test_layers.py 114.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29
from paddle.fluid.dygraph import base, to_variable
30 31 32 33 34 35
from paddle.fluid.framework import (
    Program,
    _test_eager_guard,
    default_main_program,
    program_guard,
)
36
from paddle.tensor import random
37 38 39 40 41 42 43 44 45 46 47


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

48 49 50 51 52 53 54 55
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
56 57 58 59

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
60
            paddle.seed(self.seed)
L
Leo Chen 已提交
61
            paddle.framework.random._manual_program_seed(self.seed)
62 63
            yield

64 65 66
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
67
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
68
        exe.run(fluid.default_startup_program())
69 70 71 72 73 74
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
75 76

    @contextlib.contextmanager
77
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
78
        with fluid.dygraph.guard(
79 80
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
81
            paddle.seed(self.seed)
L
Leo Chen 已提交
82
            paddle.framework.random._manual_program_seed(self.seed)
83 84 85 86
            yield


class TestLayer(LayerTest):
87 88
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
89
            def __init__(self, input_size, linear1_size=4):
90
                super().__init__()
91
                self.linear1 = paddle.nn.Linear(
92 93
                    input_size, linear1_size, bias_attr=False
                )
94 95 96
                self.linear2 = paddle.nn.Linear(
                    linear1_size, 1, bias_attr=False
                )
97 98 99 100 101

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
102 103 104
                return ret

        with self.dynamic_graph():
105 106 107 108 109
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
110
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
111
                ret = custom(x, do_linear2=True)
112
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
113 114
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
115 116
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
117
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
118
            ret = custom(x, do_linear2=True)
119
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
120

C
ccrrong 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            dropout = paddle.nn.Dropout(p=0.35)
            ret = dropout(t)
            ret2 = paddle.nn.functional.dropout(t, p=0.35)
            static_ret, static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
        with self.dynamic_graph():
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = paddle.nn.Dropout(p=0.35)
                dy_eager_ret = dropout(t)
                dy_eager_ret2 = paddle.nn.functional.dropout(t, p=0.35)
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

            t = base.to_variable(inp)
            dropout = paddle.nn.Dropout(p=0.35)
            dy_ret = dropout(t)
            dy_ret2 = paddle.nn.functional.dropout(t, p=0.35)
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)

        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)

S
songyouwei 已提交
159 160 161
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
162 163 164 165 166 167
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
168
            linear = paddle.nn.Linear(
169 170
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
171
            ret = linear(t)
172 173 174
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
175
        with self.dynamic_graph():
176 177
            with _test_eager_guard():
                t = base.to_variable(inp)
178
                linear = paddle.nn.Linear(
179 180
                    32,
                    4,
181 182
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
183 184 185
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
186
            t = base.to_variable(inp)
187
            linear = paddle.nn.Linear(
188 189
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
190 191 192
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

193 194
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
195

196 197 198 199 200
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
201
                linear = paddle.nn.Linear(
202 203
                    32,
                    4,
204 205
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
206 207 208 209 210 211 212 213
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
214
                linear = paddle.nn.Linear(
215 216
                    32,
                    4,
217 218
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
219 220 221 222
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

W
wangzhen38 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    def test_cvm(self):
        inp = np.ones([10, 10], dtype='float32')
        arr = [[0.6931472, -1.904654e-09, 1, 1, 1, 1, 1, 1, 1, 1]] * 10
        cvm1 = np.array(arr, dtype='float32')
        cvm2 = np.ones([10, 8], dtype='float32')
        show_clk = np.ones([10, 2], dtype='float32')
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            no_cvm = paddle.static.nn.continuous_value_model(x, u, True)
            static_ret1 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk},
                fetch_list=[no_cvm],
            )[0]
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            cvm = paddle.static.nn.continuous_value_model(x, u, False)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk}, fetch_list=[cvm]
            )[0]
        np.testing.assert_allclose(static_ret1, cvm1, rtol=1e-5, atol=1e-06)
        np.testing.assert_allclose(static_ret2, cvm2, rtol=1e-5, atol=1e-06)

263 264 265
    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
266 267 268 269 270 271
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
272
            flatten = paddle.nn.Flatten()
273
            ret = flatten(t)
274 275 276
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
277
        with self.dynamic_graph():
278 279
            with _test_eager_guard():
                t = base.to_variable(inp)
280
                flatten = paddle.nn.Flatten()
281 282 283
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

284
            t = base.to_variable(inp)
285
            flatten = paddle.nn.Flatten()
286 287 288
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

289 290
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
291 292 293 294 295 296

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
297
                linear = paddle.nn.Linear(
298 299
                    32,
                    4,
300 301
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
302 303 304 305 306 307 308 309
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
310
                linear = paddle.nn.Linear(
311 312
                    32,
                    4,
313 314
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
315 316 317 318
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

C
ceci3 已提交
319 320 321 322
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
323
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
324 325
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
326
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
327 328
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
329 330

            with self.dynamic_graph():
331 332 333 334 335 336
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
337 338 339 340
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
341 342
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
343

344 345 346
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
347
            ret = F.relu(t)
348
            static_ret = self.get_static_graph_result(
349 350
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
351 352

        with self.dynamic_graph():
353 354
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
355
                dy_eager_ret = F.relu(base.to_variable(t))
356 357
                dy_eager_ret_value = dy_eager_ret.numpy()

358
            t = np.ones([3, 3], dtype='float32')
359
            dy_ret = F.relu(base.to_variable(t))
360
            dy_ret_value = dy_ret.numpy()
361

362 363
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
364

365 366 367 368
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
K
kangguangli 已提交
369
            ret = paddle.matmul(t, t2)
370 371 372 373 374 375 376
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
377 378

        with self.dynamic_graph():
379 380 381
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
382
                dy_eager_ret = paddle.matmul(
383 384
                    base.to_variable(t), base.to_variable(t2)
                )
385 386
                dy_eager_ret_value = dy_eager_ret.numpy()

387 388
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
389
            dy_ret = paddle.matmul(base.to_variable(t), base.to_variable(t2))
390
            dy_ret_value = dy_ret.numpy()
391

392 393
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
394

X
Xin Pan 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

411
            ret = paddle.add(t, t2)
412
            ret = paddle.pow(ret, t3)
413 414 415
            ret = paddle.divide(ret, t4)
            ret = paddle.subtract(ret, t5)
            ret = paddle.multiply(ret, t6)
X
Xin Pan 已提交
416

417 418 419 420
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
421 422

        with self.dynamic_graph():
423
            with _test_eager_guard():
424
                ret = paddle.add(to_variable(n), to_variable(n2))
425
                ret = paddle.pow(ret, to_variable(n3))
426 427 428
                ret = paddle.divide(ret, to_variable(n4))
                ret = paddle.subtract(ret, to_variable(n5))
                dy_eager_ret = paddle.multiply(ret, to_variable(n6))
429 430
                dy_eager_ret_value = dy_eager_ret.numpy()

431
            ret = paddle.add(to_variable(n), to_variable(n2))
432
            ret = paddle.pow(ret, to_variable(n3))
433 434 435
            ret = paddle.divide(ret, to_variable(n4))
            ret = paddle.subtract(ret, to_variable(n5))
            dy_ret = paddle.multiply(ret, to_variable(n6))
436
            dy_ret_value = dy_ret.numpy()
437

438 439
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
440 441 442 443 444 445

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
446
            with _test_eager_guard():
447
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
448
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
449 450 451
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

452
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
453
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
454 455
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
456

457 458 459 460
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
461

462 463 464 465
    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
466
            out = paddle.static.nn.conv2d_transpose(
467 468
                input=img,
                num_filters=10,
469
                filter_size=27,
470
                act='sigmoid',
471 472 473 474 475
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
476 477
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
478 479 480 481
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
482 483
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
484
            out = conv2d_transpose(img)
485
            out = paddle.nn.functional.sigmoid(out)
486 487 488
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
489
        with self.dynamic_graph():
490
            with _test_eager_guard():
491 492 493 494
                conv2d_transpose = paddle.nn.Conv2DTranspose(
                    3,
                    10,
                    27,
495 496
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
497
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
498
                dy_eager_rlt = paddle.nn.functional.sigmoid(dy_eager_rlt)
499 500
                dy_eager_rlt_value = dy_eager_rlt.numpy()

501 502 503 504
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
505 506
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
507
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
508
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
509
            dy_rlt_value = dy_rlt.numpy()
510 511 512
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
513

514
        with self.dynamic_graph():
515 516 517 518 519
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
520 521 522
                        custom_weight
                    )
                )
523 524 525 526 527 528
                conv2d1 = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
                conv2d2 = paddle.nn.Conv2DTranspose(
                    3,
                    3,
                    [2, 2],
                    weight_attr=weight_attr,
529
                )
530 531 532
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
533 534
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
535 536 537 538

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
539 540
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
541
                conv2d2.weight.set_value(conv2d1_weight_np)
542 543 544
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
545 546 547
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
548
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
549 550 551

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
552 553 554 555 556 557
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
558

559 560
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
561 562 563 564 565
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
566 567 568 569 570 571
            conv2d1 = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
            conv2d2 = paddle.nn.Conv2DTranspose(
                3,
                3,
                [2, 2],
                weight_attr=weight_attr,
572
            )
573 574 575 576 577 578 579
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
580 581
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
582
            conv2d2.weight.set_value(conv2d1_weight_np)
583 584 585
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
586 587 588
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
589
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
590 591 592

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
593 594 595 596 597 598
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
599

600 601 602 603 604
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
605
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
606 607 608 609 610 611 612
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
613 614 615
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
616
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
617 618 619 620
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

621 622 623 624 625
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
626 627 628 629 630 631
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
632
            out = paddle.static.nn.common.bilinear_tensor_product(
633 634 635 636
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
637 638
                act='sigmoid',
            )
639

640 641 642
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
643

644
        with self.static_graph():
645 646 647 648 649 650
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
651
            btp = paddle.nn.Bilinear(
652 653
                3,
                3,
654 655
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
656
            )
657
            out = btp(data_x, data_y)
658
            out = paddle.nn.functional.sigmoid(out)
659 660 661
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
662
        with self.dynamic_graph():
663
            with _test_eager_guard():
664
                btp = paddle.nn.Bilinear(
665 666 667 668
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
669 670 671 672
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
673
                dy_eager_rlt = paddle.nn.functional.sigmoid(dy_eager_rlt)
674 675
                dy_eager_rlt_value = dy_eager_rlt.numpy()

676
            btp = paddle.nn.Bilinear(
677 678
                3,
                3,
679 680
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
681
            )
682
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
683
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
684
            dy_rlt_value = dy_rlt.numpy()
685

686
        with self.dynamic_graph():
687
            with _test_eager_guard():
688
                btp2 = paddle.nn.Bilinear(3, 3, 6)
689 690 691
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
692
                dy_eager_rlt2 = paddle.nn.functional.sigmoid(dy_eager_rlt2)
693 694
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

695
            btp2 = paddle.nn.Bilinear(3, 3, 6)
696 697 698
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
699
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
700
            dy_rlt2_value = dy_rlt2.numpy()
701

702
        with self.static_graph():
703 704 705 706 707 708
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
709
            out2 = paddle.static.nn.common.bilinear_tensor_product(
710 711 712 713 714 715
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
716

717 718 719 720 721
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
722

723
        with self.dynamic_graph():
724 725 726 727
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
728 729 730
                        custom_weight
                    )
                )
731 732
                btp1 = paddle.nn.Bilinear(3, 3, 6)
                btp2 = paddle.nn.Bilinear(3, 3, 6, weight_attr=weight_attr)
733 734 735
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
736
                dy_rlt1 = paddle.nn.functional.sigmoid(dy_rlt1)
737 738 739
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
740
                dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
741
                self.assertFalse(
742 743
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
744 745
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
746 747 748 749 750 751
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
752
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
753 754 755

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
756 757 758 759 760 761
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
762

763
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
764 765 766 767 768
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
769 770
            btp1 = paddle.nn.Bilinear(3, 3, 6)
            btp2 = paddle.nn.Bilinear(3, 3, 6, weight_attr=weight_attr)
771 772 773
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
774
            dy_rlt1 = paddle.nn.functional.sigmoid(dy_rlt1)
775 776 777
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
778
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
779 780 781
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
782 783 784 785 786 787
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
788
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
789 790 791

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
792 793 794
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
795
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
796

797 798 799 800 801
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
802 803 804 805 806 807 808 809 810
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
811 812
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
813 814
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
815
            )
816
            emb_rlt = emb2(data_t)
817 818 819
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
820
        with self.dynamic_graph():
821
            with _test_eager_guard():
822 823 824 825 826
                emb2 = paddle.nn.Embedding(
                    dict_size,
                    32,
                    weight_attr='eager_emb.w',
                    sparse=False,
827
                )
828 829 830
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

831 832
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
833
            )
834 835
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
836 837

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
838
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
839
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
840

841
        with self.dynamic_graph():
842 843 844 845
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
846 847 848
                        custom_weight
                    )
                )
849 850 851 852 853 854
                emb1 = paddle.nn.Embedding(dict_size, 32, sparse=False)
                emb2 = paddle.nn.Embedding(
                    dict_size,
                    32,
                    weight_attr=weight_attr,
                    sparse=False,
855
                )
856 857 858
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
859 860 861 862 863
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
864 865 866
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
867
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
868 869

                emb2.weight = emb1.weight
870 871 872
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
873

874
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
875 876 877 878 879
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
880 881 882
            emb1 = paddle.nn.Embedding(dict_size, 32, sparse=False)
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr=weight_attr, sparse=False
883
            )
884 885 886
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
887
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
888 889 890
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
891
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
892 893

            emb2.weight = emb1.weight
894 895 896
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
897

S
songyouwei 已提交
898 899
    def test_one_hot(self):
        with self.dynamic_graph():
900
            with _test_eager_guard():
901 902 903
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
904 905
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
906 907 908 909 910
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
911

S
songyouwei 已提交
912 913 914
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
915 916 917 918 919
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
920 921 922

    def test_split(self):
        with self.dynamic_graph():
923 924 925
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
926 927 928 929 930
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
931 932
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
933

S
songyouwei 已提交
934 935
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
936 937 938 939 940
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
941 942
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
943 944 945

    def test_topk(self):
        with self.dynamic_graph():
946 947
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
948 949
                top5_values1, top5_indices1 = paddle.topk(input, k=5)
                top5_values2, top5_indices2 = paddle.topk(
950 951 952 953 954 955 956 957
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
958

S
songyouwei 已提交
959
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
960 961
            top5_values1, top5_indices1 = paddle.topk(input, k=5)
            top5_values2, top5_indices2 = paddle.topk(
962 963 964 965 966 967 968 969
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
970

L
lujun 已提交
971 972
    def test_conv3d(self):
        with self.static_graph():
973 974 975
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
976 977 978
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
979
            static_ret = self.get_static_graph_result(
980
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
981 982
                fetch_list=[ret],
            )[0]
L
lujun 已提交
983 984

        with self.static_graph():
985 986 987
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
988 989 990
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
991 992
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
993
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
994 995
                fetch_list=[ret],
            )[0]
L
lujun 已提交
996 997

        with self.dynamic_graph():
998 999
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1000 1001 1002
                conv3d = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
                )
1003 1004 1005
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1006
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1007 1008 1009
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
1010
            dy_ret = conv3d(base.to_variable(images))
1011
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1012

1013 1014 1015
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1016

1017
        with self.dynamic_graph():
1018 1019 1020 1021 1022
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1023 1024 1025
                        custom_weight
                    )
                )
1026 1027
                conv3d1 = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
1028
                )
1029 1030 1031 1032 1033
                conv3d2 = paddle.nn.Conv3D(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
1034
                )
1035 1036 1037
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1038 1039
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1040 1041 1042 1043

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1044 1045
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1046
                conv3d2.weight.set_value(conv3d1_weight_np)
1047 1048 1049
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1050 1051 1052
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1053
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1054 1055 1056

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1057 1058 1059 1060 1061 1062
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1063

1064 1065
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1066 1067 1068 1069 1070
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1071 1072 1073 1074 1075 1076 1077 1078
            conv3d1 = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
            conv3d2 = paddle.nn.Conv3D(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1079
            )
1080 1081 1082 1083 1084 1085 1086
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1087 1088
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1089
            conv3d2.weight.set_value(conv3d1_weight_np)
1090 1091 1092
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1093 1094 1095
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1096
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1097 1098 1099

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1100 1101 1102 1103 1104 1105
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1106

1107
    def func_group_norm(self):
L
lujun 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1118 1119 1120 1121 1122 1123 1124
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1125
            ret = paddle.static.nn.group_norm(
1126 1127
                input=X,
                groups=2,
1128
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1140 1141

        with self.static_graph():
1142 1143 1144 1145 1146 1147 1148
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1149 1150 1151 1152
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1153 1154
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1155
            ret = groupNorm(X)
1156 1157 1158 1159 1160 1161 1162 1163 1164
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1165 1166

        with self.dynamic_graph():
1167 1168 1169 1170
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1171 1172
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1173
            dy_ret = groupNorm(base.to_variable(input))
1174
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1175

1176 1177
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1178

1179 1180 1181 1182 1183
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1195 1196 1197
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1198
            ret = paddle.static.nn.instance_norm(input=X)
1199 1200 1201
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1202 1203

        with self.static_graph():
1204 1205 1206
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1207
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1208
            ret = instanceNorm(X)
1209 1210 1211
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1212 1213

        with self.dynamic_graph():
1214
            with _test_eager_guard():
1215
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1216 1217 1218
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1219
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1220 1221 1222 1223
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1224
            with _test_eager_guard():
1225
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1226 1227 1228
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1229
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1230 1231 1232
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1233 1234 1235 1236 1237
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1238 1239 1240 1241

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1242
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1243 1244 1245 1246 1247 1248 1249
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
1250
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1251 1252 1253 1254
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1266 1267 1268 1269 1270 1271 1272
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1273
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
1274 1275 1276 1277 1278 1279 1280 1281 1282
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1283 1284

        with self.static_graph():
1285 1286 1287 1288 1289 1290 1291
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1292
            spectralNorm = paddle.nn.SpectralNorm(shape, axis=1, power_iters=2)
L
lujun 已提交
1293
            ret = spectralNorm(Weight)
1294 1295 1296 1297 1298 1299 1300 1301 1302
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1303 1304

        with self.dynamic_graph():
1305
            with _test_eager_guard():
1306 1307 1308
                spectralNorm = paddle.nn.SpectralNorm(
                    shape, axis=1, power_iters=2
                )
1309 1310 1311
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1312
            spectralNorm = paddle.nn.SpectralNorm(shape, axis=1, power_iters=2)
L
lujun 已提交
1313
            dy_ret = spectralNorm(base.to_variable(input))
1314
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1315

1316 1317 1318
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1319 1320

    def test_conv3d_transpose(self):
1321 1322 1323
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
1324 1325 1326

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
1327
            out = paddle.static.nn.conv3d_transpose(
1328
                input=img, num_filters=12, filter_size=12, use_cudnn=True
1329
            )
L
lujun 已提交
1330
            static_rlt = self.get_static_graph_result(
1331 1332
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
1333 1334
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
1335 1336
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
1337
            )
L
lujun 已提交
1338 1339
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
1340 1341
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
1342
        with self.dynamic_graph():
1343
            with _test_eager_guard():
1344 1345 1346 1347
                conv3d_transpose = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=12,
                    kernel_size=12,
1348
                )
1349 1350 1351
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1352 1353
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
1354
            )
L
lujun 已提交
1355
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
1356
            dy_rlt_value = dy_rlt.numpy()
1357 1358 1359
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
1360

1361
        with self.dynamic_graph():
1362 1363 1364 1365 1366
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1367 1368 1369
                        custom_weight
                    )
                )
1370 1371 1372 1373
                conv3d1 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
1374 1375
                    bias_attr='eager_conv3d1_b',
                )
1376 1377 1378 1379 1380
                conv3d2 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
1381 1382
                    bias_attr='eager_conv3d2_b',
                )
1383 1384 1385
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1386 1387
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1388 1389 1390 1391

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1392 1393
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1394
                conv3d2.weight.set_value(conv3d1_weight_np)
1395 1396 1397
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1398 1399 1400
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1401
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1402 1403 1404

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1405 1406 1407 1408 1409 1410
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1411

1412 1413
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1414 1415 1416 1417 1418
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1419 1420 1421 1422
            conv3d1 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
1423 1424
                bias_attr='conv3d1_b',
            )
1425 1426 1427 1428 1429
            conv3d2 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1430 1431
                bias_attr='conv3d2_b',
            )
1432 1433 1434 1435 1436 1437 1438
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1439 1440
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1441
            conv3d2.weight.set_value(conv3d1_weight_np)
1442 1443 1444
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1445 1446 1447
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1448
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1449 1450 1451

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1452 1453 1454 1455 1456 1457
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1458

1459
    def func_while_loop(self):
1460 1461 1462 1463 1464
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
L
LiYuRio 已提交
1465
                return paddle.less_than(i, ten)
1466 1467 1468 1469

            def body(i):
                return i + 1

1470
            out = paddle.static.nn.while_loop(cond, body, [i])
1471 1472 1473 1474 1475 1476
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

1477
            def cond1(i):
L
LiYuRio 已提交
1478
                return paddle.less_than(i, ten)
1479

1480
            def body1(i):
1481 1482
                return i + 1

1483
            dy_ret = paddle.static.nn.while_loop(cond1, body1, [i])
1484 1485 1486 1487 1488 1489
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

1490
                paddle.static.nn.while_loop(cond1, body2, [j])
1491

1492
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
1493

1494 1495 1496 1497 1498
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

1499 1500 1501 1502 1503 1504 1505
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
L
LiYuRio 已提交
1506
            cond = paddle.less_than(x=a, y=b)
1507 1508 1509
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
1510
        with self.dynamic_graph():
1511 1512 1513
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
L
LiYuRio 已提交
1514
                dcond = paddle.less_than(x=da, y=db)
1515 1516 1517 1518

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

1519 1520
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
L
LiYuRio 已提交
1521
            dcond = paddle.less_than(x=da, y=db)
1522

1523 1524
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1525 1526 1527 1528 1529

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
1530
            cond1 = paddle.less_equal(x=a1, y=b1)
1531 1532 1533
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
1534
        with self.dynamic_graph():
1535 1536 1537
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
1538
                dcond1 = paddle.less_equal(x=da1, y=db1)
1539 1540 1541 1542

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1543 1544
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
1545
            dcond1 = paddle.less_equal(x=da1, y=db1)
1546 1547 1548 1549

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1550
        # greater than
1551 1552 1553
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
1554
            cond2 = paddle.greater_than(x=a2, y=b2)
1555 1556 1557
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
1558
        with self.dynamic_graph():
1559 1560 1561
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
1562
                dcond2 = paddle.greater_than(x=da2, y=db2)
1563 1564 1565 1566

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1567 1568
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
1569
            dcond2 = paddle.greater_than(x=da2, y=db2)
1570 1571 1572 1573

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1574
        # greater equal
1575 1576 1577
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
1578
            cond3 = paddle.greater_equal(x=a3, y=b3)
1579 1580 1581
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
1582
        with self.dynamic_graph():
1583 1584 1585
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
1586
                dcond3 = paddle.greater_equal(x=da3, y=db3)
1587 1588 1589 1590

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

1591 1592
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
1593
            dcond3 = paddle.greater_equal(x=da3, y=db3)
1594 1595 1596 1597 1598 1599 1600 1601

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
1602
            cond4 = paddle.equal(x=a4, y=b4)
1603 1604 1605
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
1606
        with self.dynamic_graph():
1607 1608 1609
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
1610
                dcond4 = paddle.equal(x=da4, y=db4)
1611 1612 1613 1614

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

1615 1616
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
1617
            dcond4 = paddle.equal(x=da4, y=db4)
1618 1619 1620 1621 1622 1623 1624 1625

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
1626
            cond5 = paddle.equal(x=a5, y=b5)
1627 1628 1629
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
1630
        with self.dynamic_graph():
1631 1632 1633
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
1634
                dcond5 = paddle.equal(x=da5, y=db5)
1635 1636 1637 1638

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1639 1640
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
1641
            dcond5 = paddle.equal(x=da5, y=db5)
1642 1643 1644 1645

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1646 1647
    def test_cond(self):
        def less_than_branch(a, b):
1648
            return paddle.add(a, b)
1649 1650

        def greater_equal_branch(a, b):
1651
            return paddle.subtract(a, b)
1652 1653

        with self.static_graph():
1654 1655 1656 1657 1658 1659
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
1660
            out = paddle.static.nn.cond(
1661 1662 1663 1664 1665 1666 1667 1668 1669
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1670 1671 1672 1673 1674
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
1675 1676 1677
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
1678 1679
                    np.array([0.23]).astype('float32')
                )
1680
                out = paddle.static.nn.cond(
1681 1682 1683 1684
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
1685
                out2 = paddle.static.nn.cond(
1686 1687 1688 1689
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
1690 1691
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
1692 1693 1694
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
1695
                with self.assertRaises(TypeError):
1696
                    paddle.static.nn.cond(a < b, 'str', 'str')
1697
                with self.assertRaises(TypeError):
1698
                    paddle.static.nn.cond(a >= b, 'str', 'str')
1699

1700 1701
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
1702
            out = paddle.static.nn.cond(
1703 1704 1705 1706
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
1707
            out2 = paddle.static.nn.cond(
1708 1709 1710 1711
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
1712 1713
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
1714
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
1715
            with self.assertRaises(TypeError):
1716
                paddle.static.nn.cond(a < b, 'str', 'str')
1717
            with self.assertRaises(TypeError):
1718
                paddle.static.nn.cond(a >= b, 'str', 'str')
1719

1720 1721
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
1722

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1738 1739
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1740
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1741

1742
            out_1 = paddle.static.nn.case(
1743 1744
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1745 1746 1747
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1748

1749 1750 1751 1752 1753
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1754 1755 1756 1757
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
1758 1759 1760 1761 1762
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1763 1764
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1765
                pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1766

1767
                out_1 = paddle.static.nn.case(
1768 1769
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
1770
                out_2 = paddle.static.nn.case(
1771 1772
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
1773 1774 1775
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

1776 1777 1778 1779
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1780 1781
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1782
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1783

1784
            out_1 = paddle.static.nn.case(
1785 1786
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1787 1788 1789
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1790 1791 1792
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

1793 1794 1795 1796
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1812
            out_1 = paddle.static.nn.switch_case(
1813 1814 1815 1816
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1817
            out_2 = paddle.static.nn.switch_case(
1818 1819 1820 1821
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1822
            out_3 = paddle.static.nn.switch_case(
1823 1824 1825 1826 1827 1828 1829 1830 1831
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1832 1833
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
1834 1835
                fetch_list=[out_1, out_2, out_3]
            )
1836 1837

        with self.dynamic_graph():
1838
            with _test_eager_guard():
1839 1840 1841 1842 1843 1844 1845
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

1846
                out_1 = paddle.static.nn.switch_case(
1847 1848 1849 1850
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
1851
                out_2 = paddle.static.nn.switch_case(
1852 1853 1854 1855
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
1856
                out_3 = paddle.static.nn.switch_case(
1857 1858 1859
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
1860 1861 1862 1863 1864

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

1865 1866 1867
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1868
            out_1 = paddle.static.nn.switch_case(
1869 1870 1871 1872
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1873
            out_2 = paddle.static.nn.switch_case(
1874 1875 1876 1877
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1878
            out_3 = paddle.static.nn.switch_case(
1879 1880 1881
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
1882 1883 1884 1885 1886

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

1887 1888 1889 1890 1891 1892
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
1893

1894 1895 1896 1897
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

1898 1899 1900 1901 1902 1903
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
1904
            crop_shape1 = (1, 2, 4, 4)
1905 1906 1907
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
1908 1909
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
1910 1911 1912
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
1913 1914
            crop_offsets3 = [0, dim1, dim2, 0]

1915 1916 1917
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
1918 1919 1920 1921 1922

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

1923 1924 1925
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
1926
            shard_label = paddle.shard_index(
1927 1928
                input=x, index_num=20, nshards=2, shard_id=0
            )
1929 1930 1931

        self.assertIsNotNone(shard_label)

1932 1933 1934 1935 1936 1937 1938
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
1939
            predict = paddle.nn.functional.softmax(fc_out)
1940
            result = paddle.static.accuracy(input=predict, label=label, k=5)
1941 1942 1943 1944
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
1945 1946
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
1947 1948 1949
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
1950

L
Leo Chen 已提交
1951
        with self.dynamic_graph(force_to_use_cpu=True):
1952 1953 1954
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
1955
            predict = paddle.nn.functional.softmax(fc_out)
1956 1957 1958
            dynamic_out = paddle.static.accuracy(
                input=predict, label=label, k=5
            )
1959

1960
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
1961

Y
Yu Yang 已提交
1962

1963
class TestBook(LayerTest):
H
hong 已提交
1964 1965
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
1966 1967 1968 1969 1970 1971 1972
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_uniform_random_batch_size_like",
            }
        )
1973
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
1974

1975
    def func_all_layers(self):
1976 1977 1978 1979 1980
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
1981 1982 1983
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
1996 1997
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
1998

1999 2000
                else:
                    continue
H
hong 已提交
2001 2002
            if method.__name__ in self.only_static_set:
                continue
2003 2004 2005 2006 2007

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2008
                dy_result_value = dy_result.numpy()
2009

2010
            if method.__name__ in self.all_close_compare:
2011 2012 2013 2014 2015 2016
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2017 2018 2019
                        method.__name__
                    ),
                )
2020 2021
                continue

H
hong 已提交
2022
            if method.__name__ not in self.not_compare_static_dygraph_set:
2023 2024 2025 2026
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2027 2028 2029
                        method.__name__
                    ),
                )
2030

2031 2032 2033 2034 2035
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2036 2037 2038
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2039
            shape = [self._batch_size] + shape
2040 2041 2042 2043 2044
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
2045 2046 2047
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
2048
        elif dtype == 'int64':
2049 2050 2051 2052 2053 2054 2055
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
2056
        if base.enabled():
2057 2058 2059 2060 2061
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
2062 2063
        else:
            if set_feed_dict:
2064
                self._feed_dict[name] = self._get_np_data(
2065 2066 2067 2068 2069 2070 2071 2072
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
2073 2074

    def make_fit_a_line(self):
2075 2076 2077 2078
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
2079
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
2080
            y_predict = layers.fc(input=x, size=1, act=None)
2081
            y = self._get_data(name='y', shape=[1], dtype='float32')
2082 2083 2084
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
2085
            avg_cost = paddle.mean(cost)
2086
            return avg_cost
Y
Yu Yang 已提交
2087

2088
    def make_recognize_digits_mlp(self):
2089 2090 2091
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
2092
            # Change g_program, so the rest layers use `g_program`
2093 2094
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2095 2096
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
2097 2098 2099 2100 2101 2102
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
2103 2104 2105
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
2106
            avg_cost = paddle.mean(cost)
2107
            return avg_cost
Y
Yu Yang 已提交
2108

2109
    def make_conv2d_transpose(self):
2110 2111 2112
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2113
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
2114
            return paddle.static.nn.conv2d_transpose(
2115 2116
                input=img, num_filters=10, output_size=28
            )
2117

2118
    def make_recognize_digits_conv(self):
2119 2120 2121 2122 2123 2124
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
2125
            label = self._get_data(name='label', shape=[1], dtype='int64')
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
2142 2143

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
2144 2145 2146
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
2147
            avg_cost = paddle.mean(cost)
2148
            return avg_cost
Y
Yu Yang 已提交
2149

2150
    def make_word_embedding(self):
2151 2152 2153
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
2154 2155
            dict_size = 10000
            embed_size = 32
2156
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
2157 2158 2159
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
2160 2161 2162
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
2189 2190 2191

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
2192 2193
                axis=1,
            )
Y
Yu Yang 已提交
2194 2195

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
2196 2197 2198
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
2199 2200 2201 2202 2203 2204
            cost = paddle.nn.functional.cross_entropy(
                input=predict_word,
                label=next_word,
                reduction='none',
                use_softmax=False,
            )
2205
            avg_cost = paddle.mean(cost)
2206
            return avg_cost
Y
Yu Yang 已提交
2207

2208
    def make_pool2d(self):
2209 2210 2211
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2212
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
C
ccrrong 已提交
2213 2214
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
2215
            )
2216

K
Kaipeng Deng 已提交
2217
    def make_pool2d_infershape(self):
2218 2219 2220
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
2221
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
2222 2223 2224
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
C
ccrrong 已提交
2225 2226
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
2227
            )
K
Kaipeng Deng 已提交
2228

2229
    def make_softmax(self):
2230 2231 2232
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2233
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
2234
            hid = layers.fc(input=data, size=20)
2235
            return paddle.nn.functional.softmax(hid, axis=1)
D
dangqingqing 已提交
2236

2237
    @prog_scope()
2238
    def make_nce(self):
Y
Yang Yu 已提交
2239 2240
        window_size = 5
        words = []
2241
        for i in range(window_size):
Y
Yang Yu 已提交
2242
            words.append(
2243 2244 2245 2246
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
2247 2248

        dict_size = 10000
M
minqiyang 已提交
2249
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
2250 2251

        embs = []
2252
        for i in range(window_size):
Y
Yang Yu 已提交
2253 2254 2255
            if i == label_word:
                continue

2256 2257 2258 2259 2260 2261
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
2262 2263 2264 2265

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
2266
        loss = paddle.static.nn.nce(
2267 2268 2269 2270 2271 2272
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
2273
        avg_loss = paddle.mean(loss)
2274
        return avg_loss
Y
Yang Yu 已提交
2275

2276
    def make_multiplex(self):
2277 2278 2279
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2280 2281 2282
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
2283
            out = paddle.multiplex(inputs=[x1, x2], index=index)
2284
            return out
2285 2286

    def make_softmax_with_cross_entropy(self):
2287 2288 2289
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2290 2291
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
2292
            loss, softmax = paddle.nn.functional.softmax_with_cross_entropy(
2293 2294
                x, y, return_softmax=True
            )
2295 2296 2297
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

2298
            loss = paddle.nn.functional.softmax_with_cross_entropy(x, y)
2299 2300 2301 2302 2303 2304
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
            loss1 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y1, axis=1
            )
            loss2 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y2, axis=2
            )
            loss3 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=3
            )
            loss4 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=-1
            )
2317 2318 2319 2320
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
2321
            return loss4
2322 2323

    def make_scatter(self):
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
2339
            out = paddle.scatter(x, index=idx, updates=updates)
2340
            return out
Y
yangyaming 已提交
2341

2342 2343 2344 2345
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
2346
            return one_hot_label
2347

2348 2349 2350 2351 2352
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
2353
            one_hot_label = layers.one_hot(input=label, depth=10)
2354
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
2355
            return smooth_label
2356

2357
    def make_topk(self):
2358 2359 2360
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2361
            data = self._get_data(name="label", shape=[200], dtype="float32")
2362
            values, indices = paddle.topk(data, k=5)
2363 2364
            return values
            return indices
J
jerrywgz 已提交
2365

2366
    def make_l2_normalize(self):
2367 2368 2369
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2370
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
2371
            output = layers.l2_normalize(x, axis=1)
2372
            return output
2373

2374
    def make_shape(self):
2375 2376 2377 2378 2379 2380
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
2
201716010711 已提交
2381
            out = paddle.shape(input)
2382
            return out
B
Bai Yifan 已提交
2383

2384
    def make_pad2d(self):
2385 2386 2387 2388 2389 2390
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
2391 2392 2393

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
2394 2395 2396 2397
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
2398
            out = tmp_pad(input)
2399
            return out
W
whs 已提交
2400

K
Kaipeng Deng 已提交
2401
    def make_mish(self):
2402 2403 2404
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
2405
            input = self._get_data(name="input", shape=[16], dtype="float32")
2406
            out = paddle.nn.functional.mish(input, name='mish')
2407
            return out
K
Kaipeng Deng 已提交
2408

2409
    def make_cross_entropy(self):
2410 2411 2412
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2413 2414
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
2415
            mode = 'channel'
2416 2417 2418 2419 2420 2421 2422 2423
            out = paddle.nn.functional.cross_entropy(
                x,
                label,
                soft_label=False,
                ignore_index=4,
                reduction='none',
                use_softmax=False,
            )
2424
            return out
2425

2426
    def make_uniform_random_batch_size_like(self):
2427 2428 2429 2430 2431 2432
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
2433
            out = random.uniform_random_batch_size_like(input, [-1, 11])
2434
            return out
G
fix  
gongweibao 已提交
2435

2436
    def make_gaussian_random(self):
2437 2438 2439
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2440
            out = random.gaussian(shape=[20, 30])
2441
            return out
G
fix  
gongweibao 已提交
2442

2443
    def make_sum(self):
2444 2445 2446 2447 2448 2449
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
2450

2451
            out = paddle.add_n(input)
2452
            return out
G
fix  
gongweibao 已提交
2453

2454
    def make_slice(self):
G
fix  
gongweibao 已提交
2455 2456 2457 2458
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

2459 2460 2461 2462 2463 2464
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
2465

2
201716010711 已提交
2466
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
2467
            return out
G
merge  
gongweibao 已提交
2468

2469
    def make_scale_variable(self):
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
2482
            out = paddle.scale(input, scale=scale_var)
2483 2484
            return out

2485
    def make_bilinear_tensor_product_layer(self):
2486 2487 2488
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2489 2490 2491
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
2492 2493 2494
            out = paddle.static.nn.common.bilinear_tensor_product(
                data, theta, 6
            )
2495
            return out
2496 2497

    def make_batch_norm(self):
2498 2499 2500 2501 2502 2503
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
2504
            out = paddle.static.nn.batch_norm(data)
2505
            return out
2506

2507
    def make_batch_norm_momentum_variable(self):
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2520
            out = paddle.static.nn.batch_norm(data, momentum=momentum)
2521
            return out
2522

2523
    def make_range(self):
2524 2525 2526
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
2527 2528 2529
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
2530 2531 2532
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
2533
            y = paddle.arange(start, end, step, 'float64')
2534 2535 2536
            return y

    def make_spectral_norm(self):
2537 2538 2539 2540 2541 2542 2543 2544 2545
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
2546
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
2547
            return out
2548 2549

    def make_kldiv_loss(self):
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
2565 2566 2567
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
2568
            return loss
2569

M
minqiyang 已提交
2570
    def make_pixel_shuffle(self):
2571 2572 2573
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
2574
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
2575
            out = paddle.nn.functional.pixel_shuffle(x, upscale_factor=3)
2576
            return out
M
minqiyang 已提交
2577

R
ruri 已提交
2578
    def make_mse_loss(self):
2579 2580 2581
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
2582 2583
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2584
            out = paddle.nn.functional.mse_loss(input=x, label=y)
2585
            return out
R
ruri 已提交
2586

2587
    def make_square_error_cost(self):
2588 2589 2590
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2591 2592
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2593
            out = paddle.nn.functional.square_error_cost(input=x, label=y)
2594
            return out
2595

2596 2597 2598 2599
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
2600 2601 2602
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
2603 2604
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
2605 2606 2607 2608
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
2609 2610 2611 2612

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2613
            # case 1
2614
            x = layers.data(name='x', shape=[10], dtype='float32')
2615 2616 2617
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
2618 2619 2620
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
2621
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
2622 2623 2624 2625 2626 2627
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
2628

W
whs 已提交
2629
    def test_affine_grid(self):
2630
        with self.static_graph():
W
whs 已提交
2631
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
2632
            out = paddle.argsort(x=data, axis=1)
W
whs 已提交
2633 2634

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
2635
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
2636 2637
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
2638 2639 2640

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
2641

W
wangchaochaohu 已提交
2642 2643 2644 2645 2646 2647 2648
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
2649
            out = paddle.strided_slice(
2650 2651
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
2652 2653
            return out

2654 2655
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
2656 2657 2658 2659 2660 2661
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
2662 2663
            return out

2664 2665 2666 2667
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
2668 2669 2670 2671
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
2672

2673 2674 2675 2676 2677
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
2678
            return out
2679

2680 2681 2682 2683
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
2684
            length = layers.data(name='length', shape=[], dtype='int64')
2685
            return layers.sequence_unpad(x=x, length=length)
2686

2687 2688 2689
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2690 2691 2692
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
2693
            seq = layers.fc(input=seq_data, size=20)
2694
            return layers.sequence_softmax(seq)
2695

2696 2697 2698 2699 2700
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
2701
            return out
2702

2703 2704 2705
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
2723
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
2724
            return out
W
whs 已提交
2725

2726 2727 2728 2729
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
2730 2731 2732 2733

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
2734 2735
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
2736 2737 2738 2739
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
2740

Z
zhoushiyu 已提交
2741 2742 2743
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2744 2745 2746
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
2747 2748 2749 2750 2751
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
2752
            return out1
Z
zhoushiyu 已提交
2753

2754 2755 2756 2757
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2758 2759 2760 2761
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
2762

S
ShenLiang 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
2772 2773
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
2774 2775 2776 2777
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
2778 2779 2780 2781 2782
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
2783

S
ShenLiang 已提交
2784 2785 2786
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
2787 2788 2789
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
2790 2791 2792 2793 2794 2795 2796
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
2797 2798 2799 2800 2801
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
2802

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
2814
            return out
2815 2816 2817 2818

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
2819 2820 2821 2822 2823 2824
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
2825 2826 2827 2828 2829

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
2830
            out = paddle.squeeze(x, axis=[2])
2831
            return out
2832 2833 2834 2835

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
2836 2837 2838 2839 2840 2841
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
2842
            out = paddle.flatten(x, 1, -1, name="flatten")
2843
            return out
2844

Z
zhoukunsheng 已提交
2845 2846 2847
    def test_linspace(self):
        program = Program()
        with program_guard(program):
2848
            out = paddle.linspace(20, 10, 5, 'float64')
Z
zhoukunsheng 已提交
2849 2850 2851
            self.assertIsNotNone(out)
        print(str(program))

2852 2853 2854
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
2855
            out = paddle.nn.functional.unfold(x, [3, 3], 1, 1, 1)
2856
            return out
2857

2858 2859 2860 2861
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2862 2863 2864 2865 2866 2867
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
2868 2869
            return concat1, concat2

2870
    def test_addmm(self):
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
2886 2887

            out = paddle.addmm(input=input, x=x, y=y)
2888
            return out
2889

2890 2891 2892
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2893
            input_length = paddle.static.data(
2894 2895
                name='logits_length', shape=[11], dtype='int64'
            )
2896
            label_length = paddle.static.data(
2897 2898
                name='labels_length', shape=[12], dtype='int64'
            )
2899 2900 2901 2902
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
2903 2904
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
2905 2906 2907 2908 2909 2910
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
2911 2912
            )
            return output
2913

2914 2915 2916 2917
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
2918 2919 2920 2921 2922 2923 2924 2925 2926
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
2938 2939
                        batch_first=batch_first,
                    )
2940

Y
Yu Yang 已提交
2941

2942 2943
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
2944
        super().__init__()
2945
        self.weight = self.create_parameter(
2946 2947
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
2978 2979
class MyLayer(paddle.nn.Layer):
    def __init__(self):
2980
        super().__init__()
J
Jiabin Yang 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
2992
        super().__init__()
J
Jiabin Yang 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
3008
if __name__ == '__main__':
3009
    paddle.enable_static()
Y
Yu Yang 已提交
3010
    unittest.main()