fused_feedforward_op.cu 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/matmul_v2_op.h"
18
#include "paddle/pten/kernels/funcs/blas/blas.h"
19

20
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class FusedFeedForwardKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const platform::CUDADeviceContext& ctx,
              const framework::Tensor& a, const framework::Tensor& b,
              framework::Tensor* c) const {
35
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(ctx);
36 37
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
38 39
    auto mat_dim_a = pten::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, false);
    auto mat_dim_b = pten::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, false);
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    T alpha = static_cast<T>(1.0);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, alpha, c, T(0));
  }

  void FFN(const framework::Tensor& x, const framework::Tensor& linear1_weight,
           const framework::Tensor* linear1_bias,
           const framework::Tensor& linear2_weight,
           const framework::Tensor* linear2_bias,
           const framework::Tensor* ln1_scale,
           const framework::Tensor* ln1_bias,
           const framework::Tensor* ln2_scale,
           const framework::Tensor* ln2_bias, framework::Tensor* out,
           framework::Tensor* dropout1_mask, framework::Tensor* dropout2_mask,
           framework::Tensor* ln1_mean, framework::Tensor* ln1_variance,
           framework::Tensor* ln2_mean, framework::Tensor* ln2_variance,
           framework::Tensor* linear1_out, framework::Tensor* ln1_out,
           framework::Tensor* dropout1_out, framework::Tensor* dropout2_out,
           const int bsz_seq, const int d_model, const int dim_feedforward,
           const std::string& act_method, const bool pre_layer_norm,
           const float epsilon1, const float epsilon2,
           const DropoutParam& dropout_param1,
           const DropoutParam& dropout_param2,
           const platform::CUDADeviceContext& ctx) const {
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const framework::Tensor* in = &x;

    const U* ln1_scale_ptr =
        ln1_scale == nullptr ? nullptr : ln1_scale->data<U>();
    const U* ln1_bias_ptr = ln1_bias == nullptr ? nullptr : ln1_bias->data<U>();
    const U* ln2_scale_ptr =
        ln2_scale == nullptr ? nullptr : ln2_scale->data<U>();
    const U* ln2_bias_ptr = ln2_bias == nullptr ? nullptr : ln2_bias->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    const T* linear2_bias_ptr =
        linear2_bias == nullptr ? nullptr : linear2_bias->data<T>();

    if (pre_layer_norm) {
      pre_layernorm_helper.LayerNorm(
          ctx, x.data<T>(), ln1_scale_ptr, ln1_bias_ptr, ln1_out->data<T>(),
          ln1_mean->data<U>(), ln1_variance->data<U>());
      in = ln1_out;
    }
    MatMul(ctx, *in, linear1_weight, linear1_out);
    fused_act_dropout_helper.DropoutActBias(
        ctx, linear1_out->data<T>(), linear1_bias_ptr, act_method,
        dropout1_out->data<T>(), dropout1_mask->data<uint8_t>());
    framework::Tensor linear2_out;
    linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    MatMul(ctx, *dropout1_out, linear2_weight, &linear2_out);
    if (!pre_layer_norm) {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
          ctx, linear2_out.data<T>(), x.data<T>(), linear2_bias_ptr,
          ln2_scale_ptr, ln2_bias_ptr, dropout2_out->data<T>(),
          dropout2_mask->data<uint8_t>(), out->data<T>(), ln2_mean->data<U>(),
          ln2_variance->data<U>());
    } else {
      fused_dropout_layernorm_helper.ResidualDropoutBias(
          ctx, linear2_out.data<T>(), x.data<T>(), linear2_bias_ptr,
          out->data<T>(), dropout2_mask->data<uint8_t>());
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* linear1_weight = context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto* linear2_weight = context.Input<framework::Tensor>("Linear2Weight");
    auto* linear2_bias = context.Input<framework::Tensor>("Linear2Bias");
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");

    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;

    auto* ln1_mean =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln2_mean = !pre_layer_norm
                         ? context.Output<framework::Tensor>("Ln2Mean")
                         : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln2Variance")
                             : nullptr;
140 141 142 143
    auto* out = context.Output<framework::Tensor>("Out");
    auto* dropout1_mask = context.Output<framework::Tensor>("Dropout1Mask");
    auto* dropout2_mask = context.Output<framework::Tensor>("Dropout2Mask");
    auto* linear1_out = context.Output<framework::Tensor>("Linear1Out");
144 145
    auto* ln1_out =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Out") : nullptr;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    auto* dropout1_out = context.Output<framework::Tensor>("Dropout1Out");
    auto* dropout2_out = context.Output<framework::Tensor>("Dropout2Out");

    const std::string act_method = context.Attr<std::string>("act_method");

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");

    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    using U = LayerNormParamType<T>;
    auto place = context.GetPlace();
    out->mutable_data<T>(place);
    dropout1_mask->mutable_data<uint8_t>(place);
    dropout2_mask->mutable_data<uint8_t>(place);
162 163 164 165 166 167 168 169 170
    if (pre_layer_norm) {
      ln1_mean->mutable_data<U>(place);
      ln1_variance->mutable_data<U>(place);
      ln1_out->mutable_data<T>(place);
    } else {
      ln2_mean->mutable_data<U>(place);
      ln2_variance->mutable_data<U>(place);
    }

171 172 173 174 175
    linear1_out->mutable_data<T>(place);
    dropout1_out->mutable_data<T>(place);
    dropout2_out->mutable_data<T>(place);

    auto x_dim = x->dims();
176 177
    auto mat_dim_x = pten::funcs::CreateMatrixDescriptor(
        RowMatrixFromVector(x_dim), 0, false);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    auto dim = linear1_weight->dims();
    int d_model = dim[0];
    int dim_feedforward = dim[dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

    FFN(*x, *linear1_weight, linear1_bias, *linear2_weight, linear2_bias,
        ln1_scale, ln1_bias, ln2_scale, ln2_bias, out, dropout1_mask,
        dropout2_mask, ln1_mean, ln1_variance, ln2_mean, ln2_variance,
        linear1_out, ln1_out, dropout1_out, dropout2_out, bsz_seq, d_model,
        dim_feedforward, act_method, pre_layer_norm, epsilon1, epsilon2,
        dropout_param1, dropout_param2, context.cuda_device_context());
  }
};

193 194 195 196 197 198 199
template <typename DeviceContext, typename T>
class FusedFeedForwardGradKernel : public framework::OpKernel<T> {
 public:
  void MatMulGrad(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& d_out, const framework::Tensor& a,
                  const framework::Tensor& b, framework::Tensor* d_a,
                  framework::Tensor* d_b) const {
200
    auto blas = pten::funcs::GetBlas<DeviceContext, T>(ctx);
201 202
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
203 204 205 206
    auto mat_dim_a = pten::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, true);
    auto mat_dim_b = pten::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, true);
    auto mat_dim_dout =
        pten::funcs::CreateMatrixDescriptor(d_out.dims(), 0, false);
207 208 209 210 211 212 213 214 215
    T alpha = static_cast<T>(1.0);
    blas.MatMul(d_out, mat_dim_dout, b, mat_dim_b, alpha, d_a, T(0));
    blas.MatMul(a, mat_dim_a, d_out, mat_dim_dout, alpha, d_b, T(0));
  }

  void FFNGrad(
      const framework::Tensor& d_out, const framework::Tensor& x,
      const framework::Tensor& dropout1_mask,
      const framework::Tensor& dropout2_mask,
216
      const framework::Tensor& linear1_out, const framework::Tensor* ln1_out,
217 218 219 220 221 222
      const framework::Tensor& dropout1_out,
      const framework::Tensor& dropout2_out,
      const framework::Tensor& linear1_weight,
      const framework::Tensor* linear1_bias,
      const framework::Tensor& linear2_weight,
      const framework::Tensor* ln1_gamma, const framework::Tensor* ln1_beta,
223
      const framework::Tensor* ln1_mean, const framework::Tensor* ln1_variance,
224
      const framework::Tensor* ln2_gamma, const framework::Tensor* ln2_beta,
225
      const framework::Tensor* ln2_mean, const framework::Tensor* ln2_variance,
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      framework::Tensor* d_x, framework::Tensor* d_linear1_weight,
      framework::Tensor* d_linear1_bias, framework::Tensor* d_linear2_weight,
      framework::Tensor* d_linear2_bias, framework::Tensor* d_ln1_gamma,
      framework::Tensor* d_ln1_beta, framework::Tensor* d_ln2_gamma,
      framework::Tensor* d_ln2_beta, const int bsz_seq, const int d_model,
      const int dim_feedforward, const DropoutParam& dropout_param1,
      const DropoutParam& dropout_param2, const std::string& act_method,
      const bool pre_layer_norm, const float epsilon1, const float epsilon2,
      const platform::CUDADeviceContext& ctx) const {
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const U* ln1_gamma_ptr =
        ln1_gamma == nullptr ? nullptr : ln1_gamma->data<U>();
    const U* ln1_beta_ptr = ln1_beta == nullptr ? nullptr : ln1_beta->data<U>();
    const U* ln2_gamma_ptr =
        ln2_gamma == nullptr ? nullptr : ln2_gamma->data<U>();
    const U* ln2_beta_ptr = ln2_beta == nullptr ? nullptr : ln2_beta->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    T* d_linear1_bias_ptr =
        d_linear1_bias == nullptr ? nullptr : d_linear1_bias->data<T>();
    T* d_linear2_bias_ptr =
        d_linear2_bias == nullptr ? nullptr : d_linear2_bias->data<T>();
    U* d_ln1_gamma_ptr =
        d_ln1_gamma == nullptr ? nullptr : d_ln1_gamma->data<U>();
    U* d_ln1_beta_ptr = d_ln1_beta == nullptr ? nullptr : d_ln1_beta->data<U>();
    U* d_ln2_gamma_ptr =
        d_ln2_gamma == nullptr ? nullptr : d_ln2_gamma->data<U>();
    U* d_ln2_beta_ptr = d_ln2_beta == nullptr ? nullptr : d_ln2_beta->data<U>();

    framework::Tensor d_linear2_out, d_dropout2_out, d_residual;
    d_linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    d_dropout2_out.mutable_data<T>({bsz_seq, d_model}, place);
266
    d_residual.mutable_data<T>(d_x->dims(), place);
267 268 269 270 271 272 273 274

    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
          ctx, d_out.data<T>(), dropout2_mask.data<uint8_t>(),
          d_linear2_out.data<T>(), d_residual.data<T>(), d_linear2_bias_ptr);
    } else {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
          ctx, d_out.data<T>(), dropout2_out.data<T>(),
275 276
          dropout2_mask.data<uint8_t>(), ln2_gamma_ptr, ln2_mean->data<U>(),
          ln2_variance->data<U>(), d_dropout2_out.data<T>(), d_ln2_gamma_ptr,
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
          d_ln2_beta_ptr, d_linear2_out.data<T>(), d_linear2_bias_ptr,
          d_residual.data<T>());
    }

    framework::Tensor d_dropout1_out;
    d_dropout1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
    MatMulGrad(ctx, d_linear2_out, dropout1_out, linear2_weight,
               &d_dropout1_out, d_linear2_weight);

    framework::Tensor d_linear1_out;
    d_linear1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
    fused_act_dropout_helper.DropoutActBiasGrad(
        ctx, d_dropout1_out.data<T>(), linear1_out.data<T>(), linear1_bias_ptr,
        dropout1_mask.data<uint8_t>(), d_linear1_out.data<T>(),
        d_linear1_bias_ptr, act_method);

    if (pre_layer_norm) {
      framework::Tensor d_ln1_out;
      d_ln1_out.mutable_data<T>({bsz_seq, d_model}, place);
296
      MatMulGrad(ctx, d_linear1_out, *ln1_out, linear1_weight, &d_ln1_out,
297 298
                 d_linear1_weight);

299 300 301 302
      pre_layernorm_helper.LayerNormGrad(
          ctx, d_ln1_out.data<T>(), x.data<T>(), ln1_gamma_ptr,
          ln1_mean->data<U>(), ln1_variance->data<U>(), d_x->data<T>(),
          d_ln1_gamma_ptr, d_ln1_beta_ptr);
303 304 305
    } else {
      MatMulGrad(ctx, d_linear1_out, x, linear1_weight, d_x, d_linear1_weight);
    }
306 307 308 309 310 311
    std::vector<const Tensor*> ins(2);
    std::vector<Tensor*> outs(1);
    ins[0] = &d_residual;
    ins[1] = d_x;
    outs[0] = d_x;
    int elewise_add_axis = -1;
312 313
    paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T,
                                                   T>(
314
        ctx, ins, &outs, elewise_add_axis, AddFunctor<T>());
315 316 317 318 319 320 321
  }

  void Compute(const framework::ExecutionContext& context) const override {
    using U = LayerNormParamType<T>;
    auto d_out =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto x = *context.Input<framework::Tensor>("X");
322
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
323 324 325
    auto dropout1_mask = *context.Input<framework::Tensor>("Dropout1Mask");
    auto dropout2_mask = *context.Input<framework::Tensor>("Dropout2Mask");
    auto linear1_out = *context.Input<framework::Tensor>("Linear1Out");
326 327
    auto* ln1_out =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Out") : nullptr;
328 329 330 331 332
    auto dropout1_out = *context.Input<framework::Tensor>("Dropout1Out");
    auto dropout2_out = *context.Input<framework::Tensor>("Dropout2Out");
    auto linear1_weight = *context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto linear2_weight = *context.Input<framework::Tensor>("Linear2Weight");
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    auto* ln1_mean =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_mean =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Mean") : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln2Variance")
                             : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;
352 353

    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
354 355 356 357 358 359 360 361
    auto* d_ln1_scale = pre_layer_norm
                            ? context.Output<framework::Tensor>(
                                  framework::GradVarName("Ln1Scale"))
                            : nullptr;
    auto* d_ln1_bias = pre_layer_norm
                           ? context.Output<framework::Tensor>(
                                 framework::GradVarName("Ln1Bias"))
                           : nullptr;
362
    auto* d_ln2_scale =
363 364
        pre_layer_norm ? nullptr : context.Output<framework::Tensor>(
                                       framework::GradVarName("Ln2Scale"));
365
    auto* d_ln2_bias =
366 367
        pre_layer_norm ? nullptr : context.Output<framework::Tensor>(
                                       framework::GradVarName("Ln2Bias"));
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    auto* d_linear1_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Weight"));
    auto* d_linear1_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Bias"));
    auto* d_linear2_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Weight"));
    auto* d_linear2_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Bias"));

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
    const std::string act_method = context.Attr<std::string>("act_method");
    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    auto place = context.GetPlace();
    d_x->mutable_data<T>(place);
    if (d_ln1_scale) {
      d_ln1_scale->mutable_data<U>(place);
    }
    if (d_ln1_bias) {
      d_ln1_bias->mutable_data<U>(place);
    }
    if (d_ln2_scale) {
      d_ln2_scale->mutable_data<U>(place);
    }
    if (d_ln2_bias) {
      d_ln2_bias->mutable_data<U>(place);
    }
    if (d_linear1_bias) {
      d_linear1_bias->mutable_data<T>(place);
    }
    if (d_linear2_bias) {
      d_linear2_bias->mutable_data<T>(place);
    }
    d_linear1_weight->mutable_data<T>(place);
    d_linear2_weight->mutable_data<T>(place);

    auto x_dim = x.dims();
407 408
    auto mat_dim_x = pten::funcs::CreateMatrixDescriptor(
        RowMatrixFromVector(x_dim), 0, false);
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

    auto linear1_weight_dim = linear1_weight.dims();
    int d_model = linear1_weight_dim[0];
    int dim_feedforward = linear1_weight_dim[linear1_weight_dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

    FFNGrad(d_out, x, dropout1_mask, dropout2_mask, linear1_out, ln1_out,
            dropout1_out, dropout2_out, linear1_weight, linear1_bias,
            linear2_weight, ln1_scale, ln1_bias, ln1_mean, ln1_variance,
            ln2_scale, ln2_bias, ln2_mean, ln2_variance, d_x, d_linear1_weight,
            d_linear1_bias, d_linear2_weight, d_linear2_bias, d_ln1_scale,
            d_ln1_bias, d_ln2_scale, d_ln2_bias, bsz_seq, d_model,
            dim_feedforward, dropout_param1, dropout_param2, act_method,
            pre_layer_norm, epsilon1, epsilon2, context.cuda_device_context());
  }
};
425 426 427 428 429 430 431 432 433 434
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, double>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext,
                                paddle::platform::float16>);
435 436 437 438 439 440 441
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward_grad,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    double>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    paddle::platform::float16>);