fused_feedforward_op.cu 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"
19
#include "paddle/fluid/operators/matmul_v2_op.h"
20
#include "paddle/phi/api/include/tensor.h"
21
#include "paddle/phi/kernels/funcs/blas/blas.h"
22 23
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
24

25
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
26
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
27 28 29 30
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

31 32 33 34 35
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

36 37 38
template <typename T>
static void AllReduce(framework::Tensor& tensor,  // NOLINT
                      const int ring_id,
L
Leo Chen 已提交
39
                      const phi::GPUContext& ctx) {
40 41
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  auto map = paddle::distributed::ProcessGroupMapFromGid::getInstance();

  if (map->has(ring_id)) {
    paddle::distributed::ProcessGroup* pg = map->get(ring_id);
    std::vector<phi::DenseTensor> in_tensor;
    std::vector<phi::DenseTensor> out_tensor;
    in_tensor.push_back(tensor);
    out_tensor.push_back(tensor);
    paddle::distributed::AllreduceOptions opts;
    opts.reduce_op = distributed::ReduceOp::SUM;
    auto task = pg->AllReduce(in_tensor, out_tensor, opts);
    task->Wait();
  } else {
    auto dtype = platform::ToNCCLDataType(
        framework::TransToProtoVarType(tensor.dtype()));
    int64_t numel = tensor.numel();
    const void* sendbuff = tensor.data<T>();
    auto place = ctx.GetPlace();
60
    void* recvbuff = ctx.Alloc<T>(&tensor, tensor.numel() * sizeof(T));
61 62 63 64 65
    auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
    auto stream = ctx.stream();
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
        sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
  }
66 67 68 69 70 71 72
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

73 74 75
template <typename DeviceContext, typename T>
class FusedFeedForwardKernel : public framework::OpKernel<T> {
 public:
L
Leo Chen 已提交
76
  void MatMul(const phi::GPUContext& ctx,
77 78
              const framework::Tensor& a,
              const framework::Tensor& b,
79
              framework::Tensor* c) const {
80
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
81 82
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
83 84
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, false);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, false);
85 86 87 88
    T alpha = static_cast<T>(1.0);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, alpha, c, T(0));
  }

L
Leo Chen 已提交
89
  void FFN(const phi::GPUContext& ctx,
90
           const framework::Tensor& x,
91
           const framework::Tensor& linear1_weight,
92 93 94 95 96 97
           const framework::Tensor* linear1_bias,
           const framework::Tensor& linear2_weight,
           const framework::Tensor* linear2_bias,
           const framework::Tensor* ln1_scale,
           const framework::Tensor* ln1_bias,
           const framework::Tensor* ln2_scale,
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
           const framework::Tensor* ln2_bias,
           framework::Tensor* out,
           framework::Tensor* dropout1_mask,
           framework::Tensor* dropout2_mask,
           framework::Tensor* ln1_mean,
           framework::Tensor* ln1_variance,
           framework::Tensor* ln2_mean,
           framework::Tensor* ln2_variance,
           framework::Tensor* linear1_out,
           framework::Tensor* ln1_out,
           framework::Tensor* dropout1_out,
           framework::Tensor* dropout2_out,
           const int bsz_seq,
           const int d_model,
           const int dim_feedforward,
           const std::string& act_method,
           const bool pre_layer_norm,
           const float epsilon1,
           const float epsilon2,
           const bool add_residual,
           const int ring_id,
           const DropoutParam& dropout_param1,
120
           const DropoutParam& dropout_param2) const {
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    using U = LayerNormParamType<T>;
    const framework::Tensor* in = &x;

    const U* ln1_scale_ptr =
        ln1_scale == nullptr ? nullptr : ln1_scale->data<U>();
    const U* ln1_bias_ptr = ln1_bias == nullptr ? nullptr : ln1_bias->data<U>();
    const U* ln2_scale_ptr =
        ln2_scale == nullptr ? nullptr : ln2_scale->data<U>();
    const U* ln2_bias_ptr = ln2_bias == nullptr ? nullptr : ln2_bias->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    const T* linear2_bias_ptr =
        linear2_bias == nullptr ? nullptr : linear2_bias->data<T>();

    if (pre_layer_norm) {
143 144 145 146 147 148 149
      pre_layernorm_helper.LayerNorm(ctx,
                                     x.data<T>(),
                                     ln1_scale_ptr,
                                     ln1_bias_ptr,
                                     ln1_out->data<T>(),
                                     ln1_mean->data<U>(),
                                     ln1_variance->data<U>());
150 151 152
      in = ln1_out;
    }
    MatMul(ctx, *in, linear1_weight, linear1_out);
153 154 155 156 157 158
    fused_act_dropout_helper.DropoutActBias(ctx,
                                            linear1_out->data<T>(),
                                            linear1_bias_ptr,
                                            act_method,
                                            dropout1_out->data<T>(),
                                            dropout1_mask->data<uint8_t>());
159
    framework::Tensor linear2_out;
160 161
    linear2_out.Resize({bsz_seq, d_model});
    ctx.Alloc<T>(&linear2_out, linear2_out.numel() * sizeof(T));
162
    MatMul(ctx, *dropout1_out, linear2_weight, &linear2_out);
163 164 165 166

    // tensor model parallel
    AllReduce<T>(linear2_out, ring_id, ctx);

167
    const T* residual_ptr = add_residual ? x.data<T>() : nullptr;
168
    if (!pre_layer_norm) {
169
      // TODO(Xreki): support post layer_norm case when add_residual is false.
170 171
      PADDLE_ENFORCE_EQ(add_residual,
                        true,
172 173 174 175
                        platform::errors::InvalidArgument(
                            "Attribute add_residual is expected to be true "
                            "when pre_layer_norm is false."));

176
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
177 178 179 180 181 182 183 184 185 186
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          ln2_scale_ptr,
          ln2_bias_ptr,
          dropout2_out->data<T>(),
          dropout2_mask->data<uint8_t>(),
          out->data<T>(),
          ln2_mean->data<U>(),
187 188 189
          ln2_variance->data<U>());
    } else {
      fused_dropout_layernorm_helper.ResidualDropoutBias(
190 191 192 193 194 195
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          out->data<T>(),
          dropout2_mask->data<uint8_t>());
196 197 198 199 200 201 202 203 204
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* linear1_weight = context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto* linear2_weight = context.Input<framework::Tensor>("Linear2Weight");
    auto* linear2_bias = context.Input<framework::Tensor>("Linear2Bias");
205
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
206
    auto& dev_ctx = context.template device_context<phi::GPUContext>();
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;

    auto* ln1_mean =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln2_mean = !pre_layer_norm
                         ? context.Output<framework::Tensor>("Ln2Mean")
                         : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln2Variance")
                             : nullptr;
229 230 231 232
    auto* out = context.Output<framework::Tensor>("Out");
    auto* dropout1_mask = context.Output<framework::Tensor>("Dropout1Mask");
    auto* dropout2_mask = context.Output<framework::Tensor>("Dropout2Mask");
    auto* linear1_out = context.Output<framework::Tensor>("Linear1Out");
233 234
    auto* ln1_out =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Out") : nullptr;
235 236 237 238 239 240 241
    auto* dropout1_out = context.Output<framework::Tensor>("Dropout1Out");
    auto* dropout2_out = context.Output<framework::Tensor>("Dropout2Out");

    const std::string act_method = context.Attr<std::string>("act_method");

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
242
    const int ring_id = context.Attr<int>("ring_id");
243
    const bool add_residual = context.Attr<bool>("add_residual");
244 245 246 247 248

    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    using U = LayerNormParamType<T>;
249 250 251 252 253
    dev_ctx.Alloc<T>(out, out->numel() * sizeof(T));
    dev_ctx.Alloc<uint8_t>(dropout1_mask,
                           dropout1_mask->numel() * sizeof(uint8_t));
    dev_ctx.Alloc<uint8_t>(dropout2_mask,
                           dropout2_mask->numel() * sizeof(uint8_t));
254
    if (pre_layer_norm) {
255 256 257
      dev_ctx.Alloc<U>(ln1_mean, ln1_mean->numel() * sizeof(U));
      dev_ctx.Alloc<U>(ln1_variance, ln1_variance->numel() * sizeof(U));
      dev_ctx.Alloc<T>(ln1_out, ln1_out->numel() * sizeof(T));
258
    } else {
259 260
      dev_ctx.Alloc<U>(ln2_mean, ln2_mean->numel() * sizeof(U));
      dev_ctx.Alloc<U>(ln2_variance, ln2_variance->numel() * sizeof(U));
261 262
    }

263 264 265
    dev_ctx.Alloc<T>(linear1_out, linear1_out->numel() * sizeof(T));
    dev_ctx.Alloc<T>(dropout1_out, dropout1_out->numel() * sizeof(T));
    dev_ctx.Alloc<T>(dropout2_out, dropout2_out->numel() * sizeof(T));
266 267

    auto x_dim = x->dims();
268
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
269
        RowMatrixFromVector(x_dim), 0, false);
270 271 272 273 274 275

    auto dim = linear1_weight->dims();
    int d_model = dim[0];
    int dim_feedforward = dim[dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    FFN(context.cuda_device_context(),
        *x,
        *linear1_weight,
        linear1_bias,
        *linear2_weight,
        linear2_bias,
        ln1_scale,
        ln1_bias,
        ln2_scale,
        ln2_bias,
        out,
        dropout1_mask,
        dropout2_mask,
        ln1_mean,
        ln1_variance,
        ln2_mean,
        ln2_variance,
        linear1_out,
        ln1_out,
        dropout1_out,
        dropout2_out,
        bsz_seq,
        d_model,
        dim_feedforward,
        act_method,
        pre_layer_norm,
        epsilon1,
        epsilon2,
        add_residual,
        ring_id,
        dropout_param1,
        dropout_param2);
308 309 310
  }
};

311 312 313
template <typename DeviceContext, typename T>
class FusedFeedForwardGradKernel : public framework::OpKernel<T> {
 public:
L
Leo Chen 已提交
314
  void MatMulGrad(const phi::GPUContext& ctx,
315 316 317 318
                  const framework::Tensor& d_out,
                  const framework::Tensor& a,
                  const framework::Tensor& b,
                  framework::Tensor* d_a,
319
                  framework::Tensor* d_b) const {
320
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
321 322
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
323 324
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, true);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, true);
325
    auto mat_dim_dout =
326
        phi::funcs::CreateMatrixDescriptor(d_out.dims(), 0, false);
327 328 329 330 331
    T alpha = static_cast<T>(1.0);
    blas.MatMul(d_out, mat_dim_dout, b, mat_dim_b, alpha, d_a, T(0));
    blas.MatMul(a, mat_dim_a, d_out, mat_dim_dout, alpha, d_b, T(0));
  }

L
Leo Chen 已提交
332
  void FFNGrad(const phi::GPUContext& ctx,
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
               const framework::Tensor& d_out,
               const framework::Tensor& x,
               const framework::Tensor& dropout1_mask,
               const framework::Tensor& dropout2_mask,
               const framework::Tensor& linear1_out,
               const framework::Tensor* ln1_out,
               const framework::Tensor& dropout1_out,
               const framework::Tensor& dropout2_out,
               const framework::Tensor& linear1_weight,
               const framework::Tensor* linear1_bias,
               const framework::Tensor& linear2_weight,
               const framework::Tensor* ln1_gamma,
               const framework::Tensor* ln1_beta,
               const framework::Tensor* ln1_mean,
               const framework::Tensor* ln1_variance,
               const framework::Tensor* ln2_gamma,
               const framework::Tensor* ln2_beta,
               const framework::Tensor* ln2_mean,
               const framework::Tensor* ln2_variance,
               framework::Tensor* d_x,
               framework::Tensor* d_linear1_weight,
               framework::Tensor* d_linear1_bias,
               framework::Tensor* d_linear2_weight,
               framework::Tensor* d_linear2_bias,
               framework::Tensor* d_ln1_gamma,
               framework::Tensor* d_ln1_beta,
               framework::Tensor* d_ln2_gamma,
               framework::Tensor* d_ln2_beta,
               const int bsz_seq,
               const int d_model,
               const int dim_feedforward,
               const DropoutParam& dropout_param1,
               const DropoutParam& dropout_param2,
               const std::string& act_method,
               const bool pre_layer_norm,
               const float epsilon1,
               const float epsilon2,
               const bool add_residual,
               const int ring_id) const {
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    using U = LayerNormParamType<T>;
    const U* ln1_gamma_ptr =
        ln1_gamma == nullptr ? nullptr : ln1_gamma->data<U>();
    const U* ln1_beta_ptr = ln1_beta == nullptr ? nullptr : ln1_beta->data<U>();
    const U* ln2_gamma_ptr =
        ln2_gamma == nullptr ? nullptr : ln2_gamma->data<U>();
    const U* ln2_beta_ptr = ln2_beta == nullptr ? nullptr : ln2_beta->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    T* d_linear1_bias_ptr =
        d_linear1_bias == nullptr ? nullptr : d_linear1_bias->data<T>();
    T* d_linear2_bias_ptr =
        d_linear2_bias == nullptr ? nullptr : d_linear2_bias->data<T>();
    U* d_ln1_gamma_ptr =
        d_ln1_gamma == nullptr ? nullptr : d_ln1_gamma->data<U>();
    U* d_ln1_beta_ptr = d_ln1_beta == nullptr ? nullptr : d_ln1_beta->data<U>();
    U* d_ln2_gamma_ptr =
        d_ln2_gamma == nullptr ? nullptr : d_ln2_gamma->data<U>();
    U* d_ln2_beta_ptr = d_ln2_beta == nullptr ? nullptr : d_ln2_beta->data<U>();

    framework::Tensor d_linear2_out, d_dropout2_out, d_residual;
400 401 402 403
    d_linear2_out.Resize({bsz_seq, d_model});
    ctx.Alloc<T>(&d_linear2_out, d_linear2_out.numel() * sizeof(T));
    d_dropout2_out.Resize({bsz_seq, d_model});
    ctx.Alloc<T>(&d_dropout2_out, d_dropout2_out.numel() * sizeof(T));
404

405 406
    T* d_residual_ptr = nullptr;
    if (add_residual) {
407 408 409
      d_residual.Resize(d_x->dims());
      d_residual_ptr =
          ctx.Alloc<T>(&d_residual, d_residual.numel() * sizeof(T));
410
    }
411 412
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
413 414 415 416 417 418
          ctx,
          d_out.data<T>(),
          dropout2_mask.data<uint8_t>(),
          d_linear2_out.data<T>(),
          d_residual_ptr,
          d_linear2_bias_ptr);
419 420
    } else {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
421 422 423 424 425 426 427 428 429 430 431 432
          ctx,
          d_out.data<T>(),
          dropout2_out.data<T>(),
          dropout2_mask.data<uint8_t>(),
          ln2_gamma_ptr,
          ln2_mean->data<U>(),
          ln2_variance->data<U>(),
          d_dropout2_out.data<T>(),
          d_ln2_gamma_ptr,
          d_ln2_beta_ptr,
          d_linear2_out.data<T>(),
          d_linear2_bias_ptr,
433
          d_residual_ptr);
434 435 436
    }

    framework::Tensor d_dropout1_out;
437 438
    d_dropout1_out.Resize({bsz_seq, dim_feedforward});
    ctx.Alloc<T>(&d_dropout1_out, d_dropout1_out.numel() * sizeof(T));
439 440 441 442 443 444
    MatMulGrad(ctx,
               d_linear2_out,
               dropout1_out,
               linear2_weight,
               &d_dropout1_out,
               d_linear2_weight);
445 446

    framework::Tensor d_linear1_out;
447 448
    d_linear1_out.Resize({bsz_seq, dim_feedforward});
    ctx.Alloc<T>(&d_linear1_out, d_linear1_out.numel() * sizeof(T));
449 450 451 452 453 454 455 456
    fused_act_dropout_helper.DropoutActBiasGrad(ctx,
                                                d_dropout1_out.data<T>(),
                                                linear1_out.data<T>(),
                                                linear1_bias_ptr,
                                                dropout1_mask.data<uint8_t>(),
                                                d_linear1_out.data<T>(),
                                                d_linear1_bias_ptr,
                                                act_method);
457 458 459

    if (pre_layer_norm) {
      framework::Tensor d_ln1_out;
460 461
      d_ln1_out.Resize({bsz_seq, d_model});
      ctx.Alloc<T>(&d_ln1_out, d_ln1_out.numel() * sizeof(T));
462 463 464 465 466
      MatMulGrad(ctx,
                 d_linear1_out,
                 *ln1_out,
                 linear1_weight,
                 &d_ln1_out,
467
                 d_linear1_weight);
468 469
      // tensor model parallel
      AllReduce<T>(d_ln1_out, ring_id, ctx);
470 471 472 473 474 475 476 477 478
      pre_layernorm_helper.LayerNormGrad(ctx,
                                         d_ln1_out.data<T>(),
                                         x.data<T>(),
                                         ln1_gamma_ptr,
                                         ln1_mean->data<U>(),
                                         ln1_variance->data<U>(),
                                         d_x->data<T>(),
                                         d_ln1_gamma_ptr,
                                         d_ln1_beta_ptr);
479 480
    } else {
      MatMulGrad(ctx, d_linear1_out, x, linear1_weight, d_x, d_linear1_weight);
481 482
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx);
483
    }
484 485 486 487 488

    if (add_residual) {
      // gradient accumulation
      std::vector<const Tensor*> ins = {&d_residual, d_x};
      std::vector<Tensor*> outs = {d_x};
489 490
      phi::funcs::ElementwiseKernel<T>(
          ctx, ins, &outs, phi::funcs::AddFunctor<T>());
491
    }
492 493 494 495
  }

  void Compute(const framework::ExecutionContext& context) const override {
    using U = LayerNormParamType<T>;
496
    auto& dev_ctx = context.template device_context<phi::GPUContext>();
497 498 499
    auto d_out =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto x = *context.Input<framework::Tensor>("X");
500
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
501 502 503
    auto dropout1_mask = *context.Input<framework::Tensor>("Dropout1Mask");
    auto dropout2_mask = *context.Input<framework::Tensor>("Dropout2Mask");
    auto linear1_out = *context.Input<framework::Tensor>("Linear1Out");
504 505
    auto* ln1_out =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Out") : nullptr;
506 507 508 509 510
    auto dropout1_out = *context.Input<framework::Tensor>("Dropout1Out");
    auto dropout2_out = *context.Input<framework::Tensor>("Dropout2Out");
    auto linear1_weight = *context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto linear2_weight = *context.Input<framework::Tensor>("Linear2Weight");
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    auto* ln1_mean =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_mean =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Mean") : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln2Variance")
                             : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;
530 531

    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
532 533 534 535 536 537 538 539 540 541 542 543 544
    auto* d_ln1_scale = pre_layer_norm ? context.Output<framework::Tensor>(
                                             framework::GradVarName("Ln1Scale"))
                                       : nullptr;
    auto* d_ln1_bias = pre_layer_norm ? context.Output<framework::Tensor>(
                                            framework::GradVarName("Ln1Bias"))
                                      : nullptr;
    auto* d_ln2_scale = pre_layer_norm
                            ? nullptr
                            : context.Output<framework::Tensor>(
                                  framework::GradVarName("Ln2Scale"));
    auto* d_ln2_bias = pre_layer_norm ? nullptr
                                      : context.Output<framework::Tensor>(
                                            framework::GradVarName("Ln2Bias"));
545 546 547 548 549 550 551 552 553 554 555
    auto* d_linear1_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Weight"));
    auto* d_linear1_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Bias"));
    auto* d_linear2_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Weight"));
    auto* d_linear2_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Bias"));

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
556
    const bool add_residual = context.Attr<bool>("add_residual");
557
    const int ring_id = context.Attr<int>("ring_id");
558 559 560 561
    const std::string act_method = context.Attr<std::string>("act_method");
    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

562
    dev_ctx.Alloc<T>(d_x, d_x->numel() * sizeof(T));
563
    if (d_ln1_scale) {
564
      dev_ctx.Alloc<U>(d_ln1_scale, d_ln1_scale->numel() * sizeof(U));
565 566
    }
    if (d_ln1_bias) {
567
      dev_ctx.Alloc<U>(d_ln1_bias, d_ln1_bias->numel() * sizeof(U));
568 569
    }
    if (d_ln2_scale) {
570
      dev_ctx.Alloc<U>(d_ln2_scale, d_ln2_scale->numel() * sizeof(U));
571 572
    }
    if (d_ln2_bias) {
573
      dev_ctx.Alloc<U>(d_ln2_bias, d_ln2_bias->numel() * sizeof(U));
574 575
    }
    if (d_linear1_bias) {
576
      dev_ctx.Alloc<T>(d_linear1_bias, d_linear1_bias->numel() * sizeof(T));
577 578
    }
    if (d_linear2_bias) {
579
      dev_ctx.Alloc<T>(d_linear2_bias, d_linear2_bias->numel() * sizeof(T));
580
    }
581 582
    dev_ctx.Alloc<T>(d_linear1_weight, d_linear1_weight->numel() * sizeof(T));
    dev_ctx.Alloc<T>(d_linear2_weight, d_linear2_weight->numel() * sizeof(T));
583 584

    auto x_dim = x.dims();
585
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
586
        RowMatrixFromVector(x_dim), 0, false);
587 588 589 590 591 592

    auto linear1_weight_dim = linear1_weight.dims();
    int d_model = linear1_weight_dim[0];
    int dim_feedforward = linear1_weight_dim[linear1_weight_dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    FFNGrad(context.cuda_device_context(),
            d_out,
            x,
            dropout1_mask,
            dropout2_mask,
            linear1_out,
            ln1_out,
            dropout1_out,
            dropout2_out,
            linear1_weight,
            linear1_bias,
            linear2_weight,
            ln1_scale,
            ln1_bias,
            ln1_mean,
            ln1_variance,
            ln2_scale,
            ln2_bias,
            ln2_mean,
            ln2_variance,
            d_x,
            d_linear1_weight,
            d_linear1_bias,
            d_linear2_weight,
            d_linear2_bias,
            d_ln1_scale,
            d_ln1_bias,
            d_ln2_scale,
            d_ln2_bias,
            bsz_seq,
            d_model,
            dim_feedforward,
            dropout_param1,
            dropout_param2,
            act_method,
            pre_layer_norm,
            epsilon1,
            epsilon2,
            add_residual,
632
            ring_id);
633 634
  }
};
635 636 637 638 639 640
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward,
L
Leo Chen 已提交
641 642 643
    ops::FusedFeedForwardKernel<phi::GPUContext, float>,
    ops::FusedFeedForwardKernel<phi::GPUContext, double>,
    ops::FusedFeedForwardKernel<phi::GPUContext, paddle::platform::float16>);
644 645
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward_grad,
L
Leo Chen 已提交
646 647 648
    ops::FusedFeedForwardGradKernel<phi::GPUContext, float>,
    ops::FusedFeedForwardGradKernel<phi::GPUContext, double>,
    ops::FusedFeedForwardGradKernel<phi::GPUContext,
649
                                    paddle::platform::float16>);