imperative.cc 123.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

J
Jiabin Yang 已提交
32
#include "paddle/fluid/eager/api/all.h"
33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/scope_guard.h"
35
#include "paddle/fluid/imperative/all_reduce.h"
36
#include "paddle/fluid/imperative/amp_auto_cast.h"
37
#include "paddle/fluid/imperative/basic_engine.h"
38
#include "paddle/fluid/imperative/bkcl_context.h"
39
#include "paddle/fluid/imperative/cncl_context.h"
40
#include "paddle/fluid/imperative/data_loader.h"
41
#include "paddle/fluid/imperative/gloo_context.h"
42
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
43
#include "paddle/fluid/imperative/heter_ccl_context.h"
44
#include "paddle/fluid/imperative/hooks.h"
45
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
46
#include "paddle/fluid/imperative/nccl_context.h"
47
#include "paddle/fluid/imperative/partial_grad_engine.h"
48
#include "paddle/fluid/imperative/profiler.h"
49
#include "paddle/fluid/imperative/py_layer_fwd.h"
50
#include "paddle/fluid/imperative/reducer.h"
51
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
52
#include "paddle/fluid/imperative/type_defs.h"
53
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
54
#include "paddle/fluid/operators/utils.h"
55
#include "paddle/fluid/pybind/eager_utils.h"
56
#include "paddle/fluid/pybind/op_function.h"
57
#include "paddle/fluid/pybind/pybind_boost_headers.h"
J
Jiabin Yang 已提交
58
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
59
#include "paddle/fluid/pybind/tensor_py.h"
60
#include "paddle/fluid/pybind/uva_utils.h"
61
#include "paddle/phi/core/compat/arg_map_context.h"
62
#include "paddle/phi/core/compat/type_defs.h"
63
#include "paddle/phi/core/type_defs.h"
64

65 66 67
namespace paddle {
namespace pybind {

68 69
PyTypeObject *g_varbase_pytype = nullptr;

70 71
namespace py = ::pybind11;

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
      res = PyObject_CallFunctionObjArgs(py_func_, py::cast(tmp_varbase).ptr(),
                                         nullptr);
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
124 125 126 127 128
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
129 130 131 132 133 134
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
135 136 137 138 139
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
140 141
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
142 143
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
144 145
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
146 147
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
F
fwenguang 已提交
148 149
  } else if (py::isinstance<platform::MLUPlace>(place_obj)) {
    return place_obj.cast<platform::MLUPlace>();
150 151
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
152 153
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
154
        "Place should be one of "
155 156
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/MLUPlace/"
        "CustomPlace"));
L
Leo Chen 已提交
157 158 159
  }
}

L
Leo Chen 已提交
160 161 162 163 164 165 166 167 168 169
// only initialize varbase, but not its tensor.
static void InitVarBaseOnly(imperative::VarBase *self, const std::string &name,
                            bool persistable = false, int stop_gradient = -1) {
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
170
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
static void InitVarBaseAndTensor(
    imperative::VarBase *self, const py::array &array,
    const platform::Place &place, const std::string &name,
    bool persistable = false, bool zero_copy = false, int stop_gradient = -1) {
  InitVarBaseOnly(self, name, persistable, stop_gradient);
185
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
186
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
187
  if (platform::is_cpu_place(place)) {
188
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
189
  } else if (platform::is_xpu_place(place)) {
190
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
191
  } else if (platform::is_gpu_place(place)) {
192
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
193
  } else if (platform::is_cuda_pinned_place(place)) {
194 195
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(tensor, array, place,
                                                    zero_copy);
196
  } else if (platform::is_npu_place(place)) {
197
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
F
fwenguang 已提交
198
  } else if (platform::is_mlu_place(place)) {
199
    SetTensorFromPyArray<platform::MLUPlace>(tensor, array, place, zero_copy);
200 201 202
  } else if (platform::is_custom_place(place)) {
    SetTensorFromPyArray<platform::CustomPlace>(tensor, array, place,
                                                zero_copy);
203
  } else {
L
Leo Chen 已提交
204
    PADDLE_THROW(platform::errors::InvalidArgument(
205
        "Place should be one of "
F
fwenguang 已提交
206
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/MLUPlace"));
J
Jiabin Yang 已提交
207
  }
208
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
209 210 211 212
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
213
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
214 215 216 217 218 219
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
220 221 222
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
223
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
224 225 226 227 228 229 230 231 232 233 234 235

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
    InitVarBaseAndTensor(self, array, place, name, persistable, zero_copy,
                         stop_gradient);
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
236
}
237

238 239 240
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
241 242
                                        bool persistable = false,
                                        bool zero_copy = false,
243 244 245 246 247
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
248
  if (name == "") {
249 250
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
251
  }
252 253
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
254
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
255
  new (self) imperative::VarBase(name);
256 257
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
258 259 260
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
261 262
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
263
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
264 265 266
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
267 268
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
269
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
270
  InitVarBaseAndTensor(self, array, place, "");
271
}
272

B
Baibaifan 已提交
273 274 275
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
                                                const framework::Tensor &tensor,
                                                const std::string &name) {
276 277
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
B
Baibaifan 已提交
278 279 280 281 282
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;
  new (self) imperative::VarBase(name_);
283 284
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
285
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
286 287 288 289 290 291 292 293 294 295 296
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

297 298 299
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
                                         const framework::Tensor &tensor,
B
Baibaifan 已提交
300 301
                                         const P &place,
                                         const std::string &name) {
302
  VLOG(4) << "Init VarBase";
B
Baibaifan 已提交
303 304 305 306 307
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;
  new (self) imperative::VarBase(name_);
308 309
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
310
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
311 312 313 314 315 316 317 318 319 320 321
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

322 323 324 325 326
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
327
  } else {
328
    return framework::ToTypeName(var.Var().Type());
329 330
  }
}
L
Leo Chen 已提交
331

J
Jiabin Yang 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
            .Get<framework::LoDTensor>());
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject *obj) {
  return py::isinstance<imperative::VarBase>(obj);
}
349
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
350 351 352 353 354 355 356 357 358 359 360 361 362

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

363
  if (PyList_Check(py_obj)) {  // List of VarBase
364 365 366
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
367 368 369
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
370 371 372
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
373
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
374 375 376
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
377 378 379
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
380 381 382
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
383 384 385
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
386 387 388 389
  }

  return result;
}
390

J
Jiabin Yang 已提交
391 392 393
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
394 395 396 397 398 399
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
400

401 402 403
  PADDLE_ENFORCE_EQ(
      PyErr_Occurred(), nullptr,
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
404 405 406
  return result;
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
      PyErr_Occurred(), nullptr,
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

429
template <typename P>
430 431 432
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
                        const P &dst_device, const bool blocking) {
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
      if (src->Var().IsType<framework::LoDTensor>()) {
        auto &src_tensor = src->Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
453 454
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
455
        auto *dst_selected_rows =
456
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
        framework::TensorCopy(src_selected_rows.value(), dst_device,
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

485
// Bind Methods
J
Jiabin Yang 已提交
486
void BindImperative(py::module *m_ptr) {
487 488
  auto &m = *m_ptr;

489 490
  BindOpFunctions(&m);

491 492
#ifndef _WIN32
  // Dygraph DataLoader signal handler
493 494 495 496 497 498 499 500 501 502 503 504 505
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj), true,
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
506
  });
507 508
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
542
          void *data_ptr = t.data();
543
          size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

K
Kaipeng Deng 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
  m.def("_array_to_share_memory_tensor",
        [](py::object &obj) {
          // 1. cast to python array
          auto array = obj.cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
577
          void *data_ptr = t.data();
578
          size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
K
Kaipeng Deng 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);

          return t;
        },
        py::return_value_policy::take_ownership);

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

613 614
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
615 616 617 618
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
619 620
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
621 622 623
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
624 625
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
626
          egr::Controller::Instance().SetCurrentTracer(tracer);
627
          imperative::SetCurrentTracer(tracer);
628
        });
629 630 631 632
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
633 634 635 636 637 638 639
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
640
      .def("__init__",
641 642 643
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
644
             VLOG(4) << "Init VarBase";
645 646 647
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
648
                   "generated_tensor");
649 650 651 652
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
653 654 655 656 657 658
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
659
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
660 661
             }
           })
662 663
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
664 665
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
666 667 668 669
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
670 671
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
672 673
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
674 675
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
676 677
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
678 679 680 681
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
F
fwenguang 已提交
682 683 684 685
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::MLUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
686 687 688 689
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
690
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
B
Baibaifan 已提交
691 692
      .def("__init__", &InitVarBaseFromTensorWithArgDefault, py::arg("tensor"),
           py::arg("name") = "")
693
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
B
Baibaifan 已提交
694
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
695
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
B
Baibaifan 已提交
696
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
697
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
B
Baibaifan 已提交
698
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
699
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
B
Baibaifan 已提交
700
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
701
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
B
Baibaifan 已提交
702
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
F
fwenguang 已提交
703 704
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
705 706
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
707
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
      .def(
          "__setitem_varbase__",
          [](std::shared_ptr<imperative::VarBase> &self, py::handle _index,
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
                self->MutableVar()->GetMutable<framework::LoDTensor>();
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

740 741 742 743 744
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
              ParseIndexingSlice(self_tensor, index_ptr, &axes, &starts, &ends,
                                 &steps, &decrease_axes, &none_axes,
                                 &infer_flags, &list_select_idxs,
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
                    self->IsLeaf() && !self->OverridedStopGradient(), false,
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

              if (PyCheckTensor(value_obj.ptr())) {
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
798 799 800 801 802 803

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
804 805 806 807 808 809 810
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
811
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
812 813 814 815
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
816
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
817 818 819 820
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
821 822
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
823 824 825 826
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
827 828
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
829 830 831 832
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
833
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

                SetTensorFromPyArray(value_tensor->MutableVar()
                                         ->GetMutable<framework::LoDTensor>(),
                                     value, self->Place(), false);
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
                        "float32, int32 or int64, "
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
                tracer->TraceOp("set_value", ins, outs, std::move(attrs),
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
                    index_var->MutableVar()->GetMutable<framework::LoDTensor>();
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
              SetTensorFromPyArray(self_tensor, self_numpy,
                                   self_tensor->place(), false);
            }
          })
915
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
916
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
917
             VLOG(4) << "Call _getitem_index_not_tensor";
918
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
919 920 921 922
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
S
songyouwei 已提交
923 924 925 926
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             ParseIndexingSlice(tensor, _index.ptr(), &slice_axes,
                                &slice_starts, &slice_ends, &slice_strides,
Z
zyfncg 已提交
927 928
                                &decrease_axis, &none_axes, &infer_flags,
                                &list_select_idxs, &list_select_flag);
929 930 931
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
932

Z
zyfncg 已提交
933
             auto out = slice_axes.empty() && !list_select_flag
934 935 936 937
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
938

939
             if (!slice_axes.empty()) {
S
songyouwei 已提交
940
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1001 1002 1003 1004 1005 1006 1007 1008
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto *idx_tensor = select_index->MutableVar()
                                      ->GetMutable<framework::LoDTensor>();
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1009 1010
               paddle::framework::TensorFromVector(list_select_idxs, *dev_ctx,
                                                   idx_tensor);
Z
zyfncg 已提交
1011 1012 1013 1014 1015 1016 1017

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1018
             return out;
1019
           })
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
                tensor.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
                  numel, 1,
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
                  offset, numel,
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
              PADDLE_ENFORCE_EQ(args.size(), dims.size(),
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
                    index, dims[i],
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
                        index, i, dims[i]));
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1070
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1071 1072 1073 1074 1075 1076 1077 1078 1079
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
    return py::array(py::dtype(py_dtype_str.c_str()), {}, {},                \
                     static_cast<void *>(&b));                               \
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1080
                "Unsupported tensor data type: %s", tensor.dtype()));
1081 1082
          },
          py::return_value_policy::copy)
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
                 var->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
      .def("_bump_inplace_version",
           [](std::shared_ptr<imperative::VarBase> &self) {
             // NOTE(liym27): _bump_inplace_version is only used for inplace
             // operation
             self->BumpInplaceVersion();
           },
           R"DOC(
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1105
      .def("numpy",
1106

1107 1108 1109 1110 1111 1112
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
1113
                     "Tensor of %s is Empty, please check if it has no data.",
1114 1115 1116 1117
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
Z
Zhou Wei 已提交
1118 1119
        Returns a numpy array shows the value of current Tensor.
        
1120
        Returns:
Z
Zhou Wei 已提交
1121
            ndarray: The numpy value of current Tensor.
1122 1123

        Returns type:
Z
Zhou Wei 已提交
1124
            ndarray: dtype is same as current Tensor
1125 1126 1127 1128

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1129
                import paddle
1130 1131
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1132 1133 1134 1135
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1136
       )DOC")
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
      .def("detach",
           [](const imperative::VarBase
                  &self) -> std::shared_ptr<imperative::VarBase> {
             PADDLE_ENFORCE_EQ(
                 self.Var().IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self.Name()));

             PADDLE_ENFORCE_EQ(
                 self.Var().IsType<framework::LoDTensor>() ||
1147
                     self.Var().IsType<phi::SelectedRows>(),
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
                 true,
                 platform::errors::InvalidArgument(
                     "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                     self.Name()));

             auto detach_var = std::make_shared<imperative::VarBase>(
                 true, "detach_" + self.Name());

             detach_var->SetPersistable(self.Persistable());
             detach_var->SetType(self.Type());
             detach_var->SetDataType(self.DataType());

             if (self.Var().IsType<framework::LoDTensor>()) {
               const auto &origin_tensor =
                   self.Var().Get<framework::LoDTensor>();
               PADDLE_ENFORCE_EQ(
                   origin_tensor.IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_tensor =
                   detach_var->MutableVar()->GetMutable<framework::LoDTensor>();
               detach_tensor->ShareDataWith(origin_tensor);
               // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
               // same TensorInplaceVersion, which is used to check whether
               // inplace
               // operations are correct.
               detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
             } else {
               const auto &origin_selected_rows =
1178
                   self.Var().Get<phi::SelectedRows>();
1179 1180 1181 1182 1183 1184
               PADDLE_ENFORCE_EQ(
                   origin_selected_rows.value().IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_selected_rows =
1185
                   detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
               detach_selected_rows->set_height(origin_selected_rows.height());
               detach_selected_rows->set_rows(origin_selected_rows.rows());
               detach_selected_rows->mutable_value()->ShareDataWith(
                   origin_selected_rows.value());
               detach_selected_rows->mutable_value()
                   ->ShareInplaceVersionCounterWith(
                       origin_selected_rows.value());
             }
             VLOG(3) << "The detached Tensor(" << detach_var->Name()
                     << ") share data with " << self.Name();
             return detach_var;
           },
           py::return_value_policy::take_ownership, R"DOC(
1199

1200
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1201 1202
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1203

1204
        Returns: The detached Tensor.
1205 1206 1207 1208

        Examples:
            .. code-block:: python

1209
                import paddle
Z
Zhou Wei 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
                y.backward() 
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
             
1235
       )DOC")
1236 1237
      .def("clear_gradient", &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true, R"DOC(
1238

1239
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1240

1241
        The Gradient of current Tensor will be set to ``0`` .
1242 1243 1244 1245 1246 1247

        Returns:  None

        Examples:
             .. code-block:: python

1248
                import paddle
Z
Zhou Wei 已提交
1249 1250 1251 1252 1253 1254 1255
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1256
      )DOC")
1257 1258 1259
      .def("_gradient_set_empty", &imperative::VarBase::_GradientSetEmpty,
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
Z
Zhou Wei 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
      .def("clone",
           [](std::shared_ptr<imperative::VarBase> &self) {
             const auto &tensor = self->Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "%s has not been initialized", self->Name()));
             auto tracer = imperative::GetCurrentTracer();
             auto new_var = std::make_shared<imperative::VarBase>(
                 true, tracer->GenerateUniqueName(self->Name() + "_clone"));
             framework::AttributeMap attrs;
             imperative::NameVarBaseMap ins = {{"X", {self}}};
             imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
             tracer->TraceOp("assign", ins, outs, attrs);
             return new_var;
           },
           py::return_value_policy::copy, R"DOC(

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1308 1309 1310 1311 1312 1313
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
1314 1315 1316 1317
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1318
      .def("_reset_grad_inplace_version",
1319
           [](imperative::VarBase &self, bool set_to_zero) {
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1331 1332
             py::gil_scoped_release release;

1333 1334 1335
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1336 1337 1338
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1339 1340
             }
           })
1341
      .def("_grad_ivar",
J
Jiabin Yang 已提交
1342 1343
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
1344

1345 1346 1347 1348 1349 1350
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
1351
                             ->GetMutable<phi::SelectedRows>()
1352
                             ->mutable_value();
1353

1354 1355 1356
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
1357
             }
1358
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
1359 1360
           },
           py::return_value_policy::copy)
C
chentianyu03 已提交
1361 1362 1363 1364
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1365 1366
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1367
             return self.Var().IsType<phi::SelectedRows>();
1368 1369 1370 1371 1372
           })
      .def("_allreduce",
           [](imperative::VarBase &self,
              const imperative::ParallelStrategy &strategy) {
             if (strategy.nranks_ > 1) {
1373
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1374 1375 1376
#if NCCL_VERSION_CODE >= 2212
               imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
#else
1377
               if (!self.Var().IsType<phi::SelectedRows>()) {
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1391
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1392 1393 1394
             }
           },
           py::call_guard<py::gil_scoped_release>())
1395 1396 1397
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1398
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
1399
                 platform::errors::InvalidArgument(
1400 1401 1402
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1403 1404 1405 1406 1407
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1408
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
1409
                 platform::errors::InvalidArgument(
1410 1411 1412
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1413
           })
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
      .def("_register_backward_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
                 self.IsLeaf(), true,
                 platform::errors::InvalidArgument(
                     "Only can register backward hook for leaf Tensor."));
             PADDLE_ENFORCE_EQ(
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
                 platform::errors::InvalidArgument(
                     "Cannot register backward hook on a Tensor that stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             self.GradVarBase()->AddVoidHook(
                 std::make_shared<std::function<void()>>(py_func));
           },
           R"DOC(
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
      .def("cpu",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             if (platform::is_cpu_place(self->Place())) {
               return self;
             } else {
               auto new_var = self->NewVarBase(platform::CPUPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
              
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
      .def("pin_memory",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1493
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to pinned memory in CPU version "
                 "Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#endif
             if (platform::is_cuda_pinned_place(self->Place())) {
               return self;
             } else {
               auto new_var =
                   self->NewVarBase(platform::CUDAPinnedPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
      .def("cuda",
1525 1526
           [](const std::shared_ptr<imperative::VarBase> &self,
              py::handle &handle, bool blocking) {
1527
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1528 1529 1530 1531
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to GPU in CPU version Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#else
1532
             int device_count = platform::GetGPUDeviceCount();
1533 1534
             int device_id = 0;
             if (handle == py::none()) {
1535 1536 1537
               if (platform::is_gpu_place(self->Place())) {
                 return self;
               }
1538 1539 1540 1541 1542 1543 1544
             } else {
               PyObject *py_obj = handle.ptr();
               PADDLE_ENFORCE_EQ(
                   PyCheckInteger(py_obj), true,
                   platform::errors::InvalidArgument(
                       " 'device_id' must be a positive integer"));
               device_id = py::cast<int>(handle);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
             }
             PADDLE_ENFORCE_GE(
                 device_id, 0,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             PADDLE_ENFORCE_LT(
                 device_id, device_count,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             platform::CUDAPlace place = platform::CUDAPlace(device_id);
             if (platform::is_same_place(self->Place(), place)) {
               return self;
             } else {
               auto new_var = self->NewVarBase(place, blocking);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
#endif
           },
1568
           py::arg("device_id") = py::none(), py::arg("blocking") = true, R"DOC(
1569 1570 1571 1572 1573 1574
        Returns a copy of this Tensor in GPU memory.

        If this Tensor is already in GPU memory and device_id is default, 
        then no copy is performed and the original Tensor is returned.
        
        Args:
1575
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1576 1577 1578 1579 1580 1581
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1582
              # required: gpu
1583 1584 1585 1586 1587 1588
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
              print(x.place)        # CPUPlace

              y = x.cuda()
              print(y.place)        # CUDAPlace(0)
1589 1590 1591
            
              y = x.cuda(None)
              print(y.place)        # CUDAPlace(0)
1592 1593 1594 1595

              y = x.cuda(1)
              print(y.place)        # CUDAPlace(1)
       )DOC")
K
Kaipeng Deng 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
      .def("_share_memory",
           [](const std::shared_ptr<imperative::VarBase> &self) {
#ifndef _WIN32
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(self->Place()), true,
                 platform::errors::InvalidArgument(
                     "Sharing memory only support CPU Tensor currently"));
             // 1. get LoDTensor
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             // 2. allocate shared memory
1606
             void *data_ptr = t->data();
1607 1608 1609
             size_t data_size =
                 t->numel() * framework::SizeOfType(
                                  framework::TransToProtoVarType(t->dtype()));
K
Kaipeng Deng 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
             auto shared_writer_holder =
                 memory::allocation::AllocateMemoryMapWriterAllocation(
                     data_size);
             // 3. maintain mmap fd set & backup ipc_name
             const std::string &ipc_name = shared_writer_holder->ipc_name();
             memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
             // 4. copy data & reset holder
             memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                          platform::CPUPlace(), data_ptr, data_size);
             t->ResetHolder(shared_writer_holder);
             return *t;
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
           },
           py::return_value_policy::reference)
1627 1628 1629 1630 1631 1632 1633 1634 1635
#if defined(PADDLE_WITH_CUDA)
      .def("_uva",
           [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
             PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()), true,
                               platform::errors::InvalidArgument(
                                   "Unified virtual addressing only support "
                                   "CPU Tensor currently."));
             auto *self_tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
1636
             tensor_uva(self_tensor, device_id);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
           },
           py::arg("device_id") = 0, py::return_value_policy::reference, R"DOC(
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1654
      .def("copy_", &imperative::VarBase::CopyFrom)
1655
      .def("_copy_to",
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
             // copy data from the tensor of self to the tensor of new varbase,
             // we need to ensure that the varbase self is not destructed until
             // the GpuCopyAsync is completed. Otherwise, the memory may be
             // freed
             // when varbase self is destructed.
             // To do that, we increase the reference count of self by 1 and
             // add a cuda event to wait the GpuCopyAsync's completion.
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1672
           py::return_value_policy::copy)
1673
      .def("_copy_to",
1674 1675 1676 1677 1678 1679 1680 1681
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPinnedPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1682
           py::return_value_policy::copy)
1683
      .def("_copy_to",
1684 1685 1686 1687 1688 1689 1690 1691
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::XPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1692
           py::return_value_policy::copy)
1693
      .def("_copy_to",
1694 1695 1696 1697 1698 1699 1700 1701
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1702
           py::return_value_policy::copy)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::NPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
F
fwenguang 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::MLUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
C
chentianyu03 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::Place &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
J
Jiabin Yang 已提交
1733
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
1734
           py::return_value_policy::reference)
1735 1736 1737
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1738 1739 1740 1741
             PADDLE_ENFORCE_EQ(
                 t->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1742 1743 1744 1745 1746
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1747 1748 1749 1750
             PADDLE_ENFORCE_EQ(
                 t->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1751 1752
             return t->offset();
           })
1753
      .def("_share_buffer_to",
1754
           [](const std::shared_ptr<imperative::VarBase> &self,
1755 1756 1757 1758 1759 1760 1761 1762
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 src->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1763
             dst_->ShareDataTypeWith(*src);
1764 1765 1766
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1767 1768 1769 1770 1771 1772 1773
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1774
           })
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 src->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1798 1799 1800 1801
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
              int64_t begin_idx, int64_t end_idx) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1802 1803 1804 1805
             PADDLE_ENFORCE_EQ(
                 t->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             return t->numel();
           })
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
1839 1840
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
1841 1842 1843 1844 1845
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
1846 1847 1848
      .def_property_readonly("shape",
                             [](imperative::VarBase &self) {
                               if (self.Var().IsType<framework::LoDTensor>()) {
1849
                                 return phi::vectorize<int>(
1850 1851 1852 1853
                                     self.Var()
                                         .Get<framework::LoDTensor>()
                                         .dims());
                               } else if (self.Var()
1854 1855
                                              .IsType<phi::SelectedRows>()) {
                                 return phi::vectorize<int>(
1856
                                     self.Var()
1857
                                         .Get<phi::SelectedRows>()
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
                                         .value()
                                         .dims());
                               } else if (self.Var()
                                              .IsType<framework::Strings>()) {
                                 return std::vector<int>{static_cast<int>(
                                     self.Var()
                                         .Get<framework::Strings>()
                                         .size())};
                               } else if (self.Var()
                                              .IsType<framework::Vocab>()) {
                                 return std::vector<int>{static_cast<int>(
                                     self.Var()
                                         .Get<framework::Vocab>()
                                         .size())};
                               } else {
                                 VLOG(2) << "It is meaningless to get shape of "
                                            "variable type "
                                         << GetTypeName(self);
                                 return std::vector<int>();
                               }
                             })
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
      .def_property_readonly("is_leaf", &imperative::VarBase::IsLeaf,
                             R"DOC(
      Whether a Tensor is leaf Tensor.

      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor. 
      
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
1908 1909 1910
      .def_property_readonly(
          "place", [](imperative::VarBase &self) { return self.Place(); },
          py::return_value_policy::copy)
1911 1912 1913 1914 1915 1916
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
1917
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
1918
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
1919

1920 1921 1922 1923 1924
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
1925 1926 1927 1928 1929 1930 1931
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

1932
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
1933
      m, "Tracer", R"DOC()DOC")
1934
      .def("__init__",
J
Jiabin Yang 已提交
1935
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
1936 1937 1938
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
L
Leo Chen 已提交
1939 1940
      .def_property("_amp_level", &imperative::Tracer::GetAmpLevel,
                    &imperative::Tracer::SetAmpLevel)
1941 1942
      .def_property("_amp_dtype", &imperative::Tracer::GetAmpDtype,
                    &imperative::Tracer::SetAmpDtype)
1943
      .def_property("_has_grad", &imperative::Tracer::HasGrad,
1944
                    &imperative::Tracer::SetHasGrad)
1945 1946 1947 1948 1949 1950 1951 1952
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
1953
              self.SetExpectedPlace(*p);
1954 1955
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
1956 1957
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1958 1959 1960
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
1961 1962
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1963 1964
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
1965
              self.SetExpectedPlace(*p);
1966 1967
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1968 1969
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
1970
              self.SetExpectedPlace(*p);
1971 1972
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1973 1974 1975 1976 1977
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
F
fwenguang 已提交
1978 1979 1980 1981 1982
            } else if (py::isinstance<platform::MLUPlace>(obj)) {
              auto p = obj.cast<platform::MLUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1983 1984 1985 1986 1987
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1988 1989 1990 1991 1992
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1993
            } else {
L
Leo Chen 已提交
1994
              PADDLE_THROW(platform::errors::InvalidArgument(
1995
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
F
fwenguang 已提交
1996
                  "CPUPlace, NPUPlace, MLUPlace"
L
Leo Chen 已提交
1997 1998
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
1999 2000
            }
          })
2001 2002 2003
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2004
      .def("_generate_unique_name", &imperative::Tracer::GenerateUniqueName,
2005
           py::arg("key") = "dygraph_tmp")
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2022
             VLOG(5) << "AMP operators changed, "
2023 2024
                     << imperative::AmpOperators::Instance();
           })
2025 2026 2027
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2028 2029
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2030
           })
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
      .def(
          "_get_kernel_signature",
          [](imperative::Tracer &self, const std::string &type,
             const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
             framework::AttributeMap attrs) {
            // TODO(xiongkun): move this function outside of tracer.
            auto ins_map = ConvertToNameTensorMap(ins);
            auto outs_map = ConvertToNameTensorMap(outs);
            {
              auto input_to_vector =
                  [](paddle::SmallVector<const char *> &vec) {
                    return std::vector<std::string>(vec.begin(), vec.end());
                  };
              auto output_to_vector =
                  [](paddle::SmallVector<const char *> &vec) {
                    return std::vector<std::string>(vec.begin(), vec.end());
                  };
              auto attr_to_vector = [](paddle::SmallVector<const char *> &vec) {
                return std::vector<std::string>(vec.begin(), vec.end());
              };
              auto ret = self.GetExpectedKernelSignature(type, ins_map,
                                                         outs_map, attrs);
2053 2054 2055
              auto kernelsig_ins = input_to_vector(ret.input_names);
              auto kernelsig_attrs = attr_to_vector(ret.attr_names);
              auto kernelsig_outs = output_to_vector(ret.output_names);
2056 2057 2058 2059
              return std::make_tuple(kernelsig_ins, kernelsig_attrs,
                                     kernelsig_outs);
            }
          })
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CustomPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
             }
           })
2075 2076 2077 2078
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::XPUPlace &place,
Z
zyfncg 已提交
2079 2080
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2081 2082 2083 2084
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2085 2086 2087
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
2088 2089
             }
           })
M
minqiyang 已提交
2090
      .def("trace",
J
Jiabin Yang 已提交
2091 2092 2093
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
Z
zyfncg 已提交
2094 2095
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2096 2097
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2098 2099
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2100 2101 2102
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
2103
             }
M
minqiyang 已提交
2104
           })
2105 2106 2107 2108
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::NPUPlace &place,
Z
zyfncg 已提交
2109 2110
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2111 2112 2113 2114
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2115 2116 2117
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
2118 2119
             }
           })
F
fwenguang 已提交
2120 2121 2122 2123
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::MLUPlace &place,
Z
zyfncg 已提交
2124 2125
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
F
fwenguang 已提交
2126 2127 2128 2129
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2130 2131 2132
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
F
fwenguang 已提交
2133 2134
             }
           })
J
Jiabin Yang 已提交
2135 2136 2137 2138
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
Z
zyfncg 已提交
2139 2140
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2141 2142 2143 2144
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2145 2146 2147
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
J
Jiabin Yang 已提交
2148 2149
             }
           });
2150 2151

  // define parallel context
2152 2153 2154
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2155 2156
      .def_property(
          "nranks",
2157 2158
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2159 2160 2161
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
2162
                    [](const imperative::ParallelStrategy &self) {
2163 2164
                      return self.local_rank_;
                    },
2165
                    [](imperative::ParallelStrategy &self, int local_rank) {
2166 2167 2168 2169
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
2170
          [](const imperative::ParallelStrategy &self) {
2171 2172
            return self.trainer_endpoints_;
          },
2173
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2174 2175 2176
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
2177
                    [](const imperative::ParallelStrategy &self) {
2178 2179
                      return self.current_endpoint_;
                    },
2180
                    [](imperative::ParallelStrategy &self,
2181 2182 2183 2184 2185 2186 2187
                       const std::string &ep) { self.current_endpoint_ = ep; })
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2188

2189 2190 2191 2192
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2193
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2194
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
F
fwenguang 已提交
2195
  m.def("varbase_copy", &VarBaseCopy<platform::MLUPlace>);
2196

2197 2198 2199 2200 2201 2202 2203
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2204 2205
         const platform::Place &place, bool create_graph, bool retain_graph,
         bool allow_unused, bool only_inputs) {
Z
Zeng Jinle 已提交
2206 2207
        imperative::PartialGradEngine engine(
            input_targets, output_targets, output_grads, no_grad_vars, place,
2208
            create_graph, retain_graph, allow_unused, only_inputs);
2209 2210 2211 2212 2213
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
         bool retain_graph, const imperative::Tracer &tracer) {
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2227
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
2228
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
2229 2230 2231 2232 2233 2234
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2235 2236 2237 2238 2239
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
                    const std::vector<size_t> &, bool>())
2240
      .def("prepare_for_backward", &imperative::Reducer::PrepareForBackward,
2241
           py::arg("vars"), py::call_guard<py::gil_scoped_release>());
2242 2243 2244 2245

  m.def("assign_group_by_size", &imperative::AssignGroupBySize, py::arg("vars"),
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2246
        py::arg("tensor_indices") = std::vector<int64_t>{},
2247
        py::call_guard<py::gil_scoped_release>());
2248
#endif
2249

2250
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2251 2252 2253 2254 2255
  py::class_<imperative::NCCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2256 2257 2258 2259
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2260 2261 2262 2263 2264 2265 2266 2267
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
  py::class_<imperative::BKCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2268 2269 2270 2271
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2272
#endif
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
  py::class_<imperative::GLOOParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
           py::arg("ring_id"));
#endif

#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<imperative::HCCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::HCCLParallelContext>>(
      m, "HCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::NPUPlace &>())
      .def("init", [](imperative::HCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::HCCLParallelContext::InitWithRingID,
2296 2297 2298
           py::arg("ring_id"));
#endif

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
#if defined(PADDLE_WITH_CNCL)
  py::class_<imperative::CNCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::CNCLParallelContext>>(
      m, "CNCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::MLUPlace &>())
      .def("init", [](imperative::CNCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::CNCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2311 2312 2313 2314 2315 2316 2317 2318 2319
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
  py::class_<imperative::HeterParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
  m.def("pylayer_apply",
        [](const platform::CPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::CUDAPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::XPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::CUDAPinnedPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2343 2344 2345 2346 2347 2348

  m.def("pylayer_apply",
        [](const platform::NPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
F
fwenguang 已提交
2349 2350 2351 2352 2353
  m.def("pylayer_apply",
        [](const platform::MLUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2354

S
Siming Dai 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
#if defined(PADDLE_WITH_CUDA)
  m.def("to_uva_tensor",
        [](const py::object &obj, int device_id) {
          const auto &tracer = imperative::GetCurrentTracer();
          auto new_tensor = std::shared_ptr<imperative::VarBase>(
              new imperative::VarBase(tracer->GenerateUniqueName()));
          auto array = obj.cast<py::array>();
          if (py::isinstance<py::array_t<int32_t>>(array)) {
            SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<int64_t>>(array)) {
            SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<float>>(array)) {
            SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<double>>(array)) {
            SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<int8_t>>(array)) {
            SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<int16_t>>(array)) {
            SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                         array)) {
            SetUVATensorFromPyArray<paddle::platform::float16>(
                new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<bool>>(array)) {
            SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
          } else {
            // obj may be any type, obj.cast<py::array>() may be failed,
            // then the array.dtype will be string of unknown meaning.
            PADDLE_THROW(platform::errors::InvalidArgument(
                "Input object type error or incompatible array data type. "
                "tensor.set() supports array with bool, float16, float32, "
                "float64, int8, int16, int32, int64,"
                "please check your input or input array data type."));
          }
          return new_tensor;
        },
        py::arg("obj"), py::arg("device_id") = 0,
        py::return_value_policy::reference, R"DOC(
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and 
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
        
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
      [](const imperative::VarBase &src, imperative::VarBase &dst,
         const imperative::VarBase &offset, const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(
            platform::is_gpu_place(src.Place()), true,
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cuda_pinned_place(dst.Place()), true,
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(offset.Place()), true,
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(count.Place()), true,
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
        PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
            src_tensor.dims().size(), dst_tensor->dims().size(),
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
              src_tensor.dims()[i], dst_tensor->dims()[i],
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
          PADDLE_ENFORCE_LE(src_offset + c, src_tensor.dims()[0],
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
          PADDLE_ENFORCE_LE(dst_offset + c, dst_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
          cudaMemcpyAsync(
              dst_data + (dst_offset * size), src_data + (src_offset * size),
              c * size * sizeof(float), cudaMemcpyDeviceToHost, stream);
          src_offset += c;
        }
      },
      R"DOC(
  This api provides a way to write pieces of source tensor to destination tensor 
  inplacely and asynchronously. In which, we use `offset` and `count` to determine 
  where to copy. `offset` means the begin points of the copy pieces of `src`, and 
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process 
  will run asynchronously from cuda to pin memory. We can simply remember this as 
  "gpu async_write to pin_memory".
  
  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPlace.

    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst` 
                  should be the same with `src` except for the first dimension. 

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional. 
    
    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal. 

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core  
          from paddle.device import cuda
          
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
      [](const imperative::VarBase &src, imperative::VarBase &dst,
         const imperative::VarBase &index, imperative::VarBase &buffer,
         const imperative::VarBase &offset, const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()), true,
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_gpu_place(dst.Place()), true,
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(index.Place()), true,
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cuda_pinned_place(buffer.Place()), true,
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(offset.Place()), true,
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(count.Place()), true,
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &index_tensor = index.Var().Get<framework::LoDTensor>();
        auto *buffer_tensor =
            buffer.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

        PADDLE_ENFORCE_EQ(src_tensor.dims().size(), dst_tensor->dims().size(),
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
            src_tensor.dims().size(), buffer_tensor->dims().size(),
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
              src_tensor.dims()[i], dst_tensor->dims()[i],
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
              src_tensor.dims()[i], buffer_tensor->dims()[i],
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
          PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(), dst_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
            PADDLE_ENFORCE_LE(src_offset + c, src_tensor.dims()[0],
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
            PADDLE_ENFORCE_LE(dst_offset + c, dst_tensor->dims()[0],
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
            cudaMemcpyAsync(
                dst_data + (dst_offset * size), src_data + (src_offset * size),
                c * size * sizeof(float), cudaMemcpyHostToDevice, stream);
            dst_offset += c;
          }
        } else {
          PADDLE_ENFORCE_LE(index_tensor.numel(), buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
        auto index_select = [](const framework::Tensor &src_tensor,
                               const framework::Tensor &index_tensor,
                               framework::Tensor *buffer_tensor) {
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
                        src_data + index_data[i] * slice_size, copy_bytes);
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
        cudaMemcpyAsync(dst_data + (numel * size), buffer_tensor->data<float>(),
                        index_tensor.numel() * size * sizeof(float),
                        cudaMemcpyHostToDevice, stream);
      },
      R"DOC(
  This api provides a way to read from pieces of source tensor to destination tensor 
  asynchronously. In which, we use `index`, `offset` and `count` to determine where 
  to read. `index` means the index position of src tensor we want to read. `offset` 
  and count means the begin points and length of pieces of src tensor we want to read. 
  To be noted, the copy process will run asynchronously from pin memory to cuda place. 
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPinnedPlace.
  
    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should 
                  be the same with `src` except for the first dimension.

    index (Tensor): The index tensor, and the data type should be `int64` currently. 
                    Besides, `index` should be on CPUplace. The shape of `index` should 
                    be one-dimensional.

    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily. 
                     The data type should be `float32` currently, and should be placed 
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal.
    
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
          
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
 
)DOC");
#endif
2757 2758 2759 2760
}

}  // namespace pybind
}  // namespace paddle