fused_feedforward_op.cu 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/matmul_v2_op.h"
18
#include "paddle/phi/kernels/funcs/blas/blas.h"
19

20
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
21 22 23
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"

24 25 26 27 28
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

29 30 31 32 33
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
template <typename T>
static void AllReduce(framework::Tensor& tensor,  // NOLINT
                      const int ring_id,
                      const platform::CUDADeviceContext& ctx) {
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  auto dtype =
      platform::ToNCCLDataType(framework::TransToProtoVarType(tensor.dtype()));
  int64_t numel = tensor.numel();
  const void* sendbuff = tensor.data<T>();
  auto place = ctx.GetPlace();
  void* recvbuff = tensor.mutable_data<T>(place);
  auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
  auto stream = ctx.stream();
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
      sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

57 58 59 60 61 62
template <typename DeviceContext, typename T>
class FusedFeedForwardKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const platform::CUDADeviceContext& ctx,
              const framework::Tensor& a, const framework::Tensor& b,
              framework::Tensor* c) const {
63
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
64 65
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
66 67
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, false);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, false);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    T alpha = static_cast<T>(1.0);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, alpha, c, T(0));
  }

  void FFN(const framework::Tensor& x, const framework::Tensor& linear1_weight,
           const framework::Tensor* linear1_bias,
           const framework::Tensor& linear2_weight,
           const framework::Tensor* linear2_bias,
           const framework::Tensor* ln1_scale,
           const framework::Tensor* ln1_bias,
           const framework::Tensor* ln2_scale,
           const framework::Tensor* ln2_bias, framework::Tensor* out,
           framework::Tensor* dropout1_mask, framework::Tensor* dropout2_mask,
           framework::Tensor* ln1_mean, framework::Tensor* ln1_variance,
           framework::Tensor* ln2_mean, framework::Tensor* ln2_variance,
           framework::Tensor* linear1_out, framework::Tensor* ln1_out,
           framework::Tensor* dropout1_out, framework::Tensor* dropout2_out,
           const int bsz_seq, const int d_model, const int dim_feedforward,
           const std::string& act_method, const bool pre_layer_norm,
87
           const float epsilon1, const float epsilon2, const int ring_id,
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
           const DropoutParam& dropout_param1,
           const DropoutParam& dropout_param2,
           const platform::CUDADeviceContext& ctx) const {
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const framework::Tensor* in = &x;

    const U* ln1_scale_ptr =
        ln1_scale == nullptr ? nullptr : ln1_scale->data<U>();
    const U* ln1_bias_ptr = ln1_bias == nullptr ? nullptr : ln1_bias->data<U>();
    const U* ln2_scale_ptr =
        ln2_scale == nullptr ? nullptr : ln2_scale->data<U>();
    const U* ln2_bias_ptr = ln2_bias == nullptr ? nullptr : ln2_bias->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    const T* linear2_bias_ptr =
        linear2_bias == nullptr ? nullptr : linear2_bias->data<T>();

    if (pre_layer_norm) {
      pre_layernorm_helper.LayerNorm(
          ctx, x.data<T>(), ln1_scale_ptr, ln1_bias_ptr, ln1_out->data<T>(),
          ln1_mean->data<U>(), ln1_variance->data<U>());
      in = ln1_out;
    }
    MatMul(ctx, *in, linear1_weight, linear1_out);
    fused_act_dropout_helper.DropoutActBias(
        ctx, linear1_out->data<T>(), linear1_bias_ptr, act_method,
        dropout1_out->data<T>(), dropout1_mask->data<uint8_t>());
    framework::Tensor linear2_out;
    linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    MatMul(ctx, *dropout1_out, linear2_weight, &linear2_out);
126 127 128 129

    // tensor model parallel
    AllReduce<T>(linear2_out, ring_id, ctx);

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    if (!pre_layer_norm) {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
          ctx, linear2_out.data<T>(), x.data<T>(), linear2_bias_ptr,
          ln2_scale_ptr, ln2_bias_ptr, dropout2_out->data<T>(),
          dropout2_mask->data<uint8_t>(), out->data<T>(), ln2_mean->data<U>(),
          ln2_variance->data<U>());
    } else {
      fused_dropout_layernorm_helper.ResidualDropoutBias(
          ctx, linear2_out.data<T>(), x.data<T>(), linear2_bias_ptr,
          out->data<T>(), dropout2_mask->data<uint8_t>());
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* linear1_weight = context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto* linear2_weight = context.Input<framework::Tensor>("Linear2Weight");
    auto* linear2_bias = context.Input<framework::Tensor>("Linear2Bias");
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");

    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;

    auto* ln1_mean =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln2_mean = !pre_layer_norm
                         ? context.Output<framework::Tensor>("Ln2Mean")
                         : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln2Variance")
                             : nullptr;
172 173 174 175
    auto* out = context.Output<framework::Tensor>("Out");
    auto* dropout1_mask = context.Output<framework::Tensor>("Dropout1Mask");
    auto* dropout2_mask = context.Output<framework::Tensor>("Dropout2Mask");
    auto* linear1_out = context.Output<framework::Tensor>("Linear1Out");
176 177
    auto* ln1_out =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Out") : nullptr;
178 179 180 181 182 183 184
    auto* dropout1_out = context.Output<framework::Tensor>("Dropout1Out");
    auto* dropout2_out = context.Output<framework::Tensor>("Dropout2Out");

    const std::string act_method = context.Attr<std::string>("act_method");

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
185
    const int ring_id = context.Attr<int>("ring_id");
186 187 188 189 190 191 192 193 194

    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    using U = LayerNormParamType<T>;
    auto place = context.GetPlace();
    out->mutable_data<T>(place);
    dropout1_mask->mutable_data<uint8_t>(place);
    dropout2_mask->mutable_data<uint8_t>(place);
195 196 197 198 199 200 201 202 203
    if (pre_layer_norm) {
      ln1_mean->mutable_data<U>(place);
      ln1_variance->mutable_data<U>(place);
      ln1_out->mutable_data<T>(place);
    } else {
      ln2_mean->mutable_data<U>(place);
      ln2_variance->mutable_data<U>(place);
    }

204 205 206 207 208
    linear1_out->mutable_data<T>(place);
    dropout1_out->mutable_data<T>(place);
    dropout2_out->mutable_data<T>(place);

    auto x_dim = x->dims();
209
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
210
        RowMatrixFromVector(x_dim), 0, false);
211 212 213 214 215 216 217 218 219 220 221

    auto dim = linear1_weight->dims();
    int d_model = dim[0];
    int dim_feedforward = dim[dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

    FFN(*x, *linear1_weight, linear1_bias, *linear2_weight, linear2_bias,
        ln1_scale, ln1_bias, ln2_scale, ln2_bias, out, dropout1_mask,
        dropout2_mask, ln1_mean, ln1_variance, ln2_mean, ln2_variance,
        linear1_out, ln1_out, dropout1_out, dropout2_out, bsz_seq, d_model,
        dim_feedforward, act_method, pre_layer_norm, epsilon1, epsilon2,
222
        ring_id, dropout_param1, dropout_param2, context.cuda_device_context());
223 224 225
  }
};

226 227 228 229 230 231 232
template <typename DeviceContext, typename T>
class FusedFeedForwardGradKernel : public framework::OpKernel<T> {
 public:
  void MatMulGrad(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& d_out, const framework::Tensor& a,
                  const framework::Tensor& b, framework::Tensor* d_a,
                  framework::Tensor* d_b) const {
233
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
234 235
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
236 237
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, true);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, true);
238
    auto mat_dim_dout =
239
        phi::funcs::CreateMatrixDescriptor(d_out.dims(), 0, false);
240 241 242 243 244 245 246 247 248
    T alpha = static_cast<T>(1.0);
    blas.MatMul(d_out, mat_dim_dout, b, mat_dim_b, alpha, d_a, T(0));
    blas.MatMul(a, mat_dim_a, d_out, mat_dim_dout, alpha, d_b, T(0));
  }

  void FFNGrad(
      const framework::Tensor& d_out, const framework::Tensor& x,
      const framework::Tensor& dropout1_mask,
      const framework::Tensor& dropout2_mask,
249
      const framework::Tensor& linear1_out, const framework::Tensor* ln1_out,
250 251 252 253 254 255
      const framework::Tensor& dropout1_out,
      const framework::Tensor& dropout2_out,
      const framework::Tensor& linear1_weight,
      const framework::Tensor* linear1_bias,
      const framework::Tensor& linear2_weight,
      const framework::Tensor* ln1_gamma, const framework::Tensor* ln1_beta,
256
      const framework::Tensor* ln1_mean, const framework::Tensor* ln1_variance,
257
      const framework::Tensor* ln2_gamma, const framework::Tensor* ln2_beta,
258
      const framework::Tensor* ln2_mean, const framework::Tensor* ln2_variance,
259 260 261 262 263 264 265 266
      framework::Tensor* d_x, framework::Tensor* d_linear1_weight,
      framework::Tensor* d_linear1_bias, framework::Tensor* d_linear2_weight,
      framework::Tensor* d_linear2_bias, framework::Tensor* d_ln1_gamma,
      framework::Tensor* d_ln1_beta, framework::Tensor* d_ln2_gamma,
      framework::Tensor* d_ln2_beta, const int bsz_seq, const int d_model,
      const int dim_feedforward, const DropoutParam& dropout_param1,
      const DropoutParam& dropout_param2, const std::string& act_method,
      const bool pre_layer_norm, const float epsilon1, const float epsilon2,
267
      const int ring_id, const platform::CUDADeviceContext& ctx) const {
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const U* ln1_gamma_ptr =
        ln1_gamma == nullptr ? nullptr : ln1_gamma->data<U>();
    const U* ln1_beta_ptr = ln1_beta == nullptr ? nullptr : ln1_beta->data<U>();
    const U* ln2_gamma_ptr =
        ln2_gamma == nullptr ? nullptr : ln2_gamma->data<U>();
    const U* ln2_beta_ptr = ln2_beta == nullptr ? nullptr : ln2_beta->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    T* d_linear1_bias_ptr =
        d_linear1_bias == nullptr ? nullptr : d_linear1_bias->data<T>();
    T* d_linear2_bias_ptr =
        d_linear2_bias == nullptr ? nullptr : d_linear2_bias->data<T>();
    U* d_ln1_gamma_ptr =
        d_ln1_gamma == nullptr ? nullptr : d_ln1_gamma->data<U>();
    U* d_ln1_beta_ptr = d_ln1_beta == nullptr ? nullptr : d_ln1_beta->data<U>();
    U* d_ln2_gamma_ptr =
        d_ln2_gamma == nullptr ? nullptr : d_ln2_gamma->data<U>();
    U* d_ln2_beta_ptr = d_ln2_beta == nullptr ? nullptr : d_ln2_beta->data<U>();

    framework::Tensor d_linear2_out, d_dropout2_out, d_residual;
    d_linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    d_dropout2_out.mutable_data<T>({bsz_seq, d_model}, place);
299
    d_residual.mutable_data<T>(d_x->dims(), place);
300 301 302 303 304 305 306 307

    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
          ctx, d_out.data<T>(), dropout2_mask.data<uint8_t>(),
          d_linear2_out.data<T>(), d_residual.data<T>(), d_linear2_bias_ptr);
    } else {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
          ctx, d_out.data<T>(), dropout2_out.data<T>(),
308 309
          dropout2_mask.data<uint8_t>(), ln2_gamma_ptr, ln2_mean->data<U>(),
          ln2_variance->data<U>(), d_dropout2_out.data<T>(), d_ln2_gamma_ptr,
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
          d_ln2_beta_ptr, d_linear2_out.data<T>(), d_linear2_bias_ptr,
          d_residual.data<T>());
    }

    framework::Tensor d_dropout1_out;
    d_dropout1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
    MatMulGrad(ctx, d_linear2_out, dropout1_out, linear2_weight,
               &d_dropout1_out, d_linear2_weight);

    framework::Tensor d_linear1_out;
    d_linear1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
    fused_act_dropout_helper.DropoutActBiasGrad(
        ctx, d_dropout1_out.data<T>(), linear1_out.data<T>(), linear1_bias_ptr,
        dropout1_mask.data<uint8_t>(), d_linear1_out.data<T>(),
        d_linear1_bias_ptr, act_method);

    if (pre_layer_norm) {
      framework::Tensor d_ln1_out;
      d_ln1_out.mutable_data<T>({bsz_seq, d_model}, place);
329
      MatMulGrad(ctx, d_linear1_out, *ln1_out, linear1_weight, &d_ln1_out,
330
                 d_linear1_weight);
331 332
      // tensor model parallel
      AllReduce<T>(d_ln1_out, ring_id, ctx);
333 334 335 336
      pre_layernorm_helper.LayerNormGrad(
          ctx, d_ln1_out.data<T>(), x.data<T>(), ln1_gamma_ptr,
          ln1_mean->data<U>(), ln1_variance->data<U>(), d_x->data<T>(),
          d_ln1_gamma_ptr, d_ln1_beta_ptr);
337 338
    } else {
      MatMulGrad(ctx, d_linear1_out, x, linear1_weight, d_x, d_linear1_weight);
339 340
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx);
341
    }
342 343 344 345 346 347
    std::vector<const Tensor*> ins(2);
    std::vector<Tensor*> outs(1);
    ins[0] = &d_residual;
    ins[1] = d_x;
    outs[0] = d_x;
    int elewise_add_axis = -1;
348 349
    paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T,
                                                   T>(
350
        ctx, ins, &outs, elewise_add_axis, AddFunctor<T>());
351 352 353 354 355 356 357
  }

  void Compute(const framework::ExecutionContext& context) const override {
    using U = LayerNormParamType<T>;
    auto d_out =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto x = *context.Input<framework::Tensor>("X");
358
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
359 360 361
    auto dropout1_mask = *context.Input<framework::Tensor>("Dropout1Mask");
    auto dropout2_mask = *context.Input<framework::Tensor>("Dropout2Mask");
    auto linear1_out = *context.Input<framework::Tensor>("Linear1Out");
362 363
    auto* ln1_out =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Out") : nullptr;
364 365 366 367 368
    auto dropout1_out = *context.Input<framework::Tensor>("Dropout1Out");
    auto dropout2_out = *context.Input<framework::Tensor>("Dropout2Out");
    auto linear1_weight = *context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto linear2_weight = *context.Input<framework::Tensor>("Linear2Weight");
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    auto* ln1_mean =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_mean =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Mean") : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln2Variance")
                             : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;
388 389

    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
390 391 392 393 394 395 396 397
    auto* d_ln1_scale = pre_layer_norm
                            ? context.Output<framework::Tensor>(
                                  framework::GradVarName("Ln1Scale"))
                            : nullptr;
    auto* d_ln1_bias = pre_layer_norm
                           ? context.Output<framework::Tensor>(
                                 framework::GradVarName("Ln1Bias"))
                           : nullptr;
398
    auto* d_ln2_scale =
399 400
        pre_layer_norm ? nullptr : context.Output<framework::Tensor>(
                                       framework::GradVarName("Ln2Scale"));
401
    auto* d_ln2_bias =
402 403
        pre_layer_norm ? nullptr : context.Output<framework::Tensor>(
                                       framework::GradVarName("Ln2Bias"));
404 405 406 407 408 409 410 411 412 413 414
    auto* d_linear1_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Weight"));
    auto* d_linear1_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Bias"));
    auto* d_linear2_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Weight"));
    auto* d_linear2_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Bias"));

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
415
    const int ring_id = context.Attr<int>("ring_id");
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    const std::string act_method = context.Attr<std::string>("act_method");
    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    auto place = context.GetPlace();
    d_x->mutable_data<T>(place);
    if (d_ln1_scale) {
      d_ln1_scale->mutable_data<U>(place);
    }
    if (d_ln1_bias) {
      d_ln1_bias->mutable_data<U>(place);
    }
    if (d_ln2_scale) {
      d_ln2_scale->mutable_data<U>(place);
    }
    if (d_ln2_bias) {
      d_ln2_bias->mutable_data<U>(place);
    }
    if (d_linear1_bias) {
      d_linear1_bias->mutable_data<T>(place);
    }
    if (d_linear2_bias) {
      d_linear2_bias->mutable_data<T>(place);
    }
    d_linear1_weight->mutable_data<T>(place);
    d_linear2_weight->mutable_data<T>(place);

    auto x_dim = x.dims();
444
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
445
        RowMatrixFromVector(x_dim), 0, false);
446 447 448 449 450 451 452 453 454 455 456 457 458

    auto linear1_weight_dim = linear1_weight.dims();
    int d_model = linear1_weight_dim[0];
    int dim_feedforward = linear1_weight_dim[linear1_weight_dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

    FFNGrad(d_out, x, dropout1_mask, dropout2_mask, linear1_out, ln1_out,
            dropout1_out, dropout2_out, linear1_weight, linear1_bias,
            linear2_weight, ln1_scale, ln1_bias, ln1_mean, ln1_variance,
            ln2_scale, ln2_bias, ln2_mean, ln2_variance, d_x, d_linear1_weight,
            d_linear1_bias, d_linear2_weight, d_linear2_bias, d_ln1_scale,
            d_ln1_bias, d_ln2_scale, d_ln2_bias, bsz_seq, d_model,
            dim_feedforward, dropout_param1, dropout_param2, act_method,
459 460
            pre_layer_norm, epsilon1, epsilon2, ring_id,
            context.cuda_device_context());
461 462
  }
};
463 464 465 466 467 468 469 470 471 472
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, double>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext,
                                paddle::platform::float16>);
473 474 475 476 477 478 479
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward_grad,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    double>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    paddle::platform::float16>);