test_activation_op.py 110.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
28
from paddle.fluid.framework import _test_eager_guard
Q
qijun 已提交
29

30 31
paddle.enable_static()

Q
qijun 已提交
32

33
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
49
class TestActivation(OpTest):
Q
qijun 已提交
50 51
    def setUp(self):
        self.op_type = "exp"
52
        self.init_dtype()
53
        self.init_kernel_type()
54
        self.check_eager = False
55

56
        np.random.seed(2049)
57 58 59 60 61
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
62 63

    def test_check_output(self):
64 65 66 67
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_output(check_eager=check_eager)
Q
qijun 已提交
68 69

    def test_check_grad(self):
70 71
        if self.dtype == np.float16:
            return
72 73 74 75
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
Q
qijun 已提交
76

77
    def init_dtype(self):
78
        self.dtype = np.float64
79

80 81 82
    def init_kernel_type(self):
        pass

Q
qijun 已提交
83

R
ronnywang 已提交
84 85 86
class TestExpm1(TestActivation):
    def setUp(self):
        self.op_type = "expm1"
87
        self.python_api = paddle.expm1
R
ronnywang 已提交
88 89 90 91 92 93 94 95 96 97
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
98 99 100 101
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
R
ronnywang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151


class TestExpm1API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


152 153 154
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
155
            np_x = np.array([0.1])
156
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
157
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
158 159
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
160 161 162
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
163 164 165 166 167 168 169

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
170 171 172 173 174
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
175 176


C
chengduo 已提交
177
class TestSigmoid(TestActivation):
Q
qijun 已提交
178 179
    def setUp(self):
        self.op_type = "sigmoid"
180 181
        self.init_dtype()

182
        np.random.seed(1024)
183 184 185 186 187
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
188

189 190 191
    def init_dtype(self):
        self.dtype = np.float32

192
    def test_check_grad(self):
193 194 195 196
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

197

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSigmoidBF16(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


M
minghaoBD 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
292
class TestLogSigmoid(TestActivation):
293 294
    def setUp(self):
        self.op_type = "logsigmoid"
295 296
        self.init_dtype()

297
        np.random.seed(2048)
298 299 300
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

301
        self.inputs = {'X': x}
302
        self.outputs = {'Out': out}
303 304

    def test_check_grad(self):
305 306
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
307
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
308 309


310
class TestLogSigmoidAPI(unittest.TestCase):
311
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
312
    def setUp(self):
313
        np.random.seed(1024)
314
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
315
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
316 317 318
            else paddle.CPUPlace()

    def test_static_api(self):
319
        paddle.enable_static()
320
        with paddle.static.program_guard(paddle.static.Program()):
321
            x = paddle.fluid.data('X', [11, 17])
322
            out1 = F.log_sigmoid(x)
323 324 325 326 327 328
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
329
            self.assertTrue(np.allclose(out_ref, r))
330 331 332 333

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
334
        out1 = F.log_sigmoid(x)
335 336 337 338
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
339
            self.assertTrue(np.allclose(out_ref, r.numpy()))
340 341
        paddle.enable_static()

342
    def test_fluid_api(self):
343
        paddle.enable_static()
344
        with paddle.static.program_guard(paddle.static.Program()):
345
            x = paddle.fluid.data('X', [11, 17])
346 347 348 349 350 351
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

352
    def test_errors(self):
353
        paddle.enable_static()
354 355
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
356
            self.assertRaises(TypeError, F.log_sigmoid, 1)
357
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
358 359
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
360
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
361
            # support the input dtype is float16
J
joejiong 已提交
362 363
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
364
            F.log_sigmoid(x_fp16)
365 366


367
class TestTanh(TestActivation, TestParameter):
368 369
    def setUp(self):
        self.op_type = "tanh"
370
        self.init_dtype()
371
        np.random.seed(1024)
372 373 374 375 376
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
377 378

    def test_check_grad(self):
379 380
        if self.dtype == np.float16:
            return
381
        self.check_grad(['X'], 'Out')
382

383 384 385 386 387 388
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

389

W
WangXi 已提交
390 391 392 393
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
394
        np.random.seed(1024)
W
WangXi 已提交
395
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
396
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
397
            else paddle.CPUPlace()
398 399 400 401
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
402 403

    def test_static_api(self):
404
        paddle.enable_static()
W
WangXi 已提交
405
        with paddle.static.program_guard(paddle.static.Program()):
406
            x = paddle.fluid.data('X', [10, 12], self.dtype)
407
            out1 = self.tanh(x)
W
WangXi 已提交
408 409 410 411 412 413 414 415 416 417
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
418
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
419 420 421 422 423 424 425 426 427 428
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
429
        paddle.enable_static()
W
WangXi 已提交
430 431 432 433 434 435 436 437 438
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
439
        paddle.enable_static()
W
WangXi 已提交
440 441
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
442
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
443
            # The input dtype must be float16, float32.
J
joejiong 已提交
444 445
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
446
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
447
            # support the input dtype is float16
J
joejiong 已提交
448 449
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
450 451 452 453 454 455 456
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
457 458


459
class TestAtan(TestActivation, TestParameter):
460 461 462 463
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

464
        np.random.seed(1024)
465 466 467 468 469 470 471 472 473
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
474
        self.check_grad(['X'], 'Out')
475

W
WuHaobo 已提交
476 477 478 479 480 481 482 483 484 485 486
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

487 488 489 490 491 492 493 494
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

495

496 497 498 499 500
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

501
        np.random.seed(1024)
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

573
        np.random.seed(1024)
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


640 641 642 643 644 645
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
646 647
    def setUp(self):
        self.op_type = "tanh_shrink"
648 649
        self.init_dtype()

650
        np.random.seed(1024)
651 652
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
653

654
        self.inputs = {'X': x}
655
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
656 657

    def test_check_grad(self):
658 659
        if self.dtype == np.float16:
            return
660
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
661

662

663 664 665
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
666
        np.random.seed(1024)
667
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
668
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
669 670 671
            else paddle.CPUPlace()

    def test_static_api(self):
672
        paddle.enable_static()
673
        with paddle.static.program_guard(paddle.static.Program()):
674
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
696
        paddle.enable_static()
697 698 699 700 701 702 703 704 705
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
706
        paddle.enable_static()
707 708 709 710
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
711 712
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
713 714
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
715 716
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
717 718 719
            F.tanhshrink(x_fp16)


720 721 722 723 724 725
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
726
class TestHardShrink(TestActivation):
727 728
    def setUp(self):
        self.op_type = "hard_shrink"
729 730
        self.init_dtype()

731 732
        self.threshold = 0.5
        self.set_attrs()
733
        np.random.seed(1024)
Z
zhupengyang 已提交
734
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
735
        out = ref_hardshrink(x, self.threshold)
736

737
        self.attrs = {'threshold': self.threshold}
738
        self.inputs = {'X': x}
739
        self.outputs = {'Out': out}
740

741 742 743
    def set_attrs(self):
        pass

744
    def test_check_grad(self):
745 746
        if self.dtype == np.float16:
            return
747
        self.check_grad(['X'], 'Out')
748 749


750 751 752 753 754
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


755 756 757
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
758
        np.random.seed(1024)
759
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
760
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
761 762 763
            else paddle.CPUPlace()

    def test_static_api(self):
764
        paddle.enable_static()
765
        with paddle.static.program_guard(paddle.static.Program()):
766
            x = paddle.fluid.data('X', [10, 12])
767 768 769 770 771 772 773 774 775 776 777
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
778
        x = paddle.to_tensor(self.x_np)
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
795
        paddle.enable_static()
796 797 798 799 800 801 802 803
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

804
    def test_errors(self):
805
        paddle.enable_static()
806
        with paddle.static.program_guard(paddle.static.Program()):
807
            # The input type must be Variable.
808
            self.assertRaises(TypeError, F.hardshrink, 1)
809
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
810 811
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
812
            self.assertRaises(TypeError, F.hardshrink, x_int32)
813
            # support the input dtype is float16
J
joejiong 已提交
814 815
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
816
            F.hardshrink(x_fp16)
817 818


819 820 821 822 823 824 825 826 827 828 829
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
830
        np.random.seed(1024)
831
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
832
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
833 834 835
            else paddle.CPUPlace()

    def test_static_api(self):
836
        paddle.enable_static()
837
        with paddle.static.program_guard(paddle.static.Program()):
838
            x = paddle.fluid.data('X', [10, 12])
839 840 841 842 843 844 845 846 847 848 849
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
850
        x = paddle.to_tensor(self.x_np)
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
867
        paddle.enable_static()
868 869 870 871
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
872 873
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
874 875
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
876 877
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
878 879 880
            F.hardtanh(x_fp16)


881 882 883 884 885 886 887 888
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
889 890
    def setUp(self):
        self.op_type = "softshrink"
891 892
        self.check_eager = True
        self.python_api = paddle.nn.functional.softshrink
893 894
        self.init_dtype()

895
        threshold = 0.8
896

897
        np.random.seed(1023)
898 899 900 901
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
902
        self.outputs = {'Out': out}
903 904

    def test_check_grad(self):
905 906
        if self.dtype == np.float16:
            return
907
        self.check_grad(['X'], 'Out', check_eager=True)
908

909

910 911 912 913
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
914
        np.random.seed(1024)
915
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
916
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
917 918 919
            else paddle.CPUPlace()

    def test_static_api(self):
920
        paddle.enable_static()
921
        with paddle.static.program_guard(paddle.static.Program()):
922
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
944
        paddle.enable_static()
945 946 947 948 949 950 951 952
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

953
    def test_errors(self):
954
        paddle.enable_static()
955
        with paddle.static.program_guard(paddle.static.Program()):
956
            # The input type must be Variable.
957
            self.assertRaises(TypeError, F.softshrink, 1)
958
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
959 960
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
961
            self.assertRaises(TypeError, F.softshrink, x_int32)
962
            # The threshold must be no less than zero
J
joejiong 已提交
963 964
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
965
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
966
            # support the input dtype is float16
J
joejiong 已提交
967 968
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
969
            F.softshrink(x_fp16)
970 971


972
class TestSqrt(TestActivation, TestParameter):
973 974
    def setUp(self):
        self.op_type = "sqrt"
975
        self.python_api = paddle.sqrt
976 977
        self.init_dtype()

978
        np.random.seed(1023)
979 980 981 982 983
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
984 985

    def test_check_grad(self):
986 987
        if self.dtype == np.float16:
            return
988 989 990 991
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
992

993

994 995 996 997 998
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSqrtBF16(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
999
        self.python_api = paddle.sqrt
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        self.init_dtype()

        np.random.seed(1023)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.sqrt(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
1016
        self.check_output_with_place(place, check_eager=True)
1017 1018 1019

    def test_check_grad(self):
        place = core.CUDAPlace(0)
1020
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
1021 1022


Z
zhoukunsheng 已提交
1023 1024 1025 1026 1027
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

1028
        np.random.seed(1024)
Z
zhupengyang 已提交
1029
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
1041
class TestAbs(TestActivation):
1042 1043
    def setUp(self):
        self.op_type = "abs"
1044 1045
        self.init_dtype()

1046
        np.random.seed(1024)
1047
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
1048
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
1049
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
1050
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
1051 1052
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
1053 1054 1055 1056
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1057 1058

    def test_check_grad(self):
1059 1060
        if self.dtype == np.float16:
            return
1061
        self.check_grad(['X'], 'Out', check_eager=False)
1062

1063

C
chengduo 已提交
1064
class TestCeil(TestActivation):
D
dzhwinter 已提交
1065 1066
    def setUp(self):
        self.op_type = "ceil"
1067 1068
        self.check_eager = True
        self.python_api = paddle.ceil
1069 1070
        self.init_dtype()

1071
        np.random.seed(1024)
Z
zhupengyang 已提交
1072
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1073 1074 1075 1076
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1077

D
dzhwinter 已提交
1078
    # The same reason with TestFloor
C
chengduo 已提交
1079
    def test_check_grad(self):
1080 1081 1082
        pass


C
chengduo 已提交
1083
class TestFloor(TestActivation):
D
dzhwinter 已提交
1084 1085
    def setUp(self):
        self.op_type = "floor"
1086 1087
        self.check_eager = True
        self.python_api = paddle.floor
1088 1089
        self.init_dtype()

1090
        np.random.seed(1024)
Z
zhupengyang 已提交
1091
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1092 1093 1094 1095
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1096

D
dzhwinter 已提交
1097
    # the gradient on floor, ceil, round is undefined.
1098
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1099 1100
    # The same reason with TestFloor
    def test_check_grad(self):
1101 1102 1103
        pass


C
chengduo 已提交
1104
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
1105 1106
    def setUp(self):
        self.op_type = "cos"
1107 1108
        self.init_dtype()

1109
        np.random.seed(1024)
Z
zhupengyang 已提交
1110
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1111 1112 1113 1114
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1115 1116

    def test_check_grad(self):
1117 1118
        if self.dtype == np.float16:
            return
1119
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
1120

1121

J
joejiong 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1173 1174 1175 1176 1177
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1178
        np.random.seed(1024)
Z
zhupengyang 已提交
1179
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1180 1181 1182 1183 1184 1185 1186 1187
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1188
        self.check_grad(['X'], 'Out')
1189 1190


1191
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1192 1193
    def setUp(self):
        self.op_type = "sin"
1194 1195
        self.init_dtype()

1196
        np.random.seed(1024)
Z
zhupengyang 已提交
1197
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1198 1199 1200 1201
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1202 1203

    def test_check_grad(self):
1204 1205
        if self.dtype == np.float16:
            return
1206
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1207 1208


1209 1210 1211 1212 1213
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1214
        np.random.seed(2048)
Z
zhupengyang 已提交
1215
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1216 1217 1218 1219 1220 1221 1222 1223
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1224
        self.check_grad(['X'], 'Out')
1225 1226


X
xiaoting 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
class TestAcosh(TestActivation):
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAsinh(TestActivation):
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAtanh(TestActivation):
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


C
chengduo 已提交
1281
class TestRound(TestActivation):
D
dzhwinter 已提交
1282 1283
    def setUp(self):
        self.op_type = "round"
1284 1285
        self.check_eager = True
        self.python_api = paddle.round
1286 1287
        self.init_dtype()

1288
        np.random.seed(1024)
Z
zhupengyang 已提交
1289
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1290 1291 1292 1293
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1294

C
chengduo 已提交
1295
    def test_check_grad(self):
1296 1297 1298
        pass


C
chengduo 已提交
1299
class TestRelu(TestActivation):
1300
    def setUp(self):
Q
qijun 已提交
1301
        self.op_type = "relu"
K
Kexin Zhao 已提交
1302 1303
        self.init_dtype()

1304
        np.random.seed(1024)
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1317 1318

        self.outputs = {'Out': out}
1319 1320

    def test_check_grad(self):
K
Kexin Zhao 已提交
1321 1322
        if self.dtype == np.float16:
            return
1323
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1324 1325


1326 1327 1328
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1329
        np.random.seed(1024)
1330
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1331
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1332
            else paddle.CPUPlace()
1333 1334 1335 1336
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1337 1338

    def test_static_api(self):
1339
        paddle.enable_static()
1340
        with paddle.static.program_guard(paddle.static.Program()):
1341
            x = paddle.fluid.data('X', [10, 12])
1342
            out1 = self.relu(x)
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1355 1356
        out1 = m(x)
        out2 = self.relu(x)
1357 1358 1359 1360 1361
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1362
    def test_errors(self):
1363
        paddle.enable_static()
1364
        with paddle.static.program_guard(paddle.static.Program()):
1365
            # The input type must be Variable.
1366
            self.assertRaises(TypeError, self.relu, 1)
1367
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1368 1369
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1370
            self.assertRaises(TypeError, self.relu, x_int32)
1371
            # support the input dtype is float16
J
joejiong 已提交
1372 1373
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1374 1375 1376 1377 1378 1379 1380
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1381 1382


1383 1384 1385 1386 1387 1388
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1389
class TestLeakyRelu(TestActivation):
1390 1391 1392
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1393 1394 1395
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1396
        alpha = self.get_alpha()
A
Adam 已提交
1397

1398
        np.random.seed(1024)
A
Adam 已提交
1399 1400
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1401 1402
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1403

1404
        self.inputs = {'X': x}
A
Adam 已提交
1405
        self.outputs = {'Out': out}
1406
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1407 1408 1409 1410

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1411
        self.check_grad(['X'], 'Out')
1412 1413


1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1433
        np.random.seed(1024)
1434
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1435
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1436 1437 1438
            else paddle.CPUPlace()

    def test_static_api(self):
1439
        paddle.enable_static()
1440
        with paddle.static.program_guard(paddle.static.Program()):
1441
            x = paddle.fluid.data('X', [10, 12])
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1453
        x = paddle.to_tensor(self.x_np)
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1470
        paddle.enable_static()
1471 1472 1473 1474 1475 1476 1477 1478
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1479
    def test_errors(self):
1480
        paddle.enable_static()
1481
        with paddle.static.program_guard(paddle.static.Program()):
1482
            # The input type must be Variable.
1483
            self.assertRaises(TypeError, F.leaky_relu, 1)
1484
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1485 1486
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1487 1488
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1489 1490
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1491
            F.leaky_relu(x_fp16)
1492 1493


1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1504 1505 1506
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1507
        approximate = True
1508
        np.random.seed(1024)
1509 1510
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1511

1512
        self.inputs = {'X': x}
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1527
        np.random.seed(2048)
C
Clementine 已提交
1528
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1529
        out = gelu(x, approximate)
C
Clementine 已提交
1530

1531
        self.inputs = {'X': x}
C
Clementine 已提交
1532
        self.outputs = {'Out': out}
1533
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1534 1535 1536 1537

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1538
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1539 1540


1541 1542 1543
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1544
        np.random.seed(1024)
1545
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1546
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1547 1548 1549
            else paddle.CPUPlace()

    def test_static_api(self):
1550
        paddle.enable_static()
1551
        with paddle.static.program_guard(paddle.static.Program()):
1552
            x = paddle.fluid.data('X', [11, 17])
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1581
        paddle.enable_static()
1582 1583 1584 1585
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1586 1587
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1588 1589
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1590 1591
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1592 1593 1594
            F.gelu(x_fp16)


C
chengduo 已提交
1595
class TestBRelu(TestActivation):
1596 1597
    def setUp(self):
        self.op_type = "brelu"
1598 1599
        self.init_dtype()

1600
        np.random.seed(1024)
Z
zhupengyang 已提交
1601
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1602 1603
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1604 1605
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1606
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1607 1608 1609
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1610 1611 1612

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1613
        self.outputs = {'Out': t}
1614 1615

    def test_check_grad(self):
1616 1617
        if self.dtype == np.float16:
            return
1618
        self.check_grad(['X'], 'Out')
1619

1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1632
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1662 1663 1664 1665 1666 1667 1668
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1669
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1670
    def setUp(self):
1671
        self.op_type = "relu6"
1672 1673
        self.init_dtype()

1674
        np.random.seed(1024)
Z
zhupengyang 已提交
1675
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1676
        x[np.abs(x) < 0.005] = 0.02
1677
        out = ref_relu6(x)
1678

1679 1680
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1681
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1682

1683 1684 1685
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1686
        self.check_grad(['X'], 'Out')
1687 1688


1689 1690 1691
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1692
        np.random.seed(1024)
1693 1694
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1695
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1696 1697 1698
            else paddle.CPUPlace()

    def test_static_api(self):
1699
        paddle.enable_static()
1700
        with paddle.static.program_guard(paddle.static.Program()):
1701
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1723
        paddle.enable_static()
1724 1725 1726 1727 1728 1729 1730 1731
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1732
    def test_errors(self):
1733
        paddle.enable_static()
1734
        with paddle.static.program_guard(paddle.static.Program()):
1735
            # The input type must be Variable.
1736
            self.assertRaises(TypeError, F.relu6, 1)
1737
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1738 1739
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1740
            self.assertRaises(TypeError, F.relu6, x_int32)
1741
            # support the input dtype is float16
J
joejiong 已提交
1742 1743
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1744
            F.relu6(x_fp16)
1745 1746


1747 1748 1749 1750 1751
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1752 1753 1754 1755
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()
Y
YuanRisheng 已提交
1756
        self.python_api = paddle.nn.functional.hardswish
J
jakpiase 已提交
1757 1758
        skip_check_grad_ci(reason="not implemented yet")

1759
        np.random.seed(1024)
Z
zhupengyang 已提交
1760
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1761 1762 1763 1764 1765 1766
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1767
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1768

1769
        self.inputs = {'X': x}
H
huangjun12 已提交
1770 1771 1772 1773 1774 1775
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1776 1777

        return  # not implemented yet
Y
YuanRisheng 已提交
1778 1779 1780 1781
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
H
huangjun12 已提交
1782 1783


1784 1785 1786 1787
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1788
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1789 1790 1791 1792
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1793
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1812
        paddle.enable_static()
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1831
            # The input type must be Variable.
1832
            self.assertRaises(TypeError, F.hardswish, 1)
1833
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1834 1835
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1836
            self.assertRaises(TypeError, F.hardswish, x_int32)
1837
            # support the input dtype is float16
J
joejiong 已提交
1838 1839
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1840
            F.hardswish(x_fp16)
1841

Y
YuanRisheng 已提交
1842 1843 1844 1845 1846
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph_api()
            self.test_errors()

1847

C
chengduo 已提交
1848
class TestSoftRelu(TestActivation):
1849 1850
    def setUp(self):
        self.op_type = "soft_relu"
1851 1852
        self.init_dtype()

1853
        np.random.seed(4096)
1854
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1855
        threshold = 2.0
Q
qijun 已提交
1856 1857
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1858
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1859 1860 1861
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1862 1863 1864 1865 1866
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1867 1868

    def test_check_grad(self):
1869 1870
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1871
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1872

1873

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1887
def elu(x, alpha):
Z
zhupengyang 已提交
1888
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1889 1890 1891
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1892
class TestELU(TestActivation):
1893 1894
    def setUp(self):
        self.op_type = "elu"
1895 1896
        self.init_dtype()

1897
        np.random.seed(1024)
Z
zhupengyang 已提交
1898
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1899
        alpha = self.get_alpha()
1900
        out = elu(x, alpha)
1901 1902 1903 1904
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1905
        self.outputs = {'Out': out}
1906 1907

    def test_check_grad(self):
1908 1909
        if self.dtype == np.float16:
            return
1910
        self.check_grad(['X'], 'Out')
1911

Z
zhupengyang 已提交
1912 1913 1914 1915 1916 1917 1918 1919
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
    def get_alpha(self):
        return -0.2

1920

1921 1922 1923
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1924
        np.random.seed(1024)
1925
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1926
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1927
            else paddle.CPUPlace()
1928 1929 1930 1931
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1932 1933

    def test_static_api(self):
1934
        paddle.enable_static()
1935
        with paddle.static.program_guard(paddle.static.Program()):
1936
            x = paddle.fluid.data('X', [10, 12])
1937
            out1 = self.elu(x)
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1949 1950
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1951 1952 1953 1954 1955 1956
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1957 1958
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1959 1960 1961 1962 1963 1964 1965
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1966
    def test_errors(self):
1967
        paddle.enable_static()
1968 1969
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1970
            self.assertRaises(TypeError, self.elu, 1)
1971
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1972 1973
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1974
            self.assertRaises(TypeError, self.elu, x_int32)
1975
            # support the input dtype is float16
J
joejiong 已提交
1976 1977
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1978 1979 1980
            self.elu(x_fp16)


Z
zhupengyang 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[10, 12], dtype='float32')
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
            self.celu(x_fp16)


C
chengduo 已提交
2081
class TestReciprocal(TestActivation):
Q
qijun 已提交
2082 2083
    def setUp(self):
        self.op_type = "reciprocal"
2084
        self.python_api = paddle.reciprocal
2085 2086
        self.init_dtype()

2087
        np.random.seed(1024)
2088 2089 2090 2091 2092
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2093 2094

    def test_check_grad(self):
2095 2096
        if self.dtype == np.float16:
            return
2097 2098 2099 2100
        self.check_grad(['X'], 'Out', max_relative_error=0.01, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2101 2102


C
chengduo 已提交
2103
class TestLog(TestActivation):
Q
qijun 已提交
2104 2105
    def setUp(self):
        self.op_type = "log"
2106 2107
        self.check_eager = True
        self.python_api = paddle.log
2108 2109
        self.init_dtype()

2110
        np.random.seed(1024)
2111 2112 2113 2114 2115
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2116 2117

    def test_check_grad(self):
2118 2119
        if self.dtype == np.float16:
            return
2120
        self.check_grad(['X'], 'Out', check_eager=True)
Q
qijun 已提交
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2131

J
joejiong 已提交
2132 2133 2134
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
2135 2136
        self.check_eager = True
        self.python_api = paddle.log2
J
joejiong 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2148
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2183 2184 2185
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
2186 2187
        self.check_eager = True
        self.python_api = paddle.log10
J
joejiong 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2199
        self.check_grad(['X'], 'Out', check_eager=True)
J
joejiong 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2234 2235 2236
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
2237 2238
        self.check_eager = True
        self.python_api = paddle.log1p
2239 2240
        self.init_dtype()

2241
        np.random.seed(1024)
2242 2243 2244 2245 2246 2247 2248 2249 2250
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2251
        self.check_grad(['X'], 'Out', check_eager=True)
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2265 2266 2267
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2268
        expected_res = np.log1p(input_x)
2269
        self.assertTrue(np.allclose(res1, expected_res))
2270 2271 2272 2273 2274 2275 2276 2277

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2278
        self.assertTrue(np.allclose(np_z, z_expected))
2279 2280


C
chengduo 已提交
2281
class TestSquare(TestActivation):
Q
qijun 已提交
2282 2283
    def setUp(self):
        self.op_type = "square"
2284
        self.python_api = paddle.square
2285 2286
        self.init_dtype()

2287
        np.random.seed(1024)
2288 2289 2290 2291 2292
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2293 2294

    def test_check_grad(self):
2295 2296
        if self.dtype == np.float16:
            return
2297 2298 2299 2300 2301
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.007, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2302

2303

2304 2305 2306 2307 2308
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSquareBF16(OpTest):
    def setUp(self):
        self.op_type = "square"
2309
        self.python_api = paddle.square
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.square(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
2326
        self.check_output_with_place(place, check_eager=True)
2327 2328 2329

    def test_check_grad(self):
        place = core.CUDAPlace(0)
2330 2331
        self.check_grad_with_place(
            place, ['X'], 'Out', numeric_grad_delta=0.5, check_eager=True)
2332 2333


C
chengduo 已提交
2334
class TestPow(TestActivation):
2335 2336
    def setUp(self):
        self.op_type = "pow"
2337
        self.python_api = paddle.pow
2338
        self.check_eager = True
2339 2340
        self.init_dtype()

2341
        np.random.seed(1024)
2342 2343 2344 2345
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2346
        self.attrs = {'factor': 3.0}
2347
        self.outputs = {'Out': out}
2348

2349 2350 2351
    def test_check_output(self):
        self.check_output(check_eager=self.check_eager)

2352
    def test_check_grad(self):
2353 2354
        if self.dtype == np.float16:
            return
2355
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2356

2357

2358 2359 2360
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
2361 2362
        self.check_eager = False
        self.python_api = paddle.pow
2363 2364
        self.init_dtype()

2365
        np.random.seed(1024)
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
2378
        self.check_output(check_eager=self.check_eager)
2379 2380 2381 2382

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2383
        self.check_grad(['X'], 'Out', check_eager=self.check_eager)
2384 2385 2386 2387 2388

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2389 2390 2391 2392 2393
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2394 2395 2396 2397 2398

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2399 2400 2401
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2402 2403

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2404
        res_1, res_2, res, res_6 = exe.run(
2405 2406
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2407
            fetch_list=[out_1, out_2, res, out_6])
2408

2409 2410 2411
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2412

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2436

2437 2438 2439 2440 2441
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2442
class TestSTanh(TestActivation):
2443 2444 2445 2446 2447 2448
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2449 2450
    def setUp(self):
        self.op_type = "stanh"
2451
        self.init_dtype()
2452 2453
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2454

2455
        np.random.seed(1024)
2456
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2457 2458
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2459

2460
        self.inputs = {'X': x}
2461
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2462
        self.outputs = {'Out': out}
2463

Q
qijun 已提交
2464
    def test_check_grad(self):
2465 2466
        if self.dtype == np.float16:
            return
2467
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2468

2469

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2526
    def test_errors(self):
2527 2528
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2529
            # The input type must be Variable.
2530
            self.assertRaises(TypeError, paddle.stanh, 1)
2531
            # The input dtype must be float16, float32, float64.
2532 2533 2534
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2535
            # support the input dtype is float16
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2549 2550


2551 2552 2553 2554 2555 2556 2557
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2558
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2559 2560
    def setUp(self):
        self.op_type = "softplus"
2561 2562
        self.init_dtype()

2563 2564
        beta = 2
        threshold = 15
2565

2566
        np.random.seed(1024)
2567 2568 2569 2570
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2571
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2572 2573

    def test_check_grad(self):
2574 2575
        if self.dtype == np.float16:
            return
2576
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2577

2578

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftplusBF16(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.init_dtype()

        beta = 2
        threshold = 15

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(np.float32)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'beta': beta, "threshold": threshold}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.05)


2608 2609 2610 2611 2612
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2613
        np.random.seed(1024)
2614
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2615
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2616 2617 2618
            else paddle.CPUPlace()

    def test_static_api(self):
2619
        paddle.enable_static()
2620
        with paddle.static.program_guard(paddle.static.Program()):
2621
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2643
        paddle.enable_static()
2644 2645 2646 2647 2648 2649 2650 2651 2652
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2653
        paddle.enable_static()
2654 2655 2656 2657
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2658 2659
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2660 2661
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2662 2663
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2664 2665 2666 2667 2668 2669 2670 2671
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2672
class TestSoftsign(TestActivation):
2673 2674
    def setUp(self):
        self.op_type = "softsign"
2675 2676
        self.init_dtype()

2677
        np.random.seed(1024)
2678 2679 2680
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2681
        self.outputs = {'Out': out}
2682 2683

    def test_check_grad(self):
2684 2685
        if self.dtype == np.float16:
            return
2686
        self.check_grad(['X'], 'Out')
2687 2688


2689 2690 2691
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2692
        np.random.seed(1024)
2693
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2694
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2695 2696 2697
            else paddle.CPUPlace()

    def test_static_api(self):
2698
        paddle.enable_static()
2699
        with paddle.static.program_guard(paddle.static.Program()):
2700
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2722
        paddle.enable_static()
2723 2724 2725 2726 2727 2728 2729 2730 2731
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2732
        paddle.enable_static()
2733 2734 2735 2736
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2737 2738
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2739 2740
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2741 2742
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2743 2744 2745
            F.softsign(x_fp16)


2746 2747 2748 2749 2750
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2751
class TestThresholdedRelu(TestActivation):
2752 2753
    def setUp(self):
        self.op_type = "thresholded_relu"
2754 2755
        self.init_dtype()

2756
        threshold = 15
2757

2758 2759 2760 2761 2762 2763
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2764
        self.outputs = {'Out': out}
2765 2766

    def test_check_grad(self):
2767 2768
        if self.dtype == np.float16:
            return
2769
        self.check_grad(['X'], 'Out')
2770 2771


2772 2773 2774 2775 2776 2777 2778
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2779
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2780 2781 2782 2783 2784
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2785
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2816
    def test_errors(self):
2817 2818
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2819
            # The input type must be Variable.
2820
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2821
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2822 2823
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2824
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2825
            # support the input dtype is float16
J
joejiong 已提交
2826 2827
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2828
            F.thresholded_relu(x_fp16)
2829 2830


2831 2832 2833 2834
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2835
class TestHardSigmoid(TestActivation):
2836 2837
    def setUp(self):
        self.op_type = "hard_sigmoid"
2838 2839 2840 2841
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2842

2843 2844 2845
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2846

2847
        # Same reason as TestAbs
2848 2849 2850
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2851

2852
        out = ref_hardsigmoid(x, self.slope, self.offset)
2853

2854 2855
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2856
        self.outputs = {'Out': out}
2857

2858 2859
    def set_attrs(self):
        pass
2860

2861

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2877
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2878 2879 2880 2881
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2882
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2901
        paddle.enable_static()
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2920
            # The input type must be Variable.
2921
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2922
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2923 2924
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2925
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2926
            # support the input dtype is float16
J
joejiong 已提交
2927 2928
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2929
            F.hardsigmoid(x_fp16)
2930 2931


2932 2933 2934 2935 2936
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2937
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2938 2939
    def setUp(self):
        self.op_type = "swish"
2940
        self.python_api = paddle.nn.functional.swish
2941
        self.init_dtype()
2942
        self.check_eager = True
2943

2944
        np.random.seed(1024)
2945 2946 2947
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2948
        self.attrs = {'beta': 1.0}
2949
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2950 2951

    def test_check_grad(self):
2952 2953
        if self.dtype == np.float16:
            return
2954 2955 2956 2957
        check_eager = False
        if hasattr(self, 'check_eager'):
            check_eager = self.check_eager
        self.check_grad(['X'], 'Out', check_eager=check_eager)
2958

A
Abhinav Arora 已提交
2959

2960 2961 2962 2963 2964
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2965
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2966 2967 2968 2969 2970
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2971
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

2992 2993 2994 2995
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_dygraph_api()

2996 2997 2998 2999 3000 3001 3002 3003 3004
    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
3005

3006
    def test_errors(self):
3007 3008
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
3009
            # The input type must be Variable.
3010
            self.assertRaises(TypeError, F.swish, 1)
3011
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
3012 3013
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
3014
            self.assertRaises(TypeError, F.swish, x_int32)
3015
            # support the input dtype is float16
J
joejiong 已提交
3016 3017
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
3018
            F.swish(x_fp16)
3019 3020


3021 3022 3023 3024 3025 3026 3027 3028 3029
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
    def setUp(self):
        self.op_type = "mish"
3030
        self.python_api = paddle.fluid.layers.nn.mish
3031 3032 3033 3034 3035 3036 3037 3038
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

3039 3040 3041
    def test_check_output(self):
        self.check_output(check_eager=True)

3042 3043 3044
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
3045
        self.check_grad(['X'], 'Out', check_eager=True)
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            F.mish(x_fp16)


3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
3136
create_test_error_class('tan')
X
xiaoting 已提交
3137 3138 3139
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
3140 3141


3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
3161 3162 3163 3164 3165
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
3166
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
3167 3168 3169 3170
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
3171

C
chengduo 已提交
3172
        def test_check_output(self):
3173
            place = core.CUDAPlace(0)
C
chengduo 已提交
3174 3175 3176
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
3177

C
chengduo 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3191
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3192
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3193
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3194 3195
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3196
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3197
create_test_act_fp16_class(TestHardShrink)
3198
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3199 3200 3201 3202 3203
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3204
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3205
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3206
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3207
create_test_act_fp16_class(TestSin)
3208
create_test_act_fp16_class(TestSinh)
3209 3210
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3211 3212 3213
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3214 3215
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3216
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3217 3218
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3219
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3220
create_test_act_fp16_class(TestELU)
3221
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3222 3223
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3224 3225 3226 3227
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3228
create_test_act_fp16_class(TestLog10, atol=5e-2)
3229
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3230 3231
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3232
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3233 3234 3235 3236 3237
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3238
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3239
create_test_act_fp16_class(TestHardSwish)
3240
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3241

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3269 3270
if __name__ == "__main__":
    unittest.main()