fused_feedforward_op.cu 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"
19
#include "paddle/fluid/operators/matmul_v2_op.h"
20
#include "paddle/phi/api/include/tensor.h"
21
#include "paddle/phi/kernels/funcs/blas/blas.h"
22 23
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
24

25
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
26
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
27 28 29 30
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

31 32 33 34 35
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

36 37 38 39 40 41
template <typename T>
static void AllReduce(framework::Tensor& tensor,  // NOLINT
                      const int ring_id,
                      const platform::CUDADeviceContext& ctx) {
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
  auto map = paddle::distributed::ProcessGroupMapFromGid::getInstance();

  if (map->has(ring_id)) {
    paddle::distributed::ProcessGroup* pg = map->get(ring_id);
    std::vector<phi::DenseTensor> in_tensor;
    std::vector<phi::DenseTensor> out_tensor;
    in_tensor.push_back(tensor);
    out_tensor.push_back(tensor);
    paddle::distributed::AllreduceOptions opts;
    opts.reduce_op = distributed::ReduceOp::SUM;
    auto task = pg->AllReduce(in_tensor, out_tensor, opts);
    task->Wait();
  } else {
    auto dtype = platform::ToNCCLDataType(
        framework::TransToProtoVarType(tensor.dtype()));
    int64_t numel = tensor.numel();
    const void* sendbuff = tensor.data<T>();
    auto place = ctx.GetPlace();
    void* recvbuff = tensor.mutable_data<T>(place);
    auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
    auto stream = ctx.stream();
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
        sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
  }
66 67 68 69 70 71 72
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

73 74 75 76
template <typename DeviceContext, typename T>
class FusedFeedForwardKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const platform::CUDADeviceContext& ctx,
77 78
              const framework::Tensor& a,
              const framework::Tensor& b,
79
              framework::Tensor* c) const {
80
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
81 82
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
83 84
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, false);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, false);
85 86 87 88
    T alpha = static_cast<T>(1.0);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, alpha, c, T(0));
  }

89 90
  void FFN(const platform::CUDADeviceContext& ctx,
           const framework::Tensor& x,
91
           const framework::Tensor& linear1_weight,
92 93 94 95 96 97
           const framework::Tensor* linear1_bias,
           const framework::Tensor& linear2_weight,
           const framework::Tensor* linear2_bias,
           const framework::Tensor* ln1_scale,
           const framework::Tensor* ln1_bias,
           const framework::Tensor* ln2_scale,
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
           const framework::Tensor* ln2_bias,
           framework::Tensor* out,
           framework::Tensor* dropout1_mask,
           framework::Tensor* dropout2_mask,
           framework::Tensor* ln1_mean,
           framework::Tensor* ln1_variance,
           framework::Tensor* ln2_mean,
           framework::Tensor* ln2_variance,
           framework::Tensor* linear1_out,
           framework::Tensor* ln1_out,
           framework::Tensor* dropout1_out,
           framework::Tensor* dropout2_out,
           const int bsz_seq,
           const int d_model,
           const int dim_feedforward,
           const std::string& act_method,
           const bool pre_layer_norm,
           const float epsilon1,
           const float epsilon2,
           const bool add_residual,
           const int ring_id,
           const DropoutParam& dropout_param1,
120
           const DropoutParam& dropout_param2) const {
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const framework::Tensor* in = &x;

    const U* ln1_scale_ptr =
        ln1_scale == nullptr ? nullptr : ln1_scale->data<U>();
    const U* ln1_bias_ptr = ln1_bias == nullptr ? nullptr : ln1_bias->data<U>();
    const U* ln2_scale_ptr =
        ln2_scale == nullptr ? nullptr : ln2_scale->data<U>();
    const U* ln2_bias_ptr = ln2_bias == nullptr ? nullptr : ln2_bias->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    const T* linear2_bias_ptr =
        linear2_bias == nullptr ? nullptr : linear2_bias->data<T>();

    if (pre_layer_norm) {
144 145 146 147 148 149 150
      pre_layernorm_helper.LayerNorm(ctx,
                                     x.data<T>(),
                                     ln1_scale_ptr,
                                     ln1_bias_ptr,
                                     ln1_out->data<T>(),
                                     ln1_mean->data<U>(),
                                     ln1_variance->data<U>());
151 152 153
      in = ln1_out;
    }
    MatMul(ctx, *in, linear1_weight, linear1_out);
154 155 156 157 158 159
    fused_act_dropout_helper.DropoutActBias(ctx,
                                            linear1_out->data<T>(),
                                            linear1_bias_ptr,
                                            act_method,
                                            dropout1_out->data<T>(),
                                            dropout1_mask->data<uint8_t>());
160 161 162
    framework::Tensor linear2_out;
    linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    MatMul(ctx, *dropout1_out, linear2_weight, &linear2_out);
163 164 165 166

    // tensor model parallel
    AllReduce<T>(linear2_out, ring_id, ctx);

167
    const T* residual_ptr = add_residual ? x.data<T>() : nullptr;
168
    if (!pre_layer_norm) {
169
      // TODO(Xreki): support post layer_norm case when add_residual is false.
170 171
      PADDLE_ENFORCE_EQ(add_residual,
                        true,
172 173 174 175
                        platform::errors::InvalidArgument(
                            "Attribute add_residual is expected to be true "
                            "when pre_layer_norm is false."));

176
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
177 178 179 180 181 182 183 184 185 186
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          ln2_scale_ptr,
          ln2_bias_ptr,
          dropout2_out->data<T>(),
          dropout2_mask->data<uint8_t>(),
          out->data<T>(),
          ln2_mean->data<U>(),
187 188 189
          ln2_variance->data<U>());
    } else {
      fused_dropout_layernorm_helper.ResidualDropoutBias(
190 191 192 193 194 195
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          out->data<T>(),
          dropout2_mask->data<uint8_t>());
196 197 198 199 200 201 202 203 204
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* linear1_weight = context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto* linear2_weight = context.Input<framework::Tensor>("Linear2Weight");
    auto* linear2_bias = context.Input<framework::Tensor>("Linear2Bias");
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");

    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;

    auto* ln1_mean =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln2_mean = !pre_layer_norm
                         ? context.Output<framework::Tensor>("Ln2Mean")
                         : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln2Variance")
                             : nullptr;
228 229 230 231
    auto* out = context.Output<framework::Tensor>("Out");
    auto* dropout1_mask = context.Output<framework::Tensor>("Dropout1Mask");
    auto* dropout2_mask = context.Output<framework::Tensor>("Dropout2Mask");
    auto* linear1_out = context.Output<framework::Tensor>("Linear1Out");
232 233
    auto* ln1_out =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Out") : nullptr;
234 235 236 237 238 239 240
    auto* dropout1_out = context.Output<framework::Tensor>("Dropout1Out");
    auto* dropout2_out = context.Output<framework::Tensor>("Dropout2Out");

    const std::string act_method = context.Attr<std::string>("act_method");

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
241
    const int ring_id = context.Attr<int>("ring_id");
242
    const bool add_residual = context.Attr<bool>("add_residual");
243 244 245 246 247 248 249 250 251

    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    using U = LayerNormParamType<T>;
    auto place = context.GetPlace();
    out->mutable_data<T>(place);
    dropout1_mask->mutable_data<uint8_t>(place);
    dropout2_mask->mutable_data<uint8_t>(place);
252 253 254 255 256 257 258 259 260
    if (pre_layer_norm) {
      ln1_mean->mutable_data<U>(place);
      ln1_variance->mutable_data<U>(place);
      ln1_out->mutable_data<T>(place);
    } else {
      ln2_mean->mutable_data<U>(place);
      ln2_variance->mutable_data<U>(place);
    }

261 262 263 264 265
    linear1_out->mutable_data<T>(place);
    dropout1_out->mutable_data<T>(place);
    dropout2_out->mutable_data<T>(place);

    auto x_dim = x->dims();
266
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
267
        RowMatrixFromVector(x_dim), 0, false);
268 269 270 271 272 273

    auto dim = linear1_weight->dims();
    int d_model = dim[0];
    int dim_feedforward = dim[dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    FFN(context.cuda_device_context(),
        *x,
        *linear1_weight,
        linear1_bias,
        *linear2_weight,
        linear2_bias,
        ln1_scale,
        ln1_bias,
        ln2_scale,
        ln2_bias,
        out,
        dropout1_mask,
        dropout2_mask,
        ln1_mean,
        ln1_variance,
        ln2_mean,
        ln2_variance,
        linear1_out,
        ln1_out,
        dropout1_out,
        dropout2_out,
        bsz_seq,
        d_model,
        dim_feedforward,
        act_method,
        pre_layer_norm,
        epsilon1,
        epsilon2,
        add_residual,
        ring_id,
        dropout_param1,
        dropout_param2);
306 307 308
  }
};

309 310 311 312
template <typename DeviceContext, typename T>
class FusedFeedForwardGradKernel : public framework::OpKernel<T> {
 public:
  void MatMulGrad(const platform::CUDADeviceContext& ctx,
313 314 315 316
                  const framework::Tensor& d_out,
                  const framework::Tensor& a,
                  const framework::Tensor& b,
                  framework::Tensor* d_a,
317
                  framework::Tensor* d_b) const {
318
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
319 320
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
321 322
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, true);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, true);
323
    auto mat_dim_dout =
324
        phi::funcs::CreateMatrixDescriptor(d_out.dims(), 0, false);
325 326 327 328 329
    T alpha = static_cast<T>(1.0);
    blas.MatMul(d_out, mat_dim_dout, b, mat_dim_b, alpha, d_a, T(0));
    blas.MatMul(a, mat_dim_a, d_out, mat_dim_dout, alpha, d_b, T(0));
  }

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  void FFNGrad(const platform::CUDADeviceContext& ctx,
               const framework::Tensor& d_out,
               const framework::Tensor& x,
               const framework::Tensor& dropout1_mask,
               const framework::Tensor& dropout2_mask,
               const framework::Tensor& linear1_out,
               const framework::Tensor* ln1_out,
               const framework::Tensor& dropout1_out,
               const framework::Tensor& dropout2_out,
               const framework::Tensor& linear1_weight,
               const framework::Tensor* linear1_bias,
               const framework::Tensor& linear2_weight,
               const framework::Tensor* ln1_gamma,
               const framework::Tensor* ln1_beta,
               const framework::Tensor* ln1_mean,
               const framework::Tensor* ln1_variance,
               const framework::Tensor* ln2_gamma,
               const framework::Tensor* ln2_beta,
               const framework::Tensor* ln2_mean,
               const framework::Tensor* ln2_variance,
               framework::Tensor* d_x,
               framework::Tensor* d_linear1_weight,
               framework::Tensor* d_linear1_bias,
               framework::Tensor* d_linear2_weight,
               framework::Tensor* d_linear2_bias,
               framework::Tensor* d_ln1_gamma,
               framework::Tensor* d_ln1_beta,
               framework::Tensor* d_ln2_gamma,
               framework::Tensor* d_ln2_beta,
               const int bsz_seq,
               const int d_model,
               const int dim_feedforward,
               const DropoutParam& dropout_param1,
               const DropoutParam& dropout_param2,
               const std::string& act_method,
               const bool pre_layer_norm,
               const float epsilon1,
               const float epsilon2,
               const bool add_residual,
               const int ring_id) const {
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const U* ln1_gamma_ptr =
        ln1_gamma == nullptr ? nullptr : ln1_gamma->data<U>();
    const U* ln1_beta_ptr = ln1_beta == nullptr ? nullptr : ln1_beta->data<U>();
    const U* ln2_gamma_ptr =
        ln2_gamma == nullptr ? nullptr : ln2_gamma->data<U>();
    const U* ln2_beta_ptr = ln2_beta == nullptr ? nullptr : ln2_beta->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    T* d_linear1_bias_ptr =
        d_linear1_bias == nullptr ? nullptr : d_linear1_bias->data<T>();
    T* d_linear2_bias_ptr =
        d_linear2_bias == nullptr ? nullptr : d_linear2_bias->data<T>();
    U* d_ln1_gamma_ptr =
        d_ln1_gamma == nullptr ? nullptr : d_ln1_gamma->data<U>();
    U* d_ln1_beta_ptr = d_ln1_beta == nullptr ? nullptr : d_ln1_beta->data<U>();
    U* d_ln2_gamma_ptr =
        d_ln2_gamma == nullptr ? nullptr : d_ln2_gamma->data<U>();
    U* d_ln2_beta_ptr = d_ln2_beta == nullptr ? nullptr : d_ln2_beta->data<U>();

    framework::Tensor d_linear2_out, d_dropout2_out, d_residual;
    d_linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    d_dropout2_out.mutable_data<T>({bsz_seq, d_model}, place);

402 403 404 405
    T* d_residual_ptr = nullptr;
    if (add_residual) {
      d_residual_ptr = d_residual.mutable_data<T>(d_x->dims(), place);
    }
406 407
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
408 409 410 411 412 413
          ctx,
          d_out.data<T>(),
          dropout2_mask.data<uint8_t>(),
          d_linear2_out.data<T>(),
          d_residual_ptr,
          d_linear2_bias_ptr);
414 415
    } else {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
416 417 418 419 420 421 422 423 424 425 426 427
          ctx,
          d_out.data<T>(),
          dropout2_out.data<T>(),
          dropout2_mask.data<uint8_t>(),
          ln2_gamma_ptr,
          ln2_mean->data<U>(),
          ln2_variance->data<U>(),
          d_dropout2_out.data<T>(),
          d_ln2_gamma_ptr,
          d_ln2_beta_ptr,
          d_linear2_out.data<T>(),
          d_linear2_bias_ptr,
428
          d_residual_ptr);
429 430 431 432
    }

    framework::Tensor d_dropout1_out;
    d_dropout1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
433 434 435 436 437 438
    MatMulGrad(ctx,
               d_linear2_out,
               dropout1_out,
               linear2_weight,
               &d_dropout1_out,
               d_linear2_weight);
439 440 441

    framework::Tensor d_linear1_out;
    d_linear1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
442 443 444 445 446 447 448 449
    fused_act_dropout_helper.DropoutActBiasGrad(ctx,
                                                d_dropout1_out.data<T>(),
                                                linear1_out.data<T>(),
                                                linear1_bias_ptr,
                                                dropout1_mask.data<uint8_t>(),
                                                d_linear1_out.data<T>(),
                                                d_linear1_bias_ptr,
                                                act_method);
450 451 452 453

    if (pre_layer_norm) {
      framework::Tensor d_ln1_out;
      d_ln1_out.mutable_data<T>({bsz_seq, d_model}, place);
454 455 456 457 458
      MatMulGrad(ctx,
                 d_linear1_out,
                 *ln1_out,
                 linear1_weight,
                 &d_ln1_out,
459
                 d_linear1_weight);
460 461
      // tensor model parallel
      AllReduce<T>(d_ln1_out, ring_id, ctx);
462 463 464 465 466 467 468 469 470
      pre_layernorm_helper.LayerNormGrad(ctx,
                                         d_ln1_out.data<T>(),
                                         x.data<T>(),
                                         ln1_gamma_ptr,
                                         ln1_mean->data<U>(),
                                         ln1_variance->data<U>(),
                                         d_x->data<T>(),
                                         d_ln1_gamma_ptr,
                                         d_ln1_beta_ptr);
471 472
    } else {
      MatMulGrad(ctx, d_linear1_out, x, linear1_weight, d_x, d_linear1_weight);
473 474
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx);
475
    }
476 477 478 479 480

    if (add_residual) {
      // gradient accumulation
      std::vector<const Tensor*> ins = {&d_residual, d_x};
      std::vector<Tensor*> outs = {d_x};
481 482
      phi::funcs::ElementwiseKernel<T>(
          ctx, ins, &outs, phi::funcs::AddFunctor<T>());
483
    }
484 485 486 487 488 489 490
  }

  void Compute(const framework::ExecutionContext& context) const override {
    using U = LayerNormParamType<T>;
    auto d_out =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto x = *context.Input<framework::Tensor>("X");
491
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
492 493 494
    auto dropout1_mask = *context.Input<framework::Tensor>("Dropout1Mask");
    auto dropout2_mask = *context.Input<framework::Tensor>("Dropout2Mask");
    auto linear1_out = *context.Input<framework::Tensor>("Linear1Out");
495 496
    auto* ln1_out =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Out") : nullptr;
497 498 499 500 501
    auto dropout1_out = *context.Input<framework::Tensor>("Dropout1Out");
    auto dropout2_out = *context.Input<framework::Tensor>("Dropout2Out");
    auto linear1_weight = *context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto linear2_weight = *context.Input<framework::Tensor>("Linear2Weight");
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    auto* ln1_mean =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_mean =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Mean") : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln2Variance")
                             : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;
521 522

    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
523 524 525 526 527 528 529 530 531 532 533 534 535
    auto* d_ln1_scale = pre_layer_norm ? context.Output<framework::Tensor>(
                                             framework::GradVarName("Ln1Scale"))
                                       : nullptr;
    auto* d_ln1_bias = pre_layer_norm ? context.Output<framework::Tensor>(
                                            framework::GradVarName("Ln1Bias"))
                                      : nullptr;
    auto* d_ln2_scale = pre_layer_norm
                            ? nullptr
                            : context.Output<framework::Tensor>(
                                  framework::GradVarName("Ln2Scale"));
    auto* d_ln2_bias = pre_layer_norm ? nullptr
                                      : context.Output<framework::Tensor>(
                                            framework::GradVarName("Ln2Bias"));
536 537 538 539 540 541 542 543 544 545 546
    auto* d_linear1_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Weight"));
    auto* d_linear1_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Bias"));
    auto* d_linear2_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Weight"));
    auto* d_linear2_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Bias"));

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
547
    const bool add_residual = context.Attr<bool>("add_residual");
548
    const int ring_id = context.Attr<int>("ring_id");
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    const std::string act_method = context.Attr<std::string>("act_method");
    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    auto place = context.GetPlace();
    d_x->mutable_data<T>(place);
    if (d_ln1_scale) {
      d_ln1_scale->mutable_data<U>(place);
    }
    if (d_ln1_bias) {
      d_ln1_bias->mutable_data<U>(place);
    }
    if (d_ln2_scale) {
      d_ln2_scale->mutable_data<U>(place);
    }
    if (d_ln2_bias) {
      d_ln2_bias->mutable_data<U>(place);
    }
    if (d_linear1_bias) {
      d_linear1_bias->mutable_data<T>(place);
    }
    if (d_linear2_bias) {
      d_linear2_bias->mutable_data<T>(place);
    }
    d_linear1_weight->mutable_data<T>(place);
    d_linear2_weight->mutable_data<T>(place);

    auto x_dim = x.dims();
577
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
578
        RowMatrixFromVector(x_dim), 0, false);
579 580 581 582 583 584

    auto linear1_weight_dim = linear1_weight.dims();
    int d_model = linear1_weight_dim[0];
    int dim_feedforward = linear1_weight_dim[linear1_weight_dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    FFNGrad(context.cuda_device_context(),
            d_out,
            x,
            dropout1_mask,
            dropout2_mask,
            linear1_out,
            ln1_out,
            dropout1_out,
            dropout2_out,
            linear1_weight,
            linear1_bias,
            linear2_weight,
            ln1_scale,
            ln1_bias,
            ln1_mean,
            ln1_variance,
            ln2_scale,
            ln2_bias,
            ln2_mean,
            ln2_variance,
            d_x,
            d_linear1_weight,
            d_linear1_bias,
            d_linear2_weight,
            d_linear2_bias,
            d_ln1_scale,
            d_ln1_bias,
            d_ln2_scale,
            d_ln2_bias,
            bsz_seq,
            d_model,
            dim_feedforward,
            dropout_param1,
            dropout_param2,
            act_method,
            pre_layer_norm,
            epsilon1,
            epsilon2,
            add_residual,
624
            ring_id);
625 626
  }
};
627 628 629 630 631 632 633 634 635 636
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, double>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext,
                                paddle::platform::float16>);
637 638 639 640 641 642 643
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward_grad,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    double>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    paddle::platform::float16>);