

4696
        Out = X[Index]
W
whs 已提交
4697 4698 4699 4700 4701 4702 4703


    .. code-block:: text


                Given:

4704 4705
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
        input (Variable): The source input with rank>=1. 
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
4723

W
whs 已提交
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
4752 4753 4754 4755
    
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
4756
    """
F
stash  
fengjiayi 已提交
4757 4758 4759
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
4760 4761 4762
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4763
    if isinstance(seed, int):
F
fengjiayi 已提交
4764
        seed_value = seed
F
fengjiayi 已提交
4765 4766 4767 4768 4769 4770 4771 4772
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4773 4774
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4775
            })
F
stash  
fengjiayi 已提交
4776 4777
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4778
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4779 4780
    helper.append_op(
        type="random_crop",
4781
        inputs={"X": x,
F
stash  
fengjiayi 已提交
4782 4783 4784 4785 4786
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out
4787 4788


W
wanghaoshuang 已提交
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
def log(x):
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

        Out = \\ln(x)

    Args:
        x (Variable): Input tensor. 

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

            output = fluid.layers.log(x)
    """
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(type="log", inputs={"X": input}, outputs={"Out": out})
    return out


def relu(x):
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
    where the rectified linear function, y = max(0, x), is applied to
    the tensor elementwise.

    .. math::

        Out = \\max(0, x)

    Args:
        x (Variable): The input tensor. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.relu(x)
    """
    helper = LayerHelper('relu', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(type="relu", inputs={"X": input}, outputs={"Out": out})
    return out
4843 4844


4845 4846 4847 4848 4849 4850 4851 4852
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
    semantic image segmentation, which first computes the IOU for each 
    semantic class and then computes the average over classes. 
    IOU is defined as follows: 
    
    .. math::
4853 4854

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
4855 4856 4857 4858 4859 4860 4861

    The predictions are accumulated in a confusion matrix and mean-IOU 
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
4862
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
4863
                           Its shape should be the same as input.
4864
        num_classes (int): The possible number of labels.
4865 4866 4867 4868 4869 4870 4871 4872 4873

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class. 

    Examples:

        .. code-block:: python
4874
            
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
        inputs={"predictions": input,
                "labels": label},
        outputs={
            "out_mean_iou": out_mean_iou,
            "out_wrong": out_wrong,
            "out_correct": out_correct
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct