fused_feedforward_op.cu 25.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"
19 20
#include "paddle/fluid/operators/matmul_v2_op.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
21 22
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
23

24 25 26 27 28
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

29 30 31 32 33
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
template <typename T>
static void AllReduce(framework::Tensor& tensor,  // NOLINT
                      const int ring_id,
                      const platform::CUDADeviceContext& ctx) {
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  auto dtype =
      platform::ToNCCLDataType(framework::TransToProtoVarType(tensor.dtype()));
  int64_t numel = tensor.numel();
  const void* sendbuff = tensor.data<T>();
  auto place = ctx.GetPlace();
  void* recvbuff = tensor.mutable_data<T>(place);
  auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
  auto stream = ctx.stream();
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
      sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

57 58 59 60
template <typename DeviceContext, typename T>
class FusedFeedForwardKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const platform::CUDADeviceContext& ctx,
61 62
              const framework::Tensor& a,
              const framework::Tensor& b,
63
              framework::Tensor* c) const {
64
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
65 66
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
67 68
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, false);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, false);
69 70 71 72
    T alpha = static_cast<T>(1.0);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, alpha, c, T(0));
  }

73 74
  void FFN(const platform::CUDADeviceContext& ctx,
           const framework::Tensor& x,
75
           const framework::Tensor& linear1_weight,
76 77 78 79 80 81
           const framework::Tensor* linear1_bias,
           const framework::Tensor& linear2_weight,
           const framework::Tensor* linear2_bias,
           const framework::Tensor* ln1_scale,
           const framework::Tensor* ln1_bias,
           const framework::Tensor* ln2_scale,
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
           const framework::Tensor* ln2_bias,
           framework::Tensor* out,
           framework::Tensor* dropout1_mask,
           framework::Tensor* dropout2_mask,
           framework::Tensor* ln1_mean,
           framework::Tensor* ln1_variance,
           framework::Tensor* ln2_mean,
           framework::Tensor* ln2_variance,
           framework::Tensor* linear1_out,
           framework::Tensor* ln1_out,
           framework::Tensor* dropout1_out,
           framework::Tensor* dropout2_out,
           const int bsz_seq,
           const int d_model,
           const int dim_feedforward,
           const std::string& act_method,
           const bool pre_layer_norm,
           const float epsilon1,
           const float epsilon2,
           const bool add_residual,
           const int ring_id,
           const DropoutParam& dropout_param1,
104
           const DropoutParam& dropout_param2) const {
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const framework::Tensor* in = &x;

    const U* ln1_scale_ptr =
        ln1_scale == nullptr ? nullptr : ln1_scale->data<U>();
    const U* ln1_bias_ptr = ln1_bias == nullptr ? nullptr : ln1_bias->data<U>();
    const U* ln2_scale_ptr =
        ln2_scale == nullptr ? nullptr : ln2_scale->data<U>();
    const U* ln2_bias_ptr = ln2_bias == nullptr ? nullptr : ln2_bias->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    const T* linear2_bias_ptr =
        linear2_bias == nullptr ? nullptr : linear2_bias->data<T>();

    if (pre_layer_norm) {
128 129 130 131 132 133 134
      pre_layernorm_helper.LayerNorm(ctx,
                                     x.data<T>(),
                                     ln1_scale_ptr,
                                     ln1_bias_ptr,
                                     ln1_out->data<T>(),
                                     ln1_mean->data<U>(),
                                     ln1_variance->data<U>());
135 136 137
      in = ln1_out;
    }
    MatMul(ctx, *in, linear1_weight, linear1_out);
138 139 140 141 142 143
    fused_act_dropout_helper.DropoutActBias(ctx,
                                            linear1_out->data<T>(),
                                            linear1_bias_ptr,
                                            act_method,
                                            dropout1_out->data<T>(),
                                            dropout1_mask->data<uint8_t>());
144 145 146
    framework::Tensor linear2_out;
    linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    MatMul(ctx, *dropout1_out, linear2_weight, &linear2_out);
147 148 149 150

    // tensor model parallel
    AllReduce<T>(linear2_out, ring_id, ctx);

151
    const T* residual_ptr = add_residual ? x.data<T>() : nullptr;
152
    if (!pre_layer_norm) {
153
      // TODO(Xreki): support post layer_norm case when add_residual is false.
154 155
      PADDLE_ENFORCE_EQ(add_residual,
                        true,
156 157 158 159
                        platform::errors::InvalidArgument(
                            "Attribute add_residual is expected to be true "
                            "when pre_layer_norm is false."));

160
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
161 162 163 164 165 166 167 168 169 170
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          ln2_scale_ptr,
          ln2_bias_ptr,
          dropout2_out->data<T>(),
          dropout2_mask->data<uint8_t>(),
          out->data<T>(),
          ln2_mean->data<U>(),
171 172 173
          ln2_variance->data<U>());
    } else {
      fused_dropout_layernorm_helper.ResidualDropoutBias(
174 175 176 177 178 179
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          out->data<T>(),
          dropout2_mask->data<uint8_t>());
180 181 182 183 184 185 186 187 188
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* linear1_weight = context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto* linear2_weight = context.Input<framework::Tensor>("Linear2Weight");
    auto* linear2_bias = context.Input<framework::Tensor>("Linear2Bias");
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");

    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;

    auto* ln1_mean =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln2_mean = !pre_layer_norm
                         ? context.Output<framework::Tensor>("Ln2Mean")
                         : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln2Variance")
                             : nullptr;
212 213 214 215
    auto* out = context.Output<framework::Tensor>("Out");
    auto* dropout1_mask = context.Output<framework::Tensor>("Dropout1Mask");
    auto* dropout2_mask = context.Output<framework::Tensor>("Dropout2Mask");
    auto* linear1_out = context.Output<framework::Tensor>("Linear1Out");
216 217
    auto* ln1_out =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Out") : nullptr;
218 219 220 221 222 223 224
    auto* dropout1_out = context.Output<framework::Tensor>("Dropout1Out");
    auto* dropout2_out = context.Output<framework::Tensor>("Dropout2Out");

    const std::string act_method = context.Attr<std::string>("act_method");

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
225
    const int ring_id = context.Attr<int>("ring_id");
226
    const bool add_residual = context.Attr<bool>("add_residual");
227 228 229 230 231 232 233 234 235

    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    using U = LayerNormParamType<T>;
    auto place = context.GetPlace();
    out->mutable_data<T>(place);
    dropout1_mask->mutable_data<uint8_t>(place);
    dropout2_mask->mutable_data<uint8_t>(place);
236 237 238 239 240 241 242 243 244
    if (pre_layer_norm) {
      ln1_mean->mutable_data<U>(place);
      ln1_variance->mutable_data<U>(place);
      ln1_out->mutable_data<T>(place);
    } else {
      ln2_mean->mutable_data<U>(place);
      ln2_variance->mutable_data<U>(place);
    }

245 246 247 248 249
    linear1_out->mutable_data<T>(place);
    dropout1_out->mutable_data<T>(place);
    dropout2_out->mutable_data<T>(place);

    auto x_dim = x->dims();
250
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
251
        RowMatrixFromVector(x_dim), 0, false);
252 253 254 255 256 257

    auto dim = linear1_weight->dims();
    int d_model = dim[0];
    int dim_feedforward = dim[dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    FFN(context.cuda_device_context(),
        *x,
        *linear1_weight,
        linear1_bias,
        *linear2_weight,
        linear2_bias,
        ln1_scale,
        ln1_bias,
        ln2_scale,
        ln2_bias,
        out,
        dropout1_mask,
        dropout2_mask,
        ln1_mean,
        ln1_variance,
        ln2_mean,
        ln2_variance,
        linear1_out,
        ln1_out,
        dropout1_out,
        dropout2_out,
        bsz_seq,
        d_model,
        dim_feedforward,
        act_method,
        pre_layer_norm,
        epsilon1,
        epsilon2,
        add_residual,
        ring_id,
        dropout_param1,
        dropout_param2);
290 291 292
  }
};

293 294 295 296
template <typename DeviceContext, typename T>
class FusedFeedForwardGradKernel : public framework::OpKernel<T> {
 public:
  void MatMulGrad(const platform::CUDADeviceContext& ctx,
297 298 299 300
                  const framework::Tensor& d_out,
                  const framework::Tensor& a,
                  const framework::Tensor& b,
                  framework::Tensor* d_a,
301
                  framework::Tensor* d_b) const {
302
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
303 304
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
305 306
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, true);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, true);
307
    auto mat_dim_dout =
308
        phi::funcs::CreateMatrixDescriptor(d_out.dims(), 0, false);
309 310 311 312 313
    T alpha = static_cast<T>(1.0);
    blas.MatMul(d_out, mat_dim_dout, b, mat_dim_b, alpha, d_a, T(0));
    blas.MatMul(a, mat_dim_a, d_out, mat_dim_dout, alpha, d_b, T(0));
  }

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  void FFNGrad(const platform::CUDADeviceContext& ctx,
               const framework::Tensor& d_out,
               const framework::Tensor& x,
               const framework::Tensor& dropout1_mask,
               const framework::Tensor& dropout2_mask,
               const framework::Tensor& linear1_out,
               const framework::Tensor* ln1_out,
               const framework::Tensor& dropout1_out,
               const framework::Tensor& dropout2_out,
               const framework::Tensor& linear1_weight,
               const framework::Tensor* linear1_bias,
               const framework::Tensor& linear2_weight,
               const framework::Tensor* ln1_gamma,
               const framework::Tensor* ln1_beta,
               const framework::Tensor* ln1_mean,
               const framework::Tensor* ln1_variance,
               const framework::Tensor* ln2_gamma,
               const framework::Tensor* ln2_beta,
               const framework::Tensor* ln2_mean,
               const framework::Tensor* ln2_variance,
               framework::Tensor* d_x,
               framework::Tensor* d_linear1_weight,
               framework::Tensor* d_linear1_bias,
               framework::Tensor* d_linear2_weight,
               framework::Tensor* d_linear2_bias,
               framework::Tensor* d_ln1_gamma,
               framework::Tensor* d_ln1_beta,
               framework::Tensor* d_ln2_gamma,
               framework::Tensor* d_ln2_beta,
               const int bsz_seq,
               const int d_model,
               const int dim_feedforward,
               const DropoutParam& dropout_param1,
               const DropoutParam& dropout_param2,
               const std::string& act_method,
               const bool pre_layer_norm,
               const float epsilon1,
               const float epsilon2,
               const bool add_residual,
               const int ring_id) const {
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const U* ln1_gamma_ptr =
        ln1_gamma == nullptr ? nullptr : ln1_gamma->data<U>();
    const U* ln1_beta_ptr = ln1_beta == nullptr ? nullptr : ln1_beta->data<U>();
    const U* ln2_gamma_ptr =
        ln2_gamma == nullptr ? nullptr : ln2_gamma->data<U>();
    const U* ln2_beta_ptr = ln2_beta == nullptr ? nullptr : ln2_beta->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    T* d_linear1_bias_ptr =
        d_linear1_bias == nullptr ? nullptr : d_linear1_bias->data<T>();
    T* d_linear2_bias_ptr =
        d_linear2_bias == nullptr ? nullptr : d_linear2_bias->data<T>();
    U* d_ln1_gamma_ptr =
        d_ln1_gamma == nullptr ? nullptr : d_ln1_gamma->data<U>();
    U* d_ln1_beta_ptr = d_ln1_beta == nullptr ? nullptr : d_ln1_beta->data<U>();
    U* d_ln2_gamma_ptr =
        d_ln2_gamma == nullptr ? nullptr : d_ln2_gamma->data<U>();
    U* d_ln2_beta_ptr = d_ln2_beta == nullptr ? nullptr : d_ln2_beta->data<U>();

    framework::Tensor d_linear2_out, d_dropout2_out, d_residual;
    d_linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    d_dropout2_out.mutable_data<T>({bsz_seq, d_model}, place);

386 387 388 389
    T* d_residual_ptr = nullptr;
    if (add_residual) {
      d_residual_ptr = d_residual.mutable_data<T>(d_x->dims(), place);
    }
390 391
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
392 393 394 395 396 397
          ctx,
          d_out.data<T>(),
          dropout2_mask.data<uint8_t>(),
          d_linear2_out.data<T>(),
          d_residual_ptr,
          d_linear2_bias_ptr);
398 399
    } else {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
400 401 402 403 404 405 406 407 408 409 410 411
          ctx,
          d_out.data<T>(),
          dropout2_out.data<T>(),
          dropout2_mask.data<uint8_t>(),
          ln2_gamma_ptr,
          ln2_mean->data<U>(),
          ln2_variance->data<U>(),
          d_dropout2_out.data<T>(),
          d_ln2_gamma_ptr,
          d_ln2_beta_ptr,
          d_linear2_out.data<T>(),
          d_linear2_bias_ptr,
412
          d_residual_ptr);
413 414 415 416
    }

    framework::Tensor d_dropout1_out;
    d_dropout1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
417 418 419 420 421 422
    MatMulGrad(ctx,
               d_linear2_out,
               dropout1_out,
               linear2_weight,
               &d_dropout1_out,
               d_linear2_weight);
423 424 425

    framework::Tensor d_linear1_out;
    d_linear1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
426 427 428 429 430 431 432 433
    fused_act_dropout_helper.DropoutActBiasGrad(ctx,
                                                d_dropout1_out.data<T>(),
                                                linear1_out.data<T>(),
                                                linear1_bias_ptr,
                                                dropout1_mask.data<uint8_t>(),
                                                d_linear1_out.data<T>(),
                                                d_linear1_bias_ptr,
                                                act_method);
434 435 436 437

    if (pre_layer_norm) {
      framework::Tensor d_ln1_out;
      d_ln1_out.mutable_data<T>({bsz_seq, d_model}, place);
438 439 440 441 442
      MatMulGrad(ctx,
                 d_linear1_out,
                 *ln1_out,
                 linear1_weight,
                 &d_ln1_out,
443
                 d_linear1_weight);
444 445
      // tensor model parallel
      AllReduce<T>(d_ln1_out, ring_id, ctx);
446 447 448 449 450 451 452 453 454
      pre_layernorm_helper.LayerNormGrad(ctx,
                                         d_ln1_out.data<T>(),
                                         x.data<T>(),
                                         ln1_gamma_ptr,
                                         ln1_mean->data<U>(),
                                         ln1_variance->data<U>(),
                                         d_x->data<T>(),
                                         d_ln1_gamma_ptr,
                                         d_ln1_beta_ptr);
455 456
    } else {
      MatMulGrad(ctx, d_linear1_out, x, linear1_weight, d_x, d_linear1_weight);
457 458
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx);
459
    }
460 461 462 463 464

    if (add_residual) {
      // gradient accumulation
      std::vector<const Tensor*> ins = {&d_residual, d_x};
      std::vector<Tensor*> outs = {d_x};
465 466
      phi::funcs::ElementwiseKernel<T>(
          ctx, ins, &outs, phi::funcs::AddFunctor<T>());
467
    }
468 469 470 471 472 473 474
  }

  void Compute(const framework::ExecutionContext& context) const override {
    using U = LayerNormParamType<T>;
    auto d_out =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto x = *context.Input<framework::Tensor>("X");
475
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
476 477 478
    auto dropout1_mask = *context.Input<framework::Tensor>("Dropout1Mask");
    auto dropout2_mask = *context.Input<framework::Tensor>("Dropout2Mask");
    auto linear1_out = *context.Input<framework::Tensor>("Linear1Out");
479 480
    auto* ln1_out =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Out") : nullptr;
481 482 483 484 485
    auto dropout1_out = *context.Input<framework::Tensor>("Dropout1Out");
    auto dropout2_out = *context.Input<framework::Tensor>("Dropout2Out");
    auto linear1_weight = *context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto linear2_weight = *context.Input<framework::Tensor>("Linear2Weight");
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    auto* ln1_mean =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_mean =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Mean") : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln2Variance")
                             : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;
505 506

    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
507 508 509 510 511 512 513 514 515 516 517 518 519
    auto* d_ln1_scale = pre_layer_norm ? context.Output<framework::Tensor>(
                                             framework::GradVarName("Ln1Scale"))
                                       : nullptr;
    auto* d_ln1_bias = pre_layer_norm ? context.Output<framework::Tensor>(
                                            framework::GradVarName("Ln1Bias"))
                                      : nullptr;
    auto* d_ln2_scale = pre_layer_norm
                            ? nullptr
                            : context.Output<framework::Tensor>(
                                  framework::GradVarName("Ln2Scale"));
    auto* d_ln2_bias = pre_layer_norm ? nullptr
                                      : context.Output<framework::Tensor>(
                                            framework::GradVarName("Ln2Bias"));
520 521 522 523 524 525 526 527 528 529 530
    auto* d_linear1_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Weight"));
    auto* d_linear1_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Bias"));
    auto* d_linear2_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Weight"));
    auto* d_linear2_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Bias"));

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
531
    const bool add_residual = context.Attr<bool>("add_residual");
532
    const int ring_id = context.Attr<int>("ring_id");
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    const std::string act_method = context.Attr<std::string>("act_method");
    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    auto place = context.GetPlace();
    d_x->mutable_data<T>(place);
    if (d_ln1_scale) {
      d_ln1_scale->mutable_data<U>(place);
    }
    if (d_ln1_bias) {
      d_ln1_bias->mutable_data<U>(place);
    }
    if (d_ln2_scale) {
      d_ln2_scale->mutable_data<U>(place);
    }
    if (d_ln2_bias) {
      d_ln2_bias->mutable_data<U>(place);
    }
    if (d_linear1_bias) {
      d_linear1_bias->mutable_data<T>(place);
    }
    if (d_linear2_bias) {
      d_linear2_bias->mutable_data<T>(place);
    }
    d_linear1_weight->mutable_data<T>(place);
    d_linear2_weight->mutable_data<T>(place);

    auto x_dim = x.dims();
561
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
562
        RowMatrixFromVector(x_dim), 0, false);
563 564 565 566 567 568

    auto linear1_weight_dim = linear1_weight.dims();
    int d_model = linear1_weight_dim[0];
    int dim_feedforward = linear1_weight_dim[linear1_weight_dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    FFNGrad(context.cuda_device_context(),
            d_out,
            x,
            dropout1_mask,
            dropout2_mask,
            linear1_out,
            ln1_out,
            dropout1_out,
            dropout2_out,
            linear1_weight,
            linear1_bias,
            linear2_weight,
            ln1_scale,
            ln1_bias,
            ln1_mean,
            ln1_variance,
            ln2_scale,
            ln2_bias,
            ln2_mean,
            ln2_variance,
            d_x,
            d_linear1_weight,
            d_linear1_bias,
            d_linear2_weight,
            d_linear2_bias,
            d_ln1_scale,
            d_ln1_bias,
            d_ln2_scale,
            d_ln2_bias,
            bsz_seq,
            d_model,
            dim_feedforward,
            dropout_param1,
            dropout_param2,
            act_method,
            pre_layer_norm,
            epsilon1,
            epsilon2,
            add_residual,
608
            ring_id);
609 610
  }
};
611 612 613 614 615 616 617 618 619 620
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, double>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext,
                                paddle::platform::float16>);
621 622 623 624 625 626 627
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward_grad,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    double>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    paddle::platform::float16>);