test_activation_op.py 110.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
28
from paddle.fluid.framework import _test_eager_guard
Q
qijun 已提交
29

30 31
paddle.enable_static()

Q
qijun 已提交
32

33
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
49
class TestActivation(OpTest):
Q
qijun 已提交
50 51
    def setUp(self):
        self.op_type = "exp"
52
        self.init_dtype()
53
        self.init_kernel_type()
54 55
        self.check_eager = True
        self.python_api = paddle.exp
56

57
        np.random.seed(2049)
58 59 60 61 62
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
63 64

    def test_check_output(self):
65 66 67 68
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_output(check_eager=check_eager)
Q
qijun 已提交
69 70

    def test_check_grad(self):
71 72
        if self.dtype == np.float16:
            return
73 74 75 76
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
Q
qijun 已提交
77

78
    def init_dtype(self):
79
        self.dtype = np.float64
80

81 82 83
    def init_kernel_type(self):
        pass

Q
qijun 已提交
84

R
ronnywang 已提交
85 86 87
class TestExpm1(TestActivation):
    def setUp(self):
        self.op_type = "expm1"
88
        self.python_api = paddle.expm1
R
ronnywang 已提交
89 90 91 92 93 94 95 96 97 98
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
99 100 101 102
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
R
ronnywang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152


class TestExpm1API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


153 154 155
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
156
            np_x = np.array([0.1])
157
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
158
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
159 160
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
161 162 163
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
164 165 166 167 168 169 170

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
171 172 173 174 175
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
176 177


C
chengduo 已提交
178
class TestSigmoid(TestActivation):
Q
qijun 已提交
179 180
    def setUp(self):
        self.op_type = "sigmoid"
181 182
        self.init_dtype()

183
        np.random.seed(1024)
184 185 186 187 188
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
189

190 191 192
    def init_dtype(self):
        self.dtype = np.float32

193
    def test_check_grad(self):
194 195 196 197
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSigmoidBF16(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


M
minghaoBD 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
293
class TestLogSigmoid(TestActivation):
294 295
    def setUp(self):
        self.op_type = "logsigmoid"
296 297
        self.init_dtype()

298
        np.random.seed(2048)
299 300 301
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

302
        self.inputs = {'X': x}
303
        self.outputs = {'Out': out}
304 305

    def test_check_grad(self):
306 307
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
308
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
309 310


311
class TestLogSigmoidAPI(unittest.TestCase):
312
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
313
    def setUp(self):
314
        np.random.seed(1024)
315
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
316
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
317 318 319
            else paddle.CPUPlace()

    def test_static_api(self):
320
        paddle.enable_static()
321
        with paddle.static.program_guard(paddle.static.Program()):
322
            x = paddle.fluid.data('X', [11, 17])
323
            out1 = F.log_sigmoid(x)
324 325 326 327 328 329
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
330
            self.assertTrue(np.allclose(out_ref, r))
331 332 333 334

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
335
        out1 = F.log_sigmoid(x)
336 337 338 339
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
340
            self.assertTrue(np.allclose(out_ref, r.numpy()))
341 342
        paddle.enable_static()

343
    def test_fluid_api(self):
344
        paddle.enable_static()
345
        with paddle.static.program_guard(paddle.static.Program()):
346
            x = paddle.fluid.data('X', [11, 17])
347 348 349 350 351 352
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

353
    def test_errors(self):
354
        paddle.enable_static()
355 356
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
357
            self.assertRaises(TypeError, F.log_sigmoid, 1)
358
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
359 360
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
361
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
362
            # support the input dtype is float16
J
joejiong 已提交
363 364
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
365
            F.log_sigmoid(x_fp16)
366 367


368
class TestTanh(TestActivation, TestParameter):
369 370
    def setUp(self):
        self.op_type = "tanh"
371
        self.init_dtype()
372
        np.random.seed(1024)
373 374 375 376 377
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
378 379

    def test_check_grad(self):
380 381
        if self.dtype == np.float16:
            return
382
        self.check_grad(['X'], 'Out')
383

384 385 386 387 388 389
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

390

W
WangXi 已提交
391 392 393 394
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
395
        np.random.seed(1024)
W
WangXi 已提交
396
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
397
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
398
            else paddle.CPUPlace()
399 400 401 402
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
403 404

    def test_static_api(self):
405
        paddle.enable_static()
W
WangXi 已提交
406
        with paddle.static.program_guard(paddle.static.Program()):
407
            x = paddle.fluid.data('X', [10, 12], self.dtype)
408
            out1 = self.tanh(x)
W
WangXi 已提交
409 410 411 412 413 414 415 416 417 418
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
419
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
420 421 422 423 424 425 426 427 428 429
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
430
        paddle.enable_static()
W
WangXi 已提交
431 432 433 434 435 436 437 438 439
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
440
        paddle.enable_static()
W
WangXi 已提交
441 442
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
443
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
444
            # The input dtype must be float16, float32.
J
joejiong 已提交
445 446
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
447
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
448
            # support the input dtype is float16
J
joejiong 已提交
449 450
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
451 452 453 454 455 456 457
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
458 459


460
class TestAtan(TestActivation, TestParameter):
461 462 463 464
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

465
        np.random.seed(1024)
466 467 468 469 470 471 472 473 474
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
475
        self.check_grad(['X'], 'Out')
476

W
WuHaobo 已提交
477 478 479 480 481 482 483 484 485 486 487
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

488 489 490 491 492 493 494 495
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

496

497 498 499 500 501
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

502
        np.random.seed(1024)
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

574
        np.random.seed(1024)
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


641 642 643 644 645 646
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
647 648
    def setUp(self):
        self.op_type = "tanh_shrink"
649 650
        self.init_dtype()

651
        np.random.seed(1024)
652 653
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
654

655
        self.inputs = {'X': x}
656
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
657 658

    def test_check_grad(self):
659 660
        if self.dtype == np.float16:
            return
661
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
662

663

664 665 666
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
667
        np.random.seed(1024)
668
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
669
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
670 671 672
            else paddle.CPUPlace()

    def test_static_api(self):
673
        paddle.enable_static()
674
        with paddle.static.program_guard(paddle.static.Program()):
675
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
697
        paddle.enable_static()
698 699 700 701 702 703 704 705 706
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
707
        paddle.enable_static()
708 709 710 711
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
712 713
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
714 715
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
716 717
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
718 719 720
            F.tanhshrink(x_fp16)


721 722 723 724 725 726
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
727
class TestHardShrink(TestActivation):
728 729
    def setUp(self):
        self.op_type = "hard_shrink"
730 731
        self.init_dtype()

732 733
        self.threshold = 0.5
        self.set_attrs()
734
        np.random.seed(1024)
Z
zhupengyang 已提交
735
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
736
        out = ref_hardshrink(x, self.threshold)
737

738
        self.attrs = {'threshold': self.threshold}
739
        self.inputs = {'X': x}
740
        self.outputs = {'Out': out}
741

742 743 744
    def set_attrs(self):
        pass

745
    def test_check_grad(self):
746 747
        if self.dtype == np.float16:
            return
748
        self.check_grad(['X'], 'Out')
749 750


751 752 753 754 755
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


756 757 758
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
759
        np.random.seed(1024)
760
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
761
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
762 763 764
            else paddle.CPUPlace()

    def test_static_api(self):
765
        paddle.enable_static()
766
        with paddle.static.program_guard(paddle.static.Program()):
767
            x = paddle.fluid.data('X', [10, 12])
768 769 770 771 772 773 774 775 776 777 778
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
779
        x = paddle.to_tensor(self.x_np)
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
796
        paddle.enable_static()
797 798 799 800 801 802 803 804
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

805
    def test_errors(self):
806
        paddle.enable_static()
807
        with paddle.static.program_guard(paddle.static.Program()):
808
            # The input type must be Variable.
809
            self.assertRaises(TypeError, F.hardshrink, 1)
810
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
811 812
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
813
            self.assertRaises(TypeError, F.hardshrink, x_int32)
814
            # support the input dtype is float16
J
joejiong 已提交
815 816
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
817
            F.hardshrink(x_fp16)
818 819


820 821 822 823 824 825 826 827 828 829 830
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
831
        np.random.seed(1024)
832
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
833
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
834 835 836
            else paddle.CPUPlace()

    def test_static_api(self):
837
        paddle.enable_static()
838
        with paddle.static.program_guard(paddle.static.Program()):
839
            x = paddle.fluid.data('X', [10, 12])
840 841 842 843 844 845 846 847 848 849 850
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
851
        x = paddle.to_tensor(self.x_np)
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
868
        paddle.enable_static()
869 870 871 872
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
873 874
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
875 876
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
877 878
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
879 880 881
            F.hardtanh(x_fp16)


882 883 884 885 886 887 888 889
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
890 891
    def setUp(self):
        self.op_type = "softshrink"
892 893
        self.check_eager = True
        self.python_api = paddle.nn.functional.softshrink
894 895
        self.init_dtype()

896
        threshold = 0.8
897

898
        np.random.seed(1023)
899 900 901 902
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
903
        self.outputs = {'Out': out}
904 905

    def test_check_grad(self):
906 907
        if self.dtype == np.float16:
            return
908
        self.check_grad(['X'], 'Out', check_eager=True)
909

910

911 912 913 914
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
915
        np.random.seed(1024)
916
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
917
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
918 919 920
            else paddle.CPUPlace()

    def test_static_api(self):
921
        paddle.enable_static()
922
        with paddle.static.program_guard(paddle.static.Program()):
923
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
945
        paddle.enable_static()
946 947 948 949 950 951 952 953
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

954
    def test_errors(self):
955
        paddle.enable_static()
956
        with paddle.static.program_guard(paddle.static.Program()):
957
            # The input type must be Variable.
958
            self.assertRaises(TypeError, F.softshrink, 1)
959
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
960 961
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
962
            self.assertRaises(TypeError, F.softshrink, x_int32)
963
            # The threshold must be no less than zero
J
joejiong 已提交
964 965
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
966
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
967
            # support the input dtype is float16
J
joejiong 已提交
968 969
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
970
            F.softshrink(x_fp16)
971 972


973
class TestSqrt(TestActivation, TestParameter):
974 975
    def setUp(self):
        self.op_type = "sqrt"
976
        self.python_api = paddle.sqrt
977 978
        self.init_dtype()

979
        np.random.seed(1023)
980 981 982 983 984
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
985 986

    def test_check_grad(self):
987 988
        if self.dtype == np.float16:
            return
989 990 991 992
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
993

994

995 996 997 998 999
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSqrtBF16(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
1000
        self.python_api = paddle.sqrt
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        self.init_dtype()

        np.random.seed(1023)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.sqrt(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
1017
        self.check_output_with_place(place, check_eager=True)
1018 1019 1020

    def test_check_grad(self):
        place = core.CUDAPlace(0)
1021
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
1022 1023


Z
zhoukunsheng 已提交
1024 1025 1026 1027 1028
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

1029
        np.random.seed(1024)
Z
zhupengyang 已提交
1030
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
1042
class TestAbs(TestActivation):
1043 1044
    def setUp(self):
        self.op_type = "abs"
1045 1046
        self.init_dtype()

1047
        np.random.seed(1024)
1048
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
1049
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
1050
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
1051
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
1052 1053
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
1054 1055 1056 1057
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1058 1059

    def test_check_grad(self):
1060 1061
        if self.dtype == np.float16:
            return
1062
        self.check_grad(['X'], 'Out', check_eager=False)
1063

1064

C
chengduo 已提交
1065
class TestCeil(TestActivation):
D
dzhwinter 已提交
1066 1067
    def setUp(self):
        self.op_type = "ceil"
1068 1069
        self.check_eager = True
        self.python_api = paddle.ceil
1070 1071
        self.init_dtype()

1072
        np.random.seed(1024)
Z
zhupengyang 已提交
1073
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1074 1075 1076 1077
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1078

D
dzhwinter 已提交
1079
    # The same reason with TestFloor
C
chengduo 已提交
1080
    def test_check_grad(self):
1081 1082 1083
        pass


C
chengduo 已提交
1084
class TestFloor(TestActivation):
D
dzhwinter 已提交
1085 1086
    def setUp(self):
        self.op_type = "floor"
1087 1088
        self.check_eager = True
        self.python_api = paddle.floor
1089 1090
        self.init_dtype()

1091
        np.random.seed(1024)
Z
zhupengyang 已提交
1092
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1093 1094 1095 1096
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1097

D
dzhwinter 已提交
1098
    # the gradient on floor, ceil, round is undefined.
1099
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1100 1101
    # The same reason with TestFloor
    def test_check_grad(self):
1102 1103 1104
        pass


C
chengduo 已提交
1105
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
1106 1107
    def setUp(self):
        self.op_type = "cos"
1108 1109
        self.init_dtype()

1110
        np.random.seed(1024)
Z
zhupengyang 已提交
1111
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1112 1113 1114 1115
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1116 1117

    def test_check_grad(self):
1118 1119
        if self.dtype == np.float16:
            return
1120
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
1121

1122

J
joejiong 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1174 1175 1176 1177 1178
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1179
        np.random.seed(1024)
Z
zhupengyang 已提交
1180
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1181 1182 1183 1184 1185 1186 1187 1188
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1189
        self.check_grad(['X'], 'Out')
1190 1191


1192
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1193 1194
    def setUp(self):
        self.op_type = "sin"
1195 1196
        self.init_dtype()

1197
        np.random.seed(1024)
Z
zhupengyang 已提交
1198
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1199 1200 1201 1202
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1203 1204

    def test_check_grad(self):
1205 1206
        if self.dtype == np.float16:
            return
1207
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1208 1209


1210 1211 1212 1213 1214
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1215
        np.random.seed(2048)
Z
zhupengyang 已提交
1216
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1217 1218 1219 1220 1221 1222 1223 1224
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1225
        self.check_grad(['X'], 'Out')
1226 1227


X
xiaoting 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
class TestAcosh(TestActivation):
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAsinh(TestActivation):
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAtanh(TestActivation):
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


C
chengduo 已提交
1282
class TestRound(TestActivation):
D
dzhwinter 已提交
1283 1284
    def setUp(self):
        self.op_type = "round"
1285 1286
        self.check_eager = True
        self.python_api = paddle.round
1287 1288
        self.init_dtype()

1289
        np.random.seed(1024)
Z
zhupengyang 已提交
1290
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1291 1292 1293 1294
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1295

C
chengduo 已提交
1296
    def test_check_grad(self):
1297 1298 1299
        pass


C
chengduo 已提交
1300
class TestRelu(TestActivation):
1301
    def setUp(self):
Q
qijun 已提交
1302
        self.op_type = "relu"
K
Kexin Zhao 已提交
1303 1304
        self.init_dtype()

1305
        np.random.seed(1024)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1318 1319

        self.outputs = {'Out': out}
1320 1321

    def test_check_grad(self):
K
Kexin Zhao 已提交
1322 1323
        if self.dtype == np.float16:
            return
1324
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1325 1326


1327 1328 1329
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1330
        np.random.seed(1024)
1331
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1332
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1333
            else paddle.CPUPlace()
1334 1335 1336 1337
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1338 1339

    def test_static_api(self):
1340
        paddle.enable_static()
1341
        with paddle.static.program_guard(paddle.static.Program()):
1342
            x = paddle.fluid.data('X', [10, 12])
1343
            out1 = self.relu(x)
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1356 1357
        out1 = m(x)
        out2 = self.relu(x)
1358 1359 1360 1361 1362
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1363
    def test_errors(self):
1364
        paddle.enable_static()
1365
        with paddle.static.program_guard(paddle.static.Program()):
1366
            # The input type must be Variable.
1367
            self.assertRaises(TypeError, self.relu, 1)
1368
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1369 1370
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1371
            self.assertRaises(TypeError, self.relu, x_int32)
1372
            # support the input dtype is float16
J
joejiong 已提交
1373 1374
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1375 1376 1377 1378 1379 1380 1381
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1382 1383


1384 1385 1386 1387 1388 1389
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1390
class TestLeakyRelu(TestActivation):
1391 1392 1393
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1394 1395 1396
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1397
        alpha = self.get_alpha()
A
Adam 已提交
1398

1399
        np.random.seed(1024)
A
Adam 已提交
1400 1401
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1402 1403
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1404

1405
        self.inputs = {'X': x}
A
Adam 已提交
1406
        self.outputs = {'Out': out}
1407
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1408 1409 1410 1411

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1412
        self.check_grad(['X'], 'Out')
1413 1414


1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1434
        np.random.seed(1024)
1435
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1436
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1437 1438 1439
            else paddle.CPUPlace()

    def test_static_api(self):
1440
        paddle.enable_static()
1441
        with paddle.static.program_guard(paddle.static.Program()):
1442
            x = paddle.fluid.data('X', [10, 12])
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1454
        x = paddle.to_tensor(self.x_np)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1471
        paddle.enable_static()
1472 1473 1474 1475 1476 1477 1478 1479
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1480
    def test_errors(self):
1481
        paddle.enable_static()
1482
        with paddle.static.program_guard(paddle.static.Program()):
1483
            # The input type must be Variable.
1484
            self.assertRaises(TypeError, F.leaky_relu, 1)
1485
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1486 1487
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1488 1489
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1490 1491
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1492
            F.leaky_relu(x_fp16)
1493 1494


1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1505 1506 1507
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1508
        approximate = True
1509
        np.random.seed(1024)
1510 1511
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1512

1513
        self.inputs = {'X': x}
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1528
        np.random.seed(2048)
C
Clementine 已提交
1529
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1530
        out = gelu(x, approximate)
C
Clementine 已提交
1531

1532
        self.inputs = {'X': x}
C
Clementine 已提交
1533
        self.outputs = {'Out': out}
1534
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1535 1536 1537 1538

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1539
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1540 1541


1542 1543 1544
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1545
        np.random.seed(1024)
1546
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1547
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1548 1549 1550
            else paddle.CPUPlace()

    def test_static_api(self):
1551
        paddle.enable_static()
1552
        with paddle.static.program_guard(paddle.static.Program()):
1553
            x = paddle.fluid.data('X', [11, 17])
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1582
        paddle.enable_static()
1583 1584 1585 1586
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1587 1588
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1589 1590
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1591 1592
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1593 1594 1595
            F.gelu(x_fp16)


C
chengduo 已提交
1596
class TestBRelu(TestActivation):
1597 1598
    def setUp(self):
        self.op_type = "brelu"
1599 1600
        self.init_dtype()

1601
        np.random.seed(1024)
Z
zhupengyang 已提交
1602
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1603 1604
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1605 1606
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1607
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1608 1609 1610
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1611 1612 1613

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1614
        self.outputs = {'Out': t}
1615 1616

    def test_check_grad(self):
1617 1618
        if self.dtype == np.float16:
            return
1619
        self.check_grad(['X'], 'Out')
1620

1621

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1633
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1663 1664 1665 1666 1667 1668 1669
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1670
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1671
    def setUp(self):
1672
        self.op_type = "relu6"
1673 1674
        self.init_dtype()

1675
        np.random.seed(1024)
Z
zhupengyang 已提交
1676
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1677
        x[np.abs(x) < 0.005] = 0.02
1678
        out = ref_relu6(x)
1679

1680 1681
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1682
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1683

1684 1685 1686
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1687
        self.check_grad(['X'], 'Out')
1688 1689


1690 1691 1692
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1693
        np.random.seed(1024)
1694 1695
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1696
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1697 1698 1699
            else paddle.CPUPlace()

    def test_static_api(self):
1700
        paddle.enable_static()
1701
        with paddle.static.program_guard(paddle.static.Program()):
1702
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1724
        paddle.enable_static()
1725 1726 1727 1728 1729 1730 1731 1732
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1733
    def test_errors(self):
1734
        paddle.enable_static()
1735
        with paddle.static.program_guard(paddle.static.Program()):
1736
            # The input type must be Variable.
1737
            self.assertRaises(TypeError, F.relu6, 1)
1738
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1739 1740
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1741
            self.assertRaises(TypeError, F.relu6, x_int32)
1742
            # support the input dtype is float16
J
joejiong 已提交
1743 1744
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1745
            F.relu6(x_fp16)
1746 1747


1748 1749 1750 1751 1752
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1753 1754 1755 1756
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()
Y
YuanRisheng 已提交
1757
        self.python_api = paddle.nn.functional.hardswish
J
jakpiase 已提交
1758 1759
        skip_check_grad_ci(reason="not implemented yet")

1760
        np.random.seed(1024)
Z
zhupengyang 已提交
1761
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1762 1763 1764 1765 1766 1767
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1768
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1769

1770
        self.inputs = {'X': x}
H
huangjun12 已提交
1771 1772 1773 1774 1775 1776
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1777 1778

        return  # not implemented yet
Y
YuanRisheng 已提交
1779 1780 1781 1782
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
H
huangjun12 已提交
1783 1784


1785 1786 1787 1788
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1789
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1790 1791 1792 1793
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1794
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1813
        paddle.enable_static()
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1832
            # The input type must be Variable.
1833
            self.assertRaises(TypeError, F.hardswish, 1)
1834
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1835 1836
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1837
            self.assertRaises(TypeError, F.hardswish, x_int32)
1838
            # support the input dtype is float16
J
joejiong 已提交
1839 1840
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1841
            F.hardswish(x_fp16)
1842

Y
YuanRisheng 已提交
1843 1844 1845 1846 1847
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph_api()
            self.test_errors()

1848

C
chengduo 已提交
1849
class TestSoftRelu(TestActivation):
1850 1851
    def setUp(self):
        self.op_type = "soft_relu"
1852 1853
        self.init_dtype()

1854
        np.random.seed(4096)
1855
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1856
        threshold = 2.0
Q
qijun 已提交
1857 1858
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1859
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1860 1861 1862
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1863 1864 1865 1866 1867
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1868 1869

    def test_check_grad(self):
1870 1871
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1872
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1873

1874

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1888
def elu(x, alpha):
Z
zhupengyang 已提交
1889
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1890 1891 1892
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1893
class TestELU(TestActivation):
1894 1895
    def setUp(self):
        self.op_type = "elu"
1896 1897
        self.init_dtype()

1898
        np.random.seed(1024)
Z
zhupengyang 已提交
1899
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1900
        alpha = self.get_alpha()
1901
        out = elu(x, alpha)
1902 1903 1904 1905
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1906
        self.outputs = {'Out': out}
1907 1908

    def test_check_grad(self):
1909 1910
        if self.dtype == np.float16:
            return
1911
        self.check_grad(['X'], 'Out')
1912

Z
zhupengyang 已提交
1913 1914 1915 1916 1917 1918 1919 1920
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
    def get_alpha(self):
        return -0.2

1921

1922 1923 1924
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1925
        np.random.seed(1024)
1926
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1927
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1928
            else paddle.CPUPlace()
1929 1930 1931 1932
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1933 1934

    def test_static_api(self):
1935
        paddle.enable_static()
1936
        with paddle.static.program_guard(paddle.static.Program()):
1937
            x = paddle.fluid.data('X', [10, 12])
1938
            out1 = self.elu(x)
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1950 1951
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1952 1953 1954 1955 1956 1957
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1958 1959
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1960 1961 1962 1963 1964 1965 1966
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1967
    def test_errors(self):
1968
        paddle.enable_static()
1969 1970
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1971
            self.assertRaises(TypeError, self.elu, 1)
1972
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1973 1974
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1975
            self.assertRaises(TypeError, self.elu, x_int32)
1976
            # support the input dtype is float16
J
joejiong 已提交
1977 1978
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1979 1980 1981
            self.elu(x_fp16)


Z
zhupengyang 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[10, 12], dtype='float32')
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
            self.celu(x_fp16)


C
chengduo 已提交
2082
class TestReciprocal(TestActivation):
Q
qijun 已提交
2083 2084
    def setUp(self):
        self.op_type = "reciprocal"
2085
        self.python_api = paddle.reciprocal
2086 2087
        self.init_dtype()

2088
        np.random.seed(1024)
2089 2090 2091 2092 2093
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2094 2095

    def test_check_grad(self):
2096 2097
        if self.dtype == np.float16:
            return
2098 2099 2100 2101
        self.check_grad(['X'], 'Out', max_relative_error=0.01, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2102 2103


C
chengduo 已提交
2104
class TestLog(TestActivation):
Q
qijun 已提交
2105 2106
    def setUp(self):
        self.op_type = "log"
2107 2108
        self.check_eager = True
        self.python_api = paddle.log
2109 2110
        self.init_dtype()

2111
        np.random.seed(1024)
2112 2113 2114 2115 2116
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2117 2118

    def test_check_grad(self):
2119 2120
        if self.dtype == np.float16:
            return
2121
        self.check_grad(['X'], 'Out', check_eager=True)
Q
qijun 已提交
2122

2123 2124 2125 2126 2127 2128 2129 2130 2131
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2132

J
joejiong 已提交
2133 2134 2135
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
2136 2137
        self.check_eager = True
        self.python_api = paddle.log2
J
joejiong 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2149
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2184 2185 2186
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
2187 2188
        self.check_eager = True
        self.python_api = paddle.log10
J
joejiong 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2200
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2235 2236 2237
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
2238 2239
        self.check_eager = True
        self.python_api = paddle.log1p
2240 2241
        self.init_dtype()

2242
        np.random.seed(1024)
2243 2244 2245 2246 2247 2248 2249 2250 2251
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2252
        self.check_grad(['X'], 'Out', check_eager=True)
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2266 2267 2268
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2269
        expected_res = np.log1p(input_x)
2270
        self.assertTrue(np.allclose(res1, expected_res))
2271 2272 2273 2274 2275 2276 2277 2278

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2279
        self.assertTrue(np.allclose(np_z, z_expected))
2280 2281


C
chengduo 已提交
2282
class TestSquare(TestActivation):
Q
qijun 已提交
2283 2284
    def setUp(self):
        self.op_type = "square"
2285
        self.python_api = paddle.square
2286 2287
        self.init_dtype()

2288
        np.random.seed(1024)
2289 2290 2291 2292 2293
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2294 2295

    def test_check_grad(self):
2296 2297
        if self.dtype == np.float16:
            return
2298 2299 2300 2301 2302
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.007, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2303

2304

2305 2306 2307 2308 2309
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSquareBF16(OpTest):
    def setUp(self):
        self.op_type = "square"
2310
        self.python_api = paddle.square
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.square(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
2327
        self.check_output_with_place(place, check_eager=True)
2328 2329 2330

    def test_check_grad(self):
        place = core.CUDAPlace(0)
2331 2332
        self.check_grad_with_place(
            place, ['X'], 'Out', numeric_grad_delta=0.5, check_eager=True)
2333 2334


C
chengduo 已提交
2335
class TestPow(TestActivation):
2336 2337
    def setUp(self):
        self.op_type = "pow"
2338
        self.python_api = paddle.pow
2339
        self.check_eager = True
2340 2341
        self.init_dtype()

2342
        np.random.seed(1024)
2343 2344 2345 2346
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2347
        self.attrs = {'factor': 3.0}
2348
        self.outputs = {'Out': out}
2349

2350 2351 2352
    def test_check_output(self):
        self.check_output(check_eager=self.check_eager)

2353
    def test_check_grad(self):
2354 2355
        if self.dtype == np.float16:
            return
2356
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2357

2358

2359 2360 2361
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
2362 2363
        self.check_eager = False
        self.python_api = paddle.pow
2364 2365
        self.init_dtype()

2366
        np.random.seed(1024)
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
2379
        self.check_output(check_eager=self.check_eager)
2380 2381 2382 2383

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2384
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2385 2386 2387 2388 2389

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2390 2391 2392 2393 2394
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2395 2396 2397 2398 2399

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2400 2401 2402
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2403 2404

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2405
        res_1, res_2, res, res_6 = exe.run(
2406 2407
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2408
            fetch_list=[out_1, out_2, res, out_6])
2409

2410 2411 2412
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2413

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2437

2438 2439 2440 2441 2442
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2443
class TestSTanh(TestActivation):
2444 2445 2446 2447 2448 2449
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2450 2451
    def setUp(self):
        self.op_type = "stanh"
2452
        self.init_dtype()
2453 2454
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2455

2456
        np.random.seed(1024)
2457
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2458 2459
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2460

2461
        self.inputs = {'X': x}
2462
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2463
        self.outputs = {'Out': out}
2464

Q
qijun 已提交
2465
    def test_check_grad(self):
2466 2467
        if self.dtype == np.float16:
            return
2468
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2469

2470

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2527
    def test_errors(self):
2528 2529
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2530
            # The input type must be Variable.
2531
            self.assertRaises(TypeError, paddle.stanh, 1)
2532
            # The input dtype must be float16, float32, float64.
2533 2534 2535
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2536
            # support the input dtype is float16
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2550 2551


2552 2553 2554 2555 2556 2557 2558
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2559
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2560 2561
    def setUp(self):
        self.op_type = "softplus"
2562 2563
        self.init_dtype()

2564 2565
        beta = 2
        threshold = 15
2566

2567
        np.random.seed(1024)
2568 2569 2570 2571
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2572
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2573 2574

    def test_check_grad(self):
2575 2576
        if self.dtype == np.float16:
            return
2577
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2578

2579

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftplusBF16(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.init_dtype()

        beta = 2
        threshold = 15

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(np.float32)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'beta': beta, "threshold": threshold}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.05)


2609 2610 2611 2612 2613
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2614
        np.random.seed(1024)
2615
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2616
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2617 2618 2619
            else paddle.CPUPlace()

    def test_static_api(self):
2620
        paddle.enable_static()
2621
        with paddle.static.program_guard(paddle.static.Program()):
2622
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2644
        paddle.enable_static()
2645 2646 2647 2648 2649 2650 2651 2652 2653
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2654
        paddle.enable_static()
2655 2656 2657 2658
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2659 2660
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2661 2662
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2663 2664
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2665 2666 2667 2668 2669 2670 2671 2672
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2673
class TestSoftsign(TestActivation):
2674 2675
    def setUp(self):
        self.op_type = "softsign"
2676 2677
        self.init_dtype()

2678
        np.random.seed(1024)
2679 2680 2681
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2682
        self.outputs = {'Out': out}
2683 2684

    def test_check_grad(self):
2685 2686
        if self.dtype == np.float16:
            return
2687
        self.check_grad(['X'], 'Out')
2688 2689


2690 2691 2692
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2693
        np.random.seed(1024)
2694
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2695
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2696 2697 2698
            else paddle.CPUPlace()

    def test_static_api(self):
2699
        paddle.enable_static()
2700
        with paddle.static.program_guard(paddle.static.Program()):
2701
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2723
        paddle.enable_static()
2724 2725 2726 2727 2728 2729 2730 2731 2732
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2733
        paddle.enable_static()
2734 2735 2736 2737
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2738 2739
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2740 2741
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2742 2743
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2744 2745 2746
            F.softsign(x_fp16)


2747 2748 2749 2750 2751
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2752
class TestThresholdedRelu(TestActivation):
2753 2754
    def setUp(self):
        self.op_type = "thresholded_relu"
2755 2756
        self.init_dtype()

2757
        threshold = 15
2758

2759 2760 2761 2762 2763 2764
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2765
        self.outputs = {'Out': out}
2766 2767

    def test_check_grad(self):
2768 2769
        if self.dtype == np.float16:
            return
2770
        self.check_grad(['X'], 'Out')
2771 2772


2773 2774 2775 2776 2777 2778 2779
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2780
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2781 2782 2783 2784 2785
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2786
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2817
    def test_errors(self):
2818 2819
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2820
            # The input type must be Variable.
2821
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2822
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2823 2824
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2825
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2826
            # support the input dtype is float16
J
joejiong 已提交
2827 2828
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2829
            F.thresholded_relu(x_fp16)
2830 2831


2832 2833 2834 2835
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2836
class TestHardSigmoid(TestActivation):
2837 2838
    def setUp(self):
        self.op_type = "hard_sigmoid"
2839 2840 2841 2842
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2843

2844 2845 2846
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2847

2848
        # Same reason as TestAbs
2849 2850 2851
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2852

2853
        out = ref_hardsigmoid(x, self.slope, self.offset)
2854

2855 2856
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2857
        self.outputs = {'Out': out}
2858

2859 2860
    def set_attrs(self):
        pass
2861

2862

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2878
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2879 2880 2881 2882
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2883
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2902
        paddle.enable_static()
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2921
            # The input type must be Variable.
2922
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2923
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2924 2925
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2926
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2927
            # support the input dtype is float16
J
joejiong 已提交
2928 2929
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2930
            F.hardsigmoid(x_fp16)
2931 2932


2933 2934 2935 2936 2937
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2938
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2939 2940
    def setUp(self):
        self.op_type = "swish"
2941
        self.python_api = paddle.nn.functional.swish
2942
        self.init_dtype()
2943
        self.check_eager = True
2944

2945
        np.random.seed(1024)
2946 2947 2948
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2949
        self.attrs = {'beta': 1.0}
2950
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2951 2952

    def test_check_grad(self):
2953 2954
        if self.dtype == np.float16:
            return
2955 2956 2957 2958
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
2959

A
Abhinav Arora 已提交
2960

2961 2962 2963 2964 2965
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2966
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2967 2968 2969 2970 2971
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2972
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

2993 2994 2995 2996
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_dygraph_api()

2997 2998 2999 3000 3001 3002 3003 3004 3005
    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
3006

3007
    def test_errors(self):
3008 3009
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
3010
            # The input type must be Variable.
3011
            self.assertRaises(TypeError, F.swish, 1)
3012
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
3013 3014
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
3015
            self.assertRaises(TypeError, F.swish, x_int32)
3016
            # support the input dtype is float16
J
joejiong 已提交
3017 3018
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
3019
            F.swish(x_fp16)
3020 3021


3022 3023 3024 3025 3026 3027 3028 3029 3030
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
    def setUp(self):
        self.op_type = "mish"
3031
        self.python_api = paddle.fluid.layers.nn.mish
3032 3033 3034 3035 3036 3037 3038 3039
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

3040 3041 3042
    def test_check_output(self):
        self.check_output(check_eager=True)

3043 3044 3045
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
3046
        self.check_grad(['X'], 'Out', check_eager=True)
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            F.mish(x_fp16)


3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
3137
create_test_error_class('tan')
X
xiaoting 已提交
3138 3139 3140
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
3141 3142


3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
3162 3163 3164 3165 3166
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
3167
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
3168 3169 3170 3171
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
3172

C
chengduo 已提交
3173
        def test_check_output(self):
3174
            place = core.CUDAPlace(0)
C
chengduo 已提交
3175 3176 3177
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
3178

C
chengduo 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3192
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3193
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3194
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3195 3196
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3197
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3198
create_test_act_fp16_class(TestHardShrink)
3199
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3200 3201 3202 3203 3204
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3205
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3206
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3207
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3208
create_test_act_fp16_class(TestSin)
3209
create_test_act_fp16_class(TestSinh)
3210 3211
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3212 3213 3214
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3215 3216
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3217
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3218 3219
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3220
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3221
create_test_act_fp16_class(TestELU)
3222
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3223 3224
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3225 3226 3227 3228
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3229
create_test_act_fp16_class(TestLog10, atol=5e-2)
3230
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3231 3232
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3233
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3234 3235 3236 3237 3238
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3239
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3240
create_test_act_fp16_class(TestHardSwish)
3241
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3242

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3270 3271
if __name__ == "__main__":
    unittest.main()