fused_feedforward_op.cu 26.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"
19
#include "paddle/fluid/operators/matmul_v2_op.h"
20
#include "paddle/phi/api/include/tensor.h"
21
#include "paddle/phi/kernels/funcs/blas/blas.h"
22 23
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
24

25
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
26
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
27 28 29 30
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

31 32 33
namespace paddle {
namespace operators {

34
using Tensor = phi::DenseTensor;
35

36
template <typename T>
37
static void AllReduce(phi::DenseTensor& tensor,  // NOLINT
38
                      const int ring_id,
L
Leo Chen 已提交
39
                      const phi::GPUContext& ctx) {
40 41
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
42 43 44 45
  auto map = paddle::distributed::ProcessGroupMapFromGid::getInstance();

  if (map->has(ring_id)) {
    paddle::distributed::ProcessGroup* pg = map->get(ring_id);
46 47
    auto pg_nccl = static_cast<distributed::ProcessGroupNCCL*>(pg);

48 49 50 51 52 53
    std::vector<phi::DenseTensor> in_tensor;
    std::vector<phi::DenseTensor> out_tensor;
    in_tensor.push_back(tensor);
    out_tensor.push_back(tensor);
    paddle::distributed::AllreduceOptions opts;
    opts.reduce_op = distributed::ReduceOp::SUM;
54
    auto task = pg_nccl->AllReduce(in_tensor, out_tensor, opts, true, true);
55 56 57 58 59 60 61
    task->Wait();
  } else {
    auto dtype = platform::ToNCCLDataType(
        framework::TransToProtoVarType(tensor.dtype()));
    int64_t numel = tensor.numel();
    const void* sendbuff = tensor.data<T>();
    auto place = ctx.GetPlace();
62
    void* recvbuff = ctx.Alloc<T>(&tensor, tensor.numel() * sizeof(T));
63 64 65 66 67
    auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
    auto stream = ctx.stream();
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
        sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
  }
68 69 70 71 72 73 74
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

75 76 77
template <typename DeviceContext, typename T>
class FusedFeedForwardKernel : public framework::OpKernel<T> {
 public:
L
Leo Chen 已提交
78
  void MatMul(const phi::GPUContext& ctx,
79 80 81
              const phi::DenseTensor& a,
              const phi::DenseTensor& b,
              phi::DenseTensor* c) const {
82
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
83 84
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
85 86
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, false);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, false);
87 88 89 90
    T alpha = static_cast<T>(1.0);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, alpha, c, T(0));
  }

L
Leo Chen 已提交
91
  void FFN(const phi::GPUContext& ctx,
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
           const phi::DenseTensor& x,
           const phi::DenseTensor& linear1_weight,
           const phi::DenseTensor* linear1_bias,
           const phi::DenseTensor& linear2_weight,
           const phi::DenseTensor* linear2_bias,
           const phi::DenseTensor* ln1_scale,
           const phi::DenseTensor* ln1_bias,
           const phi::DenseTensor* ln2_scale,
           const phi::DenseTensor* ln2_bias,
           phi::DenseTensor* out,
           phi::DenseTensor* dropout1_mask,
           phi::DenseTensor* dropout2_mask,
           phi::DenseTensor* ln1_mean,
           phi::DenseTensor* ln1_variance,
           phi::DenseTensor* ln2_mean,
           phi::DenseTensor* ln2_variance,
           phi::DenseTensor* linear1_out,
           phi::DenseTensor* ln1_out,
           phi::DenseTensor* dropout1_out,
           phi::DenseTensor* dropout2_out,
112 113 114 115 116 117 118 119 120 121
           const int bsz_seq,
           const int d_model,
           const int dim_feedforward,
           const std::string& act_method,
           const bool pre_layer_norm,
           const float epsilon1,
           const float epsilon2,
           const bool add_residual,
           const int ring_id,
           const DropoutParam& dropout_param1,
122
           const DropoutParam& dropout_param2) const {
123 124 125 126 127 128 129 130
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    using U = LayerNormParamType<T>;
131
    const phi::DenseTensor* in = &x;
132 133 134 135 136 137 138 139 140 141 142 143 144

    const U* ln1_scale_ptr =
        ln1_scale == nullptr ? nullptr : ln1_scale->data<U>();
    const U* ln1_bias_ptr = ln1_bias == nullptr ? nullptr : ln1_bias->data<U>();
    const U* ln2_scale_ptr =
        ln2_scale == nullptr ? nullptr : ln2_scale->data<U>();
    const U* ln2_bias_ptr = ln2_bias == nullptr ? nullptr : ln2_bias->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    const T* linear2_bias_ptr =
        linear2_bias == nullptr ? nullptr : linear2_bias->data<T>();

    if (pre_layer_norm) {
145 146 147 148 149 150 151
      pre_layernorm_helper.LayerNorm(ctx,
                                     x.data<T>(),
                                     ln1_scale_ptr,
                                     ln1_bias_ptr,
                                     ln1_out->data<T>(),
                                     ln1_mean->data<U>(),
                                     ln1_variance->data<U>());
152 153 154
      in = ln1_out;
    }
    MatMul(ctx, *in, linear1_weight, linear1_out);
155 156 157 158 159 160
    fused_act_dropout_helper.DropoutActBias(ctx,
                                            linear1_out->data<T>(),
                                            linear1_bias_ptr,
                                            act_method,
                                            dropout1_out->data<T>(),
                                            dropout1_mask->data<uint8_t>());
161
    phi::DenseTensor linear2_out;
162 163
    linear2_out.Resize({bsz_seq, d_model});
    ctx.Alloc<T>(&linear2_out, linear2_out.numel() * sizeof(T));
164
    MatMul(ctx, *dropout1_out, linear2_weight, &linear2_out);
165 166 167 168

    // tensor model parallel
    AllReduce<T>(linear2_out, ring_id, ctx);

169
    const T* residual_ptr = add_residual ? x.data<T>() : nullptr;
170
    if (!pre_layer_norm) {
171
      // TODO(Xreki): support post layer_norm case when add_residual is false.
172 173
      PADDLE_ENFORCE_EQ(add_residual,
                        true,
174 175 176 177
                        platform::errors::InvalidArgument(
                            "Attribute add_residual is expected to be true "
                            "when pre_layer_norm is false."));

178
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
179 180 181 182 183 184 185 186 187 188
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          ln2_scale_ptr,
          ln2_bias_ptr,
          dropout2_out->data<T>(),
          dropout2_mask->data<uint8_t>(),
          out->data<T>(),
          ln2_mean->data<U>(),
189 190 191
          ln2_variance->data<U>());
    } else {
      fused_dropout_layernorm_helper.ResidualDropoutBias(
192 193 194 195 196 197
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          out->data<T>(),
          dropout2_mask->data<uint8_t>());
198 199 200 201
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
202 203 204 205 206
    auto* x = context.Input<phi::DenseTensor>("X");
    auto* linear1_weight = context.Input<phi::DenseTensor>("Linear1Weight");
    auto* linear1_bias = context.Input<phi::DenseTensor>("Linear1Bias");
    auto* linear2_weight = context.Input<phi::DenseTensor>("Linear2Weight");
    auto* linear2_bias = context.Input<phi::DenseTensor>("Linear2Bias");
207
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
208
    auto& dev_ctx = context.template device_context<phi::GPUContext>();
209 210

    auto* ln1_scale =
211
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Scale") : nullptr;
212
    auto* ln1_bias =
213 214 215
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Bias") : nullptr;
    auto* ln2_scale =
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Scale") : nullptr;
216
    auto* ln2_bias =
217
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Bias") : nullptr;
218 219

    auto* ln1_mean =
220
        pre_layer_norm ? context.Output<phi::DenseTensor>("Ln1Mean") : nullptr;
221
    auto* ln1_variance = pre_layer_norm
222
                             ? context.Output<phi::DenseTensor>("Ln1Variance")
223
                             : nullptr;
224 225
    auto* ln2_mean =
        !pre_layer_norm ? context.Output<phi::DenseTensor>("Ln2Mean") : nullptr;
226
    auto* ln2_variance = !pre_layer_norm
227
                             ? context.Output<phi::DenseTensor>("Ln2Variance")
228
                             : nullptr;
229 230 231 232
    auto* out = context.Output<phi::DenseTensor>("Out");
    auto* dropout1_mask = context.Output<phi::DenseTensor>("Dropout1Mask");
    auto* dropout2_mask = context.Output<phi::DenseTensor>("Dropout2Mask");
    auto* linear1_out = context.Output<phi::DenseTensor>("Linear1Out");
233
    auto* ln1_out =
234 235 236
        pre_layer_norm ? context.Output<phi::DenseTensor>("Ln1Out") : nullptr;
    auto* dropout1_out = context.Output<phi::DenseTensor>("Dropout1Out");
    auto* dropout2_out = context.Output<phi::DenseTensor>("Dropout2Out");
237 238 239 240 241

    const std::string act_method = context.Attr<std::string>("act_method");

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
242
    const int ring_id = context.Attr<int>("ring_id");
243
    const bool add_residual = context.Attr<bool>("add_residual");
244 245 246 247 248

    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    using U = LayerNormParamType<T>;
249 250 251 252 253
    dev_ctx.Alloc<T>(out, out->numel() * sizeof(T));
    dev_ctx.Alloc<uint8_t>(dropout1_mask,
                           dropout1_mask->numel() * sizeof(uint8_t));
    dev_ctx.Alloc<uint8_t>(dropout2_mask,
                           dropout2_mask->numel() * sizeof(uint8_t));
254
    if (pre_layer_norm) {
255 256 257
      dev_ctx.Alloc<U>(ln1_mean, ln1_mean->numel() * sizeof(U));
      dev_ctx.Alloc<U>(ln1_variance, ln1_variance->numel() * sizeof(U));
      dev_ctx.Alloc<T>(ln1_out, ln1_out->numel() * sizeof(T));
258
    } else {
259 260
      dev_ctx.Alloc<U>(ln2_mean, ln2_mean->numel() * sizeof(U));
      dev_ctx.Alloc<U>(ln2_variance, ln2_variance->numel() * sizeof(U));
261 262
    }

263 264 265
    dev_ctx.Alloc<T>(linear1_out, linear1_out->numel() * sizeof(T));
    dev_ctx.Alloc<T>(dropout1_out, dropout1_out->numel() * sizeof(T));
    dev_ctx.Alloc<T>(dropout2_out, dropout2_out->numel() * sizeof(T));
266 267

    auto x_dim = x->dims();
268
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
269
        RowMatrixFromVector(x_dim), 0, false);
270 271 272 273 274 275

    auto dim = linear1_weight->dims();
    int d_model = dim[0];
    int dim_feedforward = dim[dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    FFN(context.cuda_device_context(),
        *x,
        *linear1_weight,
        linear1_bias,
        *linear2_weight,
        linear2_bias,
        ln1_scale,
        ln1_bias,
        ln2_scale,
        ln2_bias,
        out,
        dropout1_mask,
        dropout2_mask,
        ln1_mean,
        ln1_variance,
        ln2_mean,
        ln2_variance,
        linear1_out,
        ln1_out,
        dropout1_out,
        dropout2_out,
        bsz_seq,
        d_model,
        dim_feedforward,
        act_method,
        pre_layer_norm,
        epsilon1,
        epsilon2,
        add_residual,
        ring_id,
        dropout_param1,
        dropout_param2);
308 309 310
  }
};

311 312 313
template <typename DeviceContext, typename T>
class FusedFeedForwardGradKernel : public framework::OpKernel<T> {
 public:
L
Leo Chen 已提交
314
  void MatMulGrad(const phi::GPUContext& ctx,
315 316 317 318 319
                  const phi::DenseTensor& d_out,
                  const phi::DenseTensor& a,
                  const phi::DenseTensor& b,
                  phi::DenseTensor* d_a,
                  phi::DenseTensor* d_b) const {
320
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
321 322
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
323 324
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, true);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, true);
325
    auto mat_dim_dout =
326
        phi::funcs::CreateMatrixDescriptor(d_out.dims(), 0, false);
327 328 329 330 331
    T alpha = static_cast<T>(1.0);
    blas.MatMul(d_out, mat_dim_dout, b, mat_dim_b, alpha, d_a, T(0));
    blas.MatMul(a, mat_dim_a, d_out, mat_dim_dout, alpha, d_b, T(0));
  }

L
Leo Chen 已提交
332
  void FFNGrad(const phi::GPUContext& ctx,
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
               const phi::DenseTensor& d_out,
               const phi::DenseTensor& x,
               const phi::DenseTensor& dropout1_mask,
               const phi::DenseTensor& dropout2_mask,
               const phi::DenseTensor& linear1_out,
               const phi::DenseTensor* ln1_out,
               const phi::DenseTensor& dropout1_out,
               const phi::DenseTensor& dropout2_out,
               const phi::DenseTensor& linear1_weight,
               const phi::DenseTensor* linear1_bias,
               const phi::DenseTensor& linear2_weight,
               const phi::DenseTensor* ln1_gamma,
               const phi::DenseTensor* ln1_beta,
               const phi::DenseTensor* ln1_mean,
               const phi::DenseTensor* ln1_variance,
               const phi::DenseTensor* ln2_gamma,
               const phi::DenseTensor* ln2_beta,
               const phi::DenseTensor* ln2_mean,
               const phi::DenseTensor* ln2_variance,
               phi::DenseTensor* d_x,
               phi::DenseTensor* d_linear1_weight,
               phi::DenseTensor* d_linear1_bias,
               phi::DenseTensor* d_linear2_weight,
               phi::DenseTensor* d_linear2_bias,
               phi::DenseTensor* d_ln1_gamma,
               phi::DenseTensor* d_ln1_beta,
               phi::DenseTensor* d_ln2_gamma,
               phi::DenseTensor* d_ln2_beta,
361 362 363 364 365 366 367 368 369 370 371
               const int bsz_seq,
               const int d_model,
               const int dim_feedforward,
               const DropoutParam& dropout_param1,
               const DropoutParam& dropout_param2,
               const std::string& act_method,
               const bool pre_layer_norm,
               const float epsilon1,
               const float epsilon2,
               const bool add_residual,
               const int ring_id) const {
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    using U = LayerNormParamType<T>;
    const U* ln1_gamma_ptr =
        ln1_gamma == nullptr ? nullptr : ln1_gamma->data<U>();
    const U* ln1_beta_ptr = ln1_beta == nullptr ? nullptr : ln1_beta->data<U>();
    const U* ln2_gamma_ptr =
        ln2_gamma == nullptr ? nullptr : ln2_gamma->data<U>();
    const U* ln2_beta_ptr = ln2_beta == nullptr ? nullptr : ln2_beta->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    T* d_linear1_bias_ptr =
        d_linear1_bias == nullptr ? nullptr : d_linear1_bias->data<T>();
    T* d_linear2_bias_ptr =
        d_linear2_bias == nullptr ? nullptr : d_linear2_bias->data<T>();
    U* d_ln1_gamma_ptr =
        d_ln1_gamma == nullptr ? nullptr : d_ln1_gamma->data<U>();
    U* d_ln1_beta_ptr = d_ln1_beta == nullptr ? nullptr : d_ln1_beta->data<U>();
    U* d_ln2_gamma_ptr =
        d_ln2_gamma == nullptr ? nullptr : d_ln2_gamma->data<U>();
    U* d_ln2_beta_ptr = d_ln2_beta == nullptr ? nullptr : d_ln2_beta->data<U>();

399
    phi::DenseTensor d_linear2_out, d_dropout2_out, d_residual;
400 401 402 403
    d_linear2_out.Resize({bsz_seq, d_model});
    ctx.Alloc<T>(&d_linear2_out, d_linear2_out.numel() * sizeof(T));
    d_dropout2_out.Resize({bsz_seq, d_model});
    ctx.Alloc<T>(&d_dropout2_out, d_dropout2_out.numel() * sizeof(T));
404

405 406
    T* d_residual_ptr = nullptr;
    if (add_residual) {
407 408 409
      d_residual.Resize(d_x->dims());
      d_residual_ptr =
          ctx.Alloc<T>(&d_residual, d_residual.numel() * sizeof(T));
410
    }
411 412
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
413 414 415 416 417 418
          ctx,
          d_out.data<T>(),
          dropout2_mask.data<uint8_t>(),
          d_linear2_out.data<T>(),
          d_residual_ptr,
          d_linear2_bias_ptr);
419 420
    } else {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
421 422 423 424 425 426 427 428 429 430 431 432
          ctx,
          d_out.data<T>(),
          dropout2_out.data<T>(),
          dropout2_mask.data<uint8_t>(),
          ln2_gamma_ptr,
          ln2_mean->data<U>(),
          ln2_variance->data<U>(),
          d_dropout2_out.data<T>(),
          d_ln2_gamma_ptr,
          d_ln2_beta_ptr,
          d_linear2_out.data<T>(),
          d_linear2_bias_ptr,
433
          d_residual_ptr);
434 435
    }

436
    phi::DenseTensor d_dropout1_out;
437 438
    d_dropout1_out.Resize({bsz_seq, dim_feedforward});
    ctx.Alloc<T>(&d_dropout1_out, d_dropout1_out.numel() * sizeof(T));
439 440 441 442 443 444
    MatMulGrad(ctx,
               d_linear2_out,
               dropout1_out,
               linear2_weight,
               &d_dropout1_out,
               d_linear2_weight);
445

446
    phi::DenseTensor d_linear1_out;
447 448
    d_linear1_out.Resize({bsz_seq, dim_feedforward});
    ctx.Alloc<T>(&d_linear1_out, d_linear1_out.numel() * sizeof(T));
449 450 451 452 453 454 455 456
    fused_act_dropout_helper.DropoutActBiasGrad(ctx,
                                                d_dropout1_out.data<T>(),
                                                linear1_out.data<T>(),
                                                linear1_bias_ptr,
                                                dropout1_mask.data<uint8_t>(),
                                                d_linear1_out.data<T>(),
                                                d_linear1_bias_ptr,
                                                act_method);
457 458

    if (pre_layer_norm) {
459
      phi::DenseTensor d_ln1_out;
460 461
      d_ln1_out.Resize({bsz_seq, d_model});
      ctx.Alloc<T>(&d_ln1_out, d_ln1_out.numel() * sizeof(T));
462 463 464 465 466
      MatMulGrad(ctx,
                 d_linear1_out,
                 *ln1_out,
                 linear1_weight,
                 &d_ln1_out,
467
                 d_linear1_weight);
468 469
      // tensor model parallel
      AllReduce<T>(d_ln1_out, ring_id, ctx);
470 471 472 473 474 475 476 477 478
      pre_layernorm_helper.LayerNormGrad(ctx,
                                         d_ln1_out.data<T>(),
                                         x.data<T>(),
                                         ln1_gamma_ptr,
                                         ln1_mean->data<U>(),
                                         ln1_variance->data<U>(),
                                         d_x->data<T>(),
                                         d_ln1_gamma_ptr,
                                         d_ln1_beta_ptr);
479 480
    } else {
      MatMulGrad(ctx, d_linear1_out, x, linear1_weight, d_x, d_linear1_weight);
481 482
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx);
483
    }
484 485 486

    if (add_residual) {
      // gradient accumulation
487 488
      std::vector<const phi::DenseTensor*> ins = {&d_residual, d_x};
      std::vector<phi::DenseTensor*> outs = {d_x};
489 490
      phi::funcs::ElementwiseKernel<T>(
          ctx, ins, &outs, phi::funcs::AddFunctor<T>());
491
    }
492 493 494 495
  }

  void Compute(const framework::ExecutionContext& context) const override {
    using U = LayerNormParamType<T>;
496
    auto& dev_ctx = context.template device_context<phi::GPUContext>();
497
    auto d_out =
498 499
        *context.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto x = *context.Input<phi::DenseTensor>("X");
500
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
501 502 503
    auto dropout1_mask = *context.Input<phi::DenseTensor>("Dropout1Mask");
    auto dropout2_mask = *context.Input<phi::DenseTensor>("Dropout2Mask");
    auto linear1_out = *context.Input<phi::DenseTensor>("Linear1Out");
504
    auto* ln1_out =
505 506 507 508 509 510
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Out") : nullptr;
    auto dropout1_out = *context.Input<phi::DenseTensor>("Dropout1Out");
    auto dropout2_out = *context.Input<phi::DenseTensor>("Dropout2Out");
    auto linear1_weight = *context.Input<phi::DenseTensor>("Linear1Weight");
    auto* linear1_bias = context.Input<phi::DenseTensor>("Linear1Bias");
    auto linear2_weight = *context.Input<phi::DenseTensor>("Linear2Weight");
511
    auto* ln1_mean =
512
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Mean") : nullptr;
513
    auto* ln1_variance = pre_layer_norm
514
                             ? context.Input<phi::DenseTensor>("Ln1Variance")
515 516
                             : nullptr;
    auto* ln1_scale =
517
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Scale") : nullptr;
518
    auto* ln1_bias =
519
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Bias") : nullptr;
520
    auto* ln2_mean =
521
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Mean") : nullptr;
522
    auto* ln2_variance = !pre_layer_norm
523
                             ? context.Input<phi::DenseTensor>("Ln2Variance")
524
                             : nullptr;
525 526
    auto* ln2_scale =
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Scale") : nullptr;
527
    auto* ln2_bias =
528
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Bias") : nullptr;
529

530 531
    auto* d_x = context.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto* d_ln1_scale = pre_layer_norm ? context.Output<phi::DenseTensor>(
532 533
                                             framework::GradVarName("Ln1Scale"))
                                       : nullptr;
534
    auto* d_ln1_bias = pre_layer_norm ? context.Output<phi::DenseTensor>(
535 536 537 538
                                            framework::GradVarName("Ln1Bias"))
                                      : nullptr;
    auto* d_ln2_scale = pre_layer_norm
                            ? nullptr
539
                            : context.Output<phi::DenseTensor>(
540 541
                                  framework::GradVarName("Ln2Scale"));
    auto* d_ln2_bias = pre_layer_norm ? nullptr
542
                                      : context.Output<phi::DenseTensor>(
543
                                            framework::GradVarName("Ln2Bias"));
544
    auto* d_linear1_weight = context.Output<phi::DenseTensor>(
545
        framework::GradVarName("Linear1Weight"));
546 547 548
    auto* d_linear1_bias =
        context.Output<phi::DenseTensor>(framework::GradVarName("Linear1Bias"));
    auto* d_linear2_weight = context.Output<phi::DenseTensor>(
549
        framework::GradVarName("Linear2Weight"));
550 551
    auto* d_linear2_bias =
        context.Output<phi::DenseTensor>(framework::GradVarName("Linear2Bias"));
552 553 554

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
555
    const bool add_residual = context.Attr<bool>("add_residual");
556
    const int ring_id = context.Attr<int>("ring_id");
557 558 559 560
    const std::string act_method = context.Attr<std::string>("act_method");
    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

561
    dev_ctx.Alloc<T>(d_x, d_x->numel() * sizeof(T));
562
    if (d_ln1_scale) {
563
      dev_ctx.Alloc<U>(d_ln1_scale, d_ln1_scale->numel() * sizeof(U));
564 565
    }
    if (d_ln1_bias) {
566
      dev_ctx.Alloc<U>(d_ln1_bias, d_ln1_bias->numel() * sizeof(U));
567 568
    }
    if (d_ln2_scale) {
569
      dev_ctx.Alloc<U>(d_ln2_scale, d_ln2_scale->numel() * sizeof(U));
570 571
    }
    if (d_ln2_bias) {
572
      dev_ctx.Alloc<U>(d_ln2_bias, d_ln2_bias->numel() * sizeof(U));
573 574
    }
    if (d_linear1_bias) {
575
      dev_ctx.Alloc<T>(d_linear1_bias, d_linear1_bias->numel() * sizeof(T));
576 577
    }
    if (d_linear2_bias) {
578
      dev_ctx.Alloc<T>(d_linear2_bias, d_linear2_bias->numel() * sizeof(T));
579
    }
580 581
    dev_ctx.Alloc<T>(d_linear1_weight, d_linear1_weight->numel() * sizeof(T));
    dev_ctx.Alloc<T>(d_linear2_weight, d_linear2_weight->numel() * sizeof(T));
582 583

    auto x_dim = x.dims();
584
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
585
        RowMatrixFromVector(x_dim), 0, false);
586 587 588 589 590 591

    auto linear1_weight_dim = linear1_weight.dims();
    int d_model = linear1_weight_dim[0];
    int dim_feedforward = linear1_weight_dim[linear1_weight_dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    FFNGrad(context.cuda_device_context(),
            d_out,
            x,
            dropout1_mask,
            dropout2_mask,
            linear1_out,
            ln1_out,
            dropout1_out,
            dropout2_out,
            linear1_weight,
            linear1_bias,
            linear2_weight,
            ln1_scale,
            ln1_bias,
            ln1_mean,
            ln1_variance,
            ln2_scale,
            ln2_bias,
            ln2_mean,
            ln2_variance,
            d_x,
            d_linear1_weight,
            d_linear1_bias,
            d_linear2_weight,
            d_linear2_bias,
            d_ln1_scale,
            d_ln1_bias,
            d_ln2_scale,
            d_ln2_bias,
            bsz_seq,
            d_model,
            dim_feedforward,
            dropout_param1,
            dropout_param2,
            act_method,
            pre_layer_norm,
            epsilon1,
            epsilon2,
            add_residual,
631
            ring_id);
632 633
  }
};
634 635 636 637 638 639
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward,
L
Leo Chen 已提交
640 641 642
    ops::FusedFeedForwardKernel<phi::GPUContext, float>,
    ops::FusedFeedForwardKernel<phi::GPUContext, double>,
    ops::FusedFeedForwardKernel<phi::GPUContext, paddle::platform::float16>);
643 644
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward_grad,
L
Leo Chen 已提交
645 646 647
    ops::FusedFeedForwardGradKernel<phi::GPUContext, float>,
    ops::FusedFeedForwardGradKernel<phi::GPUContext, double>,
    ops::FusedFeedForwardGradKernel<phi::GPUContext,
648
                                    paddle::platform::float16>);