Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a60f17b8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a60f17b8
编写于
1月 13, 2021
作者:
S
ShenLiang
提交者:
GitHub
1月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support unused parameters in dynamic graph distributed (#30224)
上级
ca74dd3c
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
483 addition
and
84 deletion
+483
-84
paddle/fluid/imperative/reducer.cc
paddle/fluid/imperative/reducer.cc
+215
-63
paddle/fluid/imperative/reducer.h
paddle/fluid/imperative/reducer.h
+26
-7
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+11
-11
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+19
-3
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/parallel_dygraph_sparse_embedding_fp64.py
...tests/unittests/parallel_dygraph_sparse_embedding_fp64.py
+8
-0
python/paddle/fluid/tests/unittests/parallel_dygraph_unused_variables.py
...luid/tests/unittests/parallel_dygraph_unused_variables.py
+133
-0
python/paddle/fluid/tests/unittests/test_parallel_dygraph_unused_variables.py
...tests/unittests/test_parallel_dygraph_unused_variables.py
+68
-0
未找到文件。
paddle/fluid/imperative/reducer.cc
浏览文件 @
a60f17b8
...
...
@@ -22,6 +22,11 @@ std::shared_ptr<Reducer> Reducer::s_instance_ = NULL;
// context is used to select the stream for concat
void
Group
::
ConcatTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
VLOG
(
3
)
<<
"Before concat, set output tensor size is "
<<
all_length_
;
auto
tensor
=
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
({
all_length_
}))
.
mutable_data
(
context
.
GetPlace
(),
dtype_
);
switch
(
dtype_
)
{
case
framework
::
proto
::
VarType
::
FP16
:
ConcatTensorsForAllReduce
<
platform
::
float16
>
(
context
,
dense_tensors_
,
...
...
@@ -88,23 +93,27 @@ Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>
&
group_size_limits
)
const
std
::
vector
<
size_t
>
&
group_size_limits
,
bool
find_unused_vars
)
:
vars_
(
vars
),
group_indices_
(
group_indices
),
is_sparse_gradient_
(
is_sparse_gradient
),
parallel_ctx_
(
parallel_ctx
),
group_size_limits_
(
group_size_limits
)
{
group_size_limits_
(
group_size_limits
),
find_unused_vars_
(
find_unused_vars
)
{
VLOG
(
3
)
<<
"Start construct the Reducer ..."
;
nrings_
=
parallel_ctx
->
GetNRings
();
// initialize groups
InitializeGroups
(
group_indices
);
for
(
size_t
global_var_index
=
0
;
global_var_index
<
vars_
.
size
();
++
global_var_index
)
{
vars_
[
global_var_index
]
->
SharedVar
()
->
AddGradVarLeafBackwardHook
(
auto
var
=
vars_
[
global_var_index
];
var
->
SharedVar
()
->
AddGradVarLeafBackwardHook
(
std
::
unique_ptr
<
LambdaGradAccumulatorPostHook
>
(
new
LambdaGradAccumulatorPostHook
([
=
](
VariableWrapper
*
grad
)
{
this
->
AddDistHook
(
g
rad
,
g
lobal_var_index
);
this
->
AddDistHook
(
global_var_index
);
})));
var_index_map_
[
var
->
GradVarBase
()
->
SharedVar
().
get
()]
=
global_var_index
;
}
// create streams
compute_stream_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
...
...
@@ -169,8 +178,6 @@ void Reducer::InitializeDenseGroups(
all_length
+=
size
;
p_group
->
length_
.
push_back
(
size
);
// for concat operator
p_group
->
dense_tensors_
.
push_back
(
framework
::
Tensor
());
// check the dtype and place, it must be same.
auto
dtype
=
var
->
DataType
();
...
...
@@ -193,7 +200,6 @@ void Reducer::InitializeDenseGroups(
place_
=
place
;
}
}
p_group
->
all_length_
=
all_length
;
}
// Each parameter will be initialized according to the group information.
...
...
@@ -228,10 +234,6 @@ void Reducer::InitializeGroups(
}
else
{
// process the dense gradient.
InitializeDenseGroups
(
variable_indices_
,
&
group
);
// Alloc the continuous space
auto
tensor
=
group
.
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
({
group
.
all_length_
}))
.
mutable_data
(
place_
,
group
.
dtype_
);
}
// map variables to this group by VariableLocator
...
...
@@ -244,21 +246,144 @@ void Reducer::InitializeGroups(
}
group
.
variable_indices_
=
std
::
move
(
variable_indices_
);
groups_
.
emplace_back
(
std
::
move
(
group
));
// Debug Message For Reducer
VLOG
(
3
)
<<
"The Group["
<<
group_index
<<
"]:"
;
VLOG
(
3
)
<<
groups_
.
back
();
}
}
void
Reducer
::
PrepareDeps
(
const
std
::
unordered_set
<
GradOpNode
*>
&
init_nodes
)
{
PADDLE_ENFORCE_EQ
(
node_deps_
.
empty
(),
true
,
platform
::
errors
::
AlreadyExists
(
"Op deps must be initialized here"
));
std
::
queue
<
GradOpNode
*>
q
;
std
::
unordered_set
<
GradOpNode
*>
visited
;
for
(
auto
pos
=
init_nodes
.
begin
();
pos
!=
init_nodes
.
end
();
pos
++
)
{
q
.
push
(
*
pos
);
visited
.
insert
(
*
pos
);
}
while
(
!
q
.
empty
())
{
auto
*
cur_node
=
q
.
front
();
q
.
pop
();
for
(
auto
&
cur_op
:
*
cur_node
)
{
cur_op
.
EnforceHasInOut
();
}
const
auto
&
grad_pending_nodes
=
cur_node
->
GradPendingNodes
();
for
(
auto
&
grad_pending_node
:
grad_pending_nodes
)
{
PADDLE_ENFORCE_NOT_NULL
(
grad_pending_node
,
platform
::
errors
::
NotFound
(
"Grad pending node should not be null"
));
++
node_deps_
[
grad_pending_node
.
get
()];
if
(
visited
.
count
(
grad_pending_node
.
get
())
==
0
)
{
visited
.
insert
(
grad_pending_node
.
get
());
q
.
push
(
grad_pending_node
.
get
());
}
}
}
}
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
void
Reducer
::
PrepareForBackward
()
{
void
Reducer
::
PrepareForBackward
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
&
outputs
)
{
VLOG
(
3
)
<<
"start reseting count.."
;
next_group_
=
0
;
std
::
for_each
(
groups_
.
begin
(),
groups_
.
end
(),
[](
Group
&
group
)
{
group
.
pending_
=
group
.
variable_indices_
.
size
();
group
.
all_length_
=
0
;
group
.
dense_tensors_
.
clear
();
group
.
dense_tensors_
.
reserve
(
group
.
pending_
);
group
.
sparse_contents_
=
nullptr
;
});
PADDLE_ENFORCE_EQ
(
all_group_ready_
,
false
,
platform
::
errors
::
PreconditionNotMet
(
"Please note that all ``forward`` outputs derived from the module "
"parameters must participate in the calculation of losses and "
"subsequent gradient calculations. If not, the wrapper will hang, "
"waiting for autograd to generate gradients for these parameters. "
"you can use detach or stop_gradient to make the unused parameters "
"detached from the autograd graph."
));
// The first var to trigger the unused parameter
has_marked_unused_vars_
=
false
;
if
(
!
find_unused_vars_
)
{
return
;
}
// TODO(shenliang03) "find_unused_vars" interface will be exposed in the
// future to handle control flow to process unused parameters
find_unused_vars_
=
false
;
unused_vars_
.
clear
();
node_deps_
.
clear
();
std
::
queue
<
std
::
shared_ptr
<
GradOpNode
>>
q
;
std
::
unordered_set
<
VariableWrapper
*>
var_visited
;
std
::
unordered_set
<
GradOpNode
*>
init_nodes
;
for
(
const
auto
&
output
:
outputs
)
{
const
auto
&
grad_node
=
output
->
GradVarBase
()
->
GradNode
();
if
(
grad_node
==
nullptr
||
output
->
OverridedStopGradient
())
{
VLOG
(
3
)
<<
"Skip auto grad since there is no grad op or output is "
"stop_gradient=True: "
<<
output
->
Name
();
continue
;
}
else
{
init_nodes
.
insert
(
grad_node
.
get
());
var_visited
.
insert
(
output
->
SharedVar
().
get
());
q
.
push
(
grad_node
);
}
}
PrepareDeps
(
init_nodes
);
// Traverse the autograd graph starting at the specified output
while
(
!
q
.
empty
())
{
auto
cur_node
=
q
.
front
();
q
.
pop
();
for
(
const
auto
&
cur_op
:
*
cur_node
)
{
cur_op
.
EnforceHasInOut
();
auto
&
bwd_outs
=
cur_op
.
GetOutsMap
();
for
(
const
auto
&
pair
:
bwd_outs
)
{
if
(
!
pair
.
second
.
IsGrad
())
{
continue
;
}
for
(
auto
&
var
:
pair
.
second
)
{
if
(
!
var
||
var
->
OverridedStopGradient
())
{
continue
;
}
else
{
var_visited
.
insert
(
var
.
get
());
}
}
}
}
for
(
const
auto
&
grad_pending_node
:
cur_node
->
GradPendingNodes
())
{
PADDLE_ENFORCE_NOT_NULL
(
grad_pending_node
,
platform
::
errors
::
NotFound
(
"Grad pending node should not be nullptr"
));
auto
iter
=
node_deps_
.
find
(
grad_pending_node
.
get
());
if
(
iter
==
node_deps_
.
end
())
{
continue
;
}
if
(
--
(
iter
->
second
)
==
0
)
{
q
.
push
(
grad_pending_node
);
}
}
}
for
(
const
auto
&
it
:
var_index_map_
)
{
if
(
var_visited
.
count
(
it
.
first
)
==
0
)
{
unused_vars_
.
push_back
(
it
.
second
);
VLOG
(
3
)
<<
"Var["
<<
it
.
second
<<
"] ["
<<
it
.
first
->
Name
()
<<
"] is not used"
;
}
}
}
// Add hook function to each leaf node. When the gradient of a leaf node is
...
...
@@ -270,23 +395,50 @@ void Reducer::PrepareForBackward() {
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
void
Reducer
::
AddDistHook
(
VariableWrapper
*
var_warpper
,
size_t
var_index
)
{
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
auto
group_index
=
var_locator
.
group_index
;
auto
&
group
=
groups_
[
group_index
];
void
Reducer
::
AddDistHook
(
size_t
var_index
)
{
VLOG
(
3
)
<<
"Var["
<<
var_index
<<
"] ["
<<
vars_
[
var_index
]
->
GradVarBase
()
->
Name
()
<<
"] arrived and triggered disthook"
;
if
(
!
has_marked_unused_vars_
)
{
has_marked_unused_vars_
=
true
;
for
(
auto
unused_index
:
unused_vars_
)
{
if
(
NeedRebuildGroup
())
{
rebuild_vars_
.
push_back
(
vars_
[
unused_index
]);
rebuild_var_indices_
.
push_back
(
unused_index
);
}
MarkVarReady
(
unused_index
,
false
);
}
}
if
(
!
has_rebuilt_group_
)
{
if
(
NeedRebuildGroup
()
)
{
rebuild_vars_
.
push_back
(
vars_
[
var_index
]);
rebuild_var_indices_
.
push_back
(
var_index
);
}
MarkVarReady
(
var_index
,
true
);
}
if
(
!
group
.
is_sparse_
)
{
// Only dense_contents_ need memory copy
MarkDenseVarReady
(
var_index
,
var_warpper
);
}
else
{
MarkSparseVarReady
(
var_index
,
var_warpper
);
}
void
Reducer
::
MarkVarReady
(
const
size_t
var_index
,
const
bool
is_used_var
)
{
all_group_ready_
=
true
;
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
auto
group_index
=
var_locator
.
group_index
;
auto
&
group
=
groups_
[
group_index
];
if
(
is_used_var
)
{
auto
var_warpper
=
vars_
[
var_index
]
->
GradVarBase
()
->
SharedVar
();
if
(
!
group
.
is_sparse_
)
{
auto
grad
=
var_warpper
->
MutableVar
();
auto
inside_group_index
=
var_locator
.
inside_group_index
;
auto
length
=
group
.
length_
[
inside_group_index
];
auto
tensor
=
grad
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
Tensor
tmp
;
tmp
.
ShareDataWith
(
*
tensor
).
Resize
({
static_cast
<
int64_t
>
(
length
)});
group
.
dense_tensors_
.
push_back
(
std
::
move
(
tmp
));
group
.
all_length_
+=
length
;
}
else
{
group
.
sparse_contents_
=
var_warpper
->
MutableVar
();
}
}
if
(
--
group
.
pending_
==
0
)
{
// can start allreduce
MarkGroupReady
(
group_index
);
...
...
@@ -297,27 +449,6 @@ void Reducer::AddDistHook(VariableWrapper *var_warpper, size_t var_index) {
}
}
void
Reducer
::
MarkDenseVarReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
)
{
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
auto
group_index
=
var_locator
.
group_index
;
auto
inside_group_index
=
var_locator
.
inside_group_index
;
auto
&
group
=
groups_
[
group_index
];
auto
length
=
group
.
length_
[
inside_group_index
];
auto
tensor
=
var_warpper
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
group
.
dense_tensors_
[
inside_group_index
].
ShareDataWith
(
*
tensor
).
Resize
(
{
static_cast
<
int64_t
>
(
length
)});
}
void
Reducer
::
MarkSparseVarReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
)
{
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
auto
group_index
=
var_locator
.
group_index
;
auto
&
group
=
groups_
[
group_index
];
group
.
sparse_contents_
=
var_warpper
->
MutableVar
();
}
void
Reducer
::
MarkGroupReady
(
size_t
group_index
)
{
if
(
group_index
>
next_group_
)
{
VLOG
(
3
)
<<
"It will adjust the order of group in next batch automatically"
;
...
...
@@ -326,6 +457,7 @@ void Reducer::MarkGroupReady(size_t group_index) {
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
group_events_
[
group_index
].
get
(),
compute_stream_
));
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
comm_streams_
[
i
],
group_events_
[
group_index
].
get
(),
0
));
...
...
@@ -336,29 +468,48 @@ void Reducer::MarkGroupReady(size_t group_index) {
auto
&
group
=
groups_
[
next_group_
];
int
run_order
=
next_group_
%
nrings_
;
if
(
group
.
is_sparse_
)
{
VLOG
(
3
)
<<
"sparse group ["
<<
next_group_
<<
"] start allreduce in ring["
<<
run_order
<<
"]"
;
parallel_ctx_
->
AllReduceByStream
(
*
group
.
sparse_contents_
,
group
.
sparse_contents_
,
run_order
,
false
);
if
(
group
.
sparse_contents_
!=
nullptr
)
{
VLOG
(
3
)
<<
"sparse group ["
<<
next_group_
<<
"] start allreduce in ring["
<<
run_order
<<
"]"
;
parallel_ctx_
->
AllReduceByStream
(
*
group
.
sparse_contents_
,
group
.
sparse_contents_
,
run_order
,
false
);
}
else
{
VLOG
(
3
)
<<
"The sparse group["
<<
next_group_
<<
"] has no var to allreduce"
;
}
}
else
{
VLOG
(
3
)
<<
"dense group ["
<<
next_group_
<<
"] start allreduce in ring["
<<
run_order
<<
"]"
;
// Select common commstream to concat tensors
// group.dense_tensors ---> group.dense_contents_
group
.
ConcatTensors
(
*
parallel_ctx_
->
GetDeviceContext
(
run_order
));
// Start allreduce
parallel_ctx_
->
AllReduceByStream
(
group
.
dense_contents_
,
&
(
group
.
dense_contents_
),
run_order
,
false
);
// Select common commstream to split tensors
// group.dense_contents_ ---> group.dense_tensors
group
.
SplitTensors
(
*
parallel_ctx_
->
GetDeviceContext
(
run_order
));
if
(
!
group
.
dense_tensors_
.
empty
())
{
VLOG
(
3
)
<<
"dense group ["
<<
next_group_
<<
"] start allreduce in ring["
<<
run_order
<<
"]"
;
// Select common commstream to concat tensors
// group.dense_tensors ---> group.dense_contents_
group
.
ConcatTensors
(
*
parallel_ctx_
->
GetDeviceContext
(
run_order
));
// Start allreduce
parallel_ctx_
->
AllReduceByStream
(
group
.
dense_contents_
,
&
(
group
.
dense_contents_
),
run_order
,
false
);
// Select common commstream to split tensors
// group.dense_contents_ ---> group.dense_tensors
group
.
SplitTensors
(
*
parallel_ctx_
->
GetDeviceContext
(
run_order
));
}
else
{
VLOG
(
3
)
<<
"The dense group["
<<
next_group_
<<
"] has no var to allreduce"
;
}
}
}
}
std
::
vector
<
std
::
vector
<
size_t
>>
Reducer
::
RebuildGruops
()
{
VLOG
(
3
)
<<
"The order of parameter arrival: "
<<
string
::
join_strings
(
rebuild_var_indices_
,
','
);
PADDLE_ENFORCE_EQ
(
rebuild_vars_
.
size
(),
vars_
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"Rebuild vars's number should be equal to original vars'number, "
"expect it to be %d, but got %d."
,
vars_
.
size
(),
rebuild_vars_
.
size
()));
std
::
reverse
(
rebuild_vars_
.
begin
(),
rebuild_vars_
.
end
());
std
::
reverse
(
rebuild_var_indices_
.
begin
(),
rebuild_var_indices_
.
end
());
auto
rebuild_group_indices
=
...
...
@@ -372,6 +523,7 @@ std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
}
void
Reducer
::
FinalizeBackward
()
{
all_group_ready_
=
false
;
// Must prevent compute_stream_ starting until all comm streams have finished
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
...
...
@@ -382,7 +534,7 @@ void Reducer::FinalizeBackward() {
cudaStreamWaitEvent
(
compute_stream_
,
comm_events_
[
i
].
get
(),
0
));
}
if
(
!
has_rebuilt_group_
)
{
if
(
NeedRebuildGroup
()
)
{
VLOG
(
3
)
<<
"Start rebuilding the groups"
;
auto
rebuild_group_indices
=
RebuildGruops
();
auto
rebuild_group_number
=
rebuild_group_indices
.
size
();
...
...
paddle/fluid/imperative/reducer.h
浏览文件 @
a60f17b8
...
...
@@ -18,14 +18,18 @@
#include <iostream>
#include <map>
#include <memory>
#include <queue>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/string/string_helper.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
...
...
@@ -121,7 +125,7 @@ class Reducer {
const
std
::
vector
<
std
::
vector
<
size_t
>>&
group_indices
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>&
group_size_limits
);
const
std
::
vector
<
size_t
>&
group_size_limits
,
bool
find_unused_vars
);
virtual
~
Reducer
()
{}
...
...
@@ -130,13 +134,18 @@ class Reducer {
void
InitializeDenseGroups
(
const
std
::
vector
<
size_t
>&
variable_indices_
,
Group
*
p_group
);
void
Prepare
ForBackward
(
);
void
Prepare
Deps
(
const
std
::
unordered_set
<
GradOpNode
*>&
init_nodes
);
void
AddDistHook
(
VariableWrapper
*
var_warpper
,
size_t
var_index
);
void
PrepareForBackward
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>&
outputs
);
void
MarkDenseVarReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
);
void
AddDistHook
(
size_t
var_index
);
void
MarkSparseVarReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
);
// void MarkDenseVarReady(size_t var_index);
// void MarkSparseVarReady(size_t var_index);
void
MarkVarReady
(
const
size_t
var_index
,
const
bool
is_used_var
);
void
MarkGroupReady
(
size_t
group_index
);
...
...
@@ -148,17 +157,19 @@ class Reducer {
void
CreateGroupEvents
(
int
group_num
);
inline
bool
NeedRebuildGroup
()
{
return
!
has_rebuilt_group_
;
}
// Reducer Singleton
static
std
::
shared_ptr
<
Reducer
>
SetInstance
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>&
vars
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
group_indices
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>&
group_size_limits
)
{
const
std
::
vector
<
size_t
>&
group_size_limits
,
bool
find_unused_vars
)
{
if
(
NULL
==
s_instance_
)
{
s_instance_
.
reset
(
new
paddle
::
imperative
::
Reducer
(
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
,
group_size_limits
));
group_size_limits
,
find_unused_vars
));
}
return
s_instance_
;
}
...
...
@@ -194,6 +205,14 @@ class Reducer {
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
rebuild_vars_
;
std
::
vector
<
int64_t
>
rebuild_var_indices_
;
const
std
::
vector
<
size_t
>
group_size_limits_
;
// Following variables are to help unused vars
std
::
unordered_map
<
GradOpNode
*
,
size_t
>
node_deps_
;
std
::
unordered_map
<
VariableWrapper
*
,
size_t
>
var_index_map_
;
std
::
vector
<
size_t
>
unused_vars_
;
bool
has_marked_unused_vars_
{
false
};
bool
find_unused_vars_
{
false
};
bool
all_group_ready_
{
false
};
};
std
::
vector
<
std
::
vector
<
size_t
>>
AssignGroupBySize
(
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
a60f17b8
...
...
@@ -1358,18 +1358,18 @@ void BindImperative(py::module *m_ptr) {
py
::
class_
<
imperative
::
Reducer
,
std
::
shared_ptr
<
imperative
::
Reducer
>>
(
m
,
"Reducer"
,
R"DOC()DOC"
)
.
def
(
py
::
init
(
[](
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
&
vars
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>
&
group_size_limit
s
)
{
return
imperative
::
Reducer
::
SetInstance
(
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
,
group_size_limit
s
);
}))
.
def
(
py
::
init
(
[](
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
&
vars
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>
&
group_size_limits
,
bool
find_unused_var
s
)
{
return
imperative
::
Reducer
::
SetInstance
(
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
,
group_size_limits
,
find_unused_var
s
);
}))
.
def
(
"prepare_for_backward"
,
&
imperative
::
Reducer
::
PrepareForBackward
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
py
::
arg
(
"vars"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
m
.
def
(
"assign_group_by_size"
,
&
imperative
::
AssignGroupBySize
,
py
::
arg
(
"vars"
),
py
::
arg
(
"is_sparse_gradient"
),
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
a60f17b8
...
...
@@ -26,6 +26,7 @@ from paddle.fluid.dygraph import to_variable, no_grad
from
paddle.utils
import
deprecated
import
warnings
import
paddle
import
itertools
__all__
=
[
"prepare_context"
,
"ParallelEnv"
,
"DataParallel"
]
...
...
@@ -465,17 +466,32 @@ class DataParallel(layers.Layer):
"ParallelContext must be initialized before. You should use init_parallel_env() before"
\
"constructing the DataParallel."
# TODO(shenliang03) "find_unused_vars" interface will be exposed in the future
# to handle control flow to process unused parameters
find_unused_vars
=
True
self
.
_reducer
=
core
.
Reducer
(
trainable_parameters
,
list
(
reversed
(
self
.
group_indices
)),
is_sparse_gradient
,
parallel_helper
.
__parallel_ctx__clz__
,
[
self
.
last_comm_buffer_size
,
self
.
comm_buffer_size
])
[
self
.
last_comm_buffer_size
,
self
.
comm_buffer_size
],
find_unused_vars
)
def
_find_varbase
(
self
,
obj
):
if
isinstance
(
obj
,
core
.
VarBase
):
return
[
obj
]
if
isinstance
(
obj
,
(
list
,
tuple
)):
return
itertools
.
chain
(
*
map
(
self
.
_find_varbase
,
obj
))
if
isinstance
(
obj
,
dict
):
return
itertools
.
chain
(
*
map
(
self
.
_find_varbase
,
obj
.
values
()))
return
[]
def
forward
(
self
,
*
inputs
,
**
kwargs
):
outputs
=
self
.
_layers
(
*
inputs
,
**
kwargs
)
if
self
.
_strategy
.
nranks
>
1
:
self
.
_reducer
.
prepare_for_backward
()
self
.
_reducer
.
prepare_for_backward
(
list
(
self
.
_find_varbase
(
outputs
)))
return
self
.
_layers
(
*
inputs
,
**
kwargs
)
return
outputs
@
deprecated
(
since
=
"2.0.0"
,
reason
=
"This method does not need to be called anymore."
)
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
a60f17b8
...
...
@@ -18,6 +18,7 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_transformer)
list
(
APPEND DIST_TEST_OPS test_fleet_pipeline_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_fleet_graph_execution_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_gen_nccl_id_op
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_unused_variables
)
set
(
MIXED_DIST_TEST_OPS
${
DIST_TEST_OPS
}
)
#remove distribute unittests.
list
(
APPEND MIXED_DIST_TEST_OPS test_dgc_op
)
...
...
@@ -151,6 +152,7 @@ if (NOT ${WITH_GPU})
LIST
(
REMOVE_ITEM TEST_OPS test_rank_attention_op
)
# TODO(shenliang03): rank_attention_op support CPU device in future
LIST
(
REMOVE_ITEM TEST_OPS test_batch_fc_op
)
# TODO(shenliang03): batch_fc_op support CPU device in future
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_mnist
)
# TODO(Yancey1989): parallel dygraph support CPU device in future
list
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_unused_variables
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_se_resnext
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_sparse_embedding
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_sparse_embedding_over_height
)
...
...
@@ -813,6 +815,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL)
if
(
${
NCCL_VERSION
}
VERSION_GREATER_EQUAL 2212
)
set_tests_properties
(
test_parallel_dygraph_sparse_embedding PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_dygraph_transformer PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_dygraph_unused_variables PROPERTIES TIMEOUT 120
)
endif
()
endif
()
if
(
WITH_GPU AND NOT WIN32
)
...
...
python/paddle/fluid/tests/unittests/parallel_dygraph_sparse_embedding_fp64.py
浏览文件 @
a60f17b8
...
...
@@ -55,10 +55,18 @@ class SimpleNet(Layer):
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
tmp
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
forward
(
self
,
input
,
label
):
x_emb
=
self
.
embedding
(
input
)
fc
=
paddle
.
matmul
(
x_emb
,
self
.
softmax_weight
)
# use detach to stop gradient
fc
=
fc
.
detach
()
fc
=
paddle
.
add
(
fc
,
self
.
softmax_bias
)
projection
=
paddle
.
reshape
(
fc
,
shape
=
[
-
1
,
self
.
vocab_size
])
loss
=
paddle
.
nn
.
functional
.
softmax_with_cross_entropy
(
...
...
python/paddle/fluid/tests/unittests/parallel_dygraph_unused_variables.py
0 → 100644
浏览文件 @
a60f17b8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
paddle
from
test_dist_base
import
runtime_main
,
TestParallelDyGraphRunnerBase
from
paddle.nn
import
Layer
,
Embedding
class
SimpleNet
(
Layer
):
def
__init__
(
self
,
hidden_size
,
vocab_size
,
num_steps
=
20
,
init_scale
=
0.1
,
is_sparse
=
False
,
dtype
=
"float32"
):
super
(
SimpleNet
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
num_steps
=
num_steps
self
.
embedding
=
Embedding
(
self
.
vocab_size
,
self
.
hidden_size
,
sparse
=
True
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
'embedding_param'
,
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
init_scale
,
high
=
init_scale
)))
self
.
softmax_weight
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
vocab_size
],
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
# add tmp var
self
.
tmp
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
vocab_size
],
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
forward
(
self
,
input
,
label
):
x_emb
=
self
.
embedding
(
input
)
fc
=
paddle
.
matmul
(
x_emb
,
self
.
softmax_weight
)
# it use stop gradient to block gradient return
fc
.
stop_gradient
=
True
fc
=
paddle
.
add
(
fc
,
self
.
softmax_bias
)
projection
=
paddle
.
reshape
(
fc
,
shape
=
[
-
1
,
self
.
vocab_size
])
loss
=
paddle
.
nn
.
functional
.
softmax_with_cross_entropy
(
logits
=
projection
,
label
=
label
,
soft_label
=
False
)
loss
=
paddle
.
reshape
(
loss
,
shape
=
[
-
1
,
self
.
num_steps
])
loss
=
paddle
.
mean
(
loss
,
axis
=
[
0
])
loss
=
paddle
.
sum
(
loss
)
return
{
"loss"
:
loss
}
# global configs
batch_size
=
4
batch_num
=
200
hidden_size
=
10
vocab_size
=
1000
num_steps
=
3
init_scale
=
0.1
def
fake_sample_reader
():
def
__reader__
():
for
i
in
range
(
batch_num
):
x_data
=
np
.
arange
(
num_steps
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
1
+
num_steps
).
astype
(
'int64'
)
yield
x_data
,
y_data
return
__reader__
class
TestSparseEmbeddingUnusedVars
(
TestParallelDyGraphRunnerBase
):
def
get_model
(
self
):
model
=
SimpleNet
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_steps
=
num_steps
,
init_scale
=
init_scale
,
is_sparse
=
True
)
train_reader
=
paddle
.
batch
(
fake_sample_reader
(),
batch_size
=
batch_size
,
drop_last
=
True
)
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.001
,
parameters
=
model
.
parameters
())
return
model
,
train_reader
,
optimizer
def
run_one_loop
(
self
,
model
,
optimizer
,
batch
):
x_data
=
np
.
array
([
x
[
0
].
reshape
(
3
)
for
x
in
batch
]).
astype
(
'int64'
)
y_data
=
np
.
array
([
x
[
1
].
reshape
(
3
)
for
x
in
batch
]).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
dy_loss
=
model
(
x
,
y
)
return
dy_loss
[
"loss"
]
if
__name__
==
"__main__"
:
runtime_main
(
TestSparseEmbeddingUnusedVars
)
python/paddle/fluid/tests/unittests/test_parallel_dygraph_unused_variables.py
0 → 100644
浏览文件 @
a60f17b8
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
sys
import
unittest
import
paddle.fluid
as
fluid
from
test_dist_base
import
TestDistBase
from
spawn_runner_base
import
TestDistSpawnRunner
from
parallel_dygraph_unused_variables
import
TestSparseEmbeddingUnusedVars
flag_name
=
os
.
path
.
splitext
(
__file__
)[
0
]
class
TestParallelDygraphMnist
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_nccl2_mode
=
True
self
.
_dygraph
=
True
def
test_mnist
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"parallel_dygraph_unused_variables.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
log_name
=
flag_name
)
class
TestSparseEmbeddingUnusedVarsSpawn
(
TestDistSpawnRunner
):
def
test_mnist_with_spawn
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
()
and
sys
.
version_info
>=
(
3
,
4
):
self
.
check_dist_result_with_spawn
(
test_class
=
TestSparseEmbeddingUnusedVars
,
delta
=
1e-5
)
class
TestFleetDygraphMnist
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_nccl2_mode
=
True
self
.
_dygraph
=
True
self
.
_gpu_fleet_api
=
True
def
test_mnist
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"parallel_dygraph_unused_variables.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
log_name
=
flag_name
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录