imperative.cc 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22
#include <memory>
J
Jiabin Yang 已提交
23
#include <string>
24 25
#include <unordered_map>
#include <utility>
J
Jiabin Yang 已提交
26 27
#include <vector>
#include "paddle/fluid/imperative/backward_strategy.h"
28
#include "paddle/fluid/imperative/data_loader.h"
29
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/imperative/nccl_context.h"
31
#include "paddle/fluid/imperative/profiler.h"
32
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
33
#include "paddle/fluid/imperative/type_defs.h"
34
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
35
#include "paddle/fluid/pybind/op_function.h"
36
#include "paddle/fluid/pybind/pybind_boost_headers.h"
L
Leo Chen 已提交
37
#include "paddle/fluid/pybind/tensor_py.h"
38

39 40 41
namespace paddle {
namespace pybind {

42 43
namespace py = ::pybind11;

44 45 46 47
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

48 49 50 51
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
52
                      Forward, inputs);  // NOLINT
53 54 55
  }
};

L
Leo Chen 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
  }
}

static void InitTensorForVarBase(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place place,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 std::string name = "") {
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
79
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
80 81 82 83 84 85 86 87 88
  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(
        tensor, array, boost::get<platform::CPUPlace>(place), zero_copy);
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
        tensor, array, boost::get<platform::CUDAPlace>(place), zero_copy);
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, boost::get<platform::CUDAPinnedPlace>(place), zero_copy);
89
  } else {
L
Leo Chen 已提交
90 91
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
J
Jiabin Yang 已提交
92
  }
L
Leo Chen 已提交
93
  self->SetPersistable(persistable);
94 95 96 97 98 99 100 101 102
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
  PADDLE_ENFORCE_EQ(
      kwargs.contains("value"), true,
      platform::errors::InvalidArgument("Missing argument: value"));
L
Leo Chen 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115

  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto array = kwargs.contains("value") ? kwargs["value"].cast<py::array>()
                                        : py::array();
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
  auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                        : default_place;
  InitTensorForVarBase(self, array, place, persistable, zero_copy, name);
116
}
117

118 119 120
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
121 122 123 124 125 126 127 128
                                        bool persistable = false,
                                        bool zero_copy = false,
                                        std::string name = "") {
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
129 130 131 132 133 134 135 136
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
137 138 139
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
  InitTensorForVarBase(self, array, place);
140
}
141

142 143 144 145 146
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
147
  } else {
148
    return framework::ToTypeName(var.Var().Type());
149 150
  }
}
L
Leo Chen 已提交
151

152
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

175
  if (PyList_Check(py_obj)) {  // List of VarBase
176 177 178
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
179 180 181
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
182 183 184
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
185
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
186 187 188
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
189 190 191
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
192 193 194
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
195 196 197
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
198 199 200 201 202
  }

  return result;
}

J
Jiabin Yang 已提交
203 204 205
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
206 207 208 209 210 211
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
212 213 214

  PADDLE_ENFORCE_EQ(PyErr_Occurred() == nullptr, true,
                    py::str(py::handle(PyErr_Occurred())));
215 216 217
  return result;
}

218
// Bind Methods
J
Jiabin Yang 已提交
219
void BindImperative(py::module *m_ptr) {
220 221
  auto &m = *m_ptr;

222 223
  BindOpFunctions(&m);

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
#ifndef _WIN32
  // Dygraph DataLoader signal handler
  m.def("_set_process_pid", [](int64_t key, pid_t pid) {
    imperative::SetLoadProcessPID(key, pid);
  });
  m.def("_erase_process_pid",
        [](int64_t key) { imperative::EraseLoadProcessPID(key); });
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });

  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
          void *data_ptr = t.data<void>();
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

303
  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
304 305
      m, "BackwardStrategy", R"DOC(

J
Jiabin Yang 已提交
306
    BackwardStrategy is a descriptor of how to run the backward process.
307

J
Jiabin Yang 已提交
308
    **Note**:
T
tianshuo78520a 已提交
309
        **This API is only available in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **Mode**
310

J
Jiabin Yang 已提交
311 312
    Attribute:
        **sort_sum_gradient**:
313

J
Jiabin Yang 已提交
314
        If framework will sum the gradient by the reverse order of trace. eg. x_var ( :ref:`api_guide_Variable` ) will be the input of multiple OP such as :ref:`api_fluid_layers_scale` , this attr will decide if framework will sum gradient of `x_var` by the reverse order.
L
lujun 已提交
315

J
Jiabin Yang 已提交
316
        By Default: False
L
lujun 已提交
317

J
Jiabin Yang 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    x_var = fluid.dygraph.to_variable(x)
                    sums_inputs = []
                    # x_var will be multi-scales' input here
                    for _ in range(10):
                        sums_inputs.append(fluid.layers.scale(x_var))
                    ret2 = fluid.layers.sums(sums_inputs)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
336
      )DOC");
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
352 353 354
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
355 356 357 358
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          imperative::SetCurrentTracer(tracer);
        });
Z
Zeng Jinle 已提交
359

360
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
J
Jiabin Yang 已提交
361 362
      m, "VarBase",
      R"DOC()DOC")
Z
Zeng Jinle 已提交
363
      .def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
J
Jiabin Yang 已提交
364
      .def("__init__",
365 366 367 368 369 370 371 372 373 374 375
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
                   "generated_var");
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
376 377 378 379 380 381 382 383 384
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
385 386
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
387
           py::arg("zero_copy") = false, py::arg("name") = "")
388 389
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
390
           py::arg("zero_copy") = false, py::arg("name") = "")
391 392
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
393 394
           py::arg("zero_copy") = false, py::arg("name") = "")
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
395 396 397 398 399 400 401 402 403 404 405 406 407 408
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
      .def("numpy",
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "%s is Empty, Please check if it has no data in",
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
409
            **This API is ONLY available in Dygraph mode**
410 411 412 413 414 415 416 417 418 419 420 421 422 423

        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
            ndarray: dtype is same as current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
424
                from paddle.fluid.dygraph import Linear
425 426 427 428
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
429
                    linear = Linear(32, 64)
430
                    data = to_variable(data)
431
                    x = linear(data)
432 433 434 435 436 437 438 439 440 441 442 443 444
                    print(x.numpy())

       )DOC")
      .def("detach",
           [](const imperative::VarBase &self) {
             const auto &tensor = self.Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(tensor.IsInitialized(), true,
                               platform::errors::InvalidArgument(
                                   "%s has not been initialized", self.Name()));
             return self.NewVarBase(tensor.place(), false);
           },
           py::return_value_policy::copy, R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
445
            **This API is ONLY available in Dygraph mode**
446 447 448 449 450 451 452 453 454 455 456 457

        Returns a new Variable, detached from the current graph.

        Returns:
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.


        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
458
                from paddle.fluid.dygraph import Linear
459 460 461 462
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
463
                    linear = Linear(32, 64)
464
                    data = to_variable(data)
465
                    x = linear(data)
466 467 468 469 470 471
                    y = x.detach()

       )DOC")
      .def("clear_gradient", &imperative::VarBase::ClearGradient, R"DOC(

        **Notes**:
T
tianshuo78520a 已提交
472
        **1. This API is ONLY available in Dygraph mode**
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

        **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**

        Clear  (set to ``0`` ) the Gradient of Current Variable

        Returns:  None

        Examples:
             .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                         tmp = fluid.dygraph.base.to_variable(x)
                         tmp.stop_gradient=False
                         inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))
      )DOC")
L
Leo Chen 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
      .def("_run_backward",
           [](imperative::VarBase &self,
              const imperative::detail::BackwardStrategy &bckst,
              const imperative::Tracer &tracer) {
             // TODO(jiabin): when we impl more backward execution we can select
             // them

             imperative::Engine *engine = tracer.GetDefaultEngine();
             VLOG(3) << "Start backward";
             engine->Init(&self, bckst);
             engine->Execute();
             VLOG(3) << "Finish backward";
           },
           py::call_guard<py::gil_scoped_release>())
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
522
      .def("_grad_ivar",
J
Jiabin Yang 已提交
523 524
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
525 526 527 528 529 530 531 532 533 534 535
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
                             ->GetMutable<framework::SelectedRows>()
                             ->mutable_value();
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
536
             }
537
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
538 539
           },
           py::return_value_policy::copy)
540 541
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
J
Jiabin Yang 已提交
542 543
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
544 545
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
J
Jiabin Yang 已提交
546 547 548
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
549 550 551
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
552 553 554 555 556
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
J
Jiabin Yang 已提交
557 558 559 560
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
561
              return framework::vectorize<int>(
J
Jiabin Yang 已提交
562
                  self.Var().Get<framework::LoDTensor>().dims());
563 564 565
            } else if (self.Var().IsType<framework::SelectedRows>()) {
              return framework::vectorize<int>(
                  self.Var().Get<framework::SelectedRows>().value().dims());
J
Jiabin Yang 已提交
566 567 568 569 570 571 572
            } else {
              VLOG(2) << "It is meaningless to get shape of variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
573
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
574 575 576

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
577 578 579 580 581
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
582

583 584 585 586 587
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

588 589 590
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
      m, "Tracer",
      R"DOC()DOC")
591
      .def("__init__",
J
Jiabin Yang 已提交
592
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
593 594 595
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
596 597 598 599 600 601 602 603 604 605
      .def_property("_train_mode", &imperative::Tracer::NoGrad,
                    &imperative::Tracer::SetNoGrad)
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
606
              self.SetExpectedPlace(*p);
607 608
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
609
              self.SetExpectedPlace(*p);
610 611
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
612
              self.SetExpectedPlace(*p);
613
            } else {
L
Leo Chen 已提交
614
              PADDLE_THROW(platform::errors::InvalidArgument(
615
                  "Incompatible Place Type: supports CUDAPlace, CPUPlace, "
L
Leo Chen 已提交
616 617
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
618 619
            }
          })
620 621 622
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
M
minqiyang 已提交
623
      .def("trace",
J
Jiabin Yang 已提交
624 625 626 627 628 629
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
630 631
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
632 633
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
634
             }
M
minqiyang 已提交
635
           })
J
Jiabin Yang 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
649 650

  // define parallel context
651 652 653
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
654 655
      .def_property(
          "nranks",
656 657
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
658 659 660
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
661
                    [](const imperative::ParallelStrategy &self) {
662 663
                      return self.local_rank_;
                    },
664
                    [](imperative::ParallelStrategy &self, int local_rank) {
665 666 667 668
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
669
          [](const imperative::ParallelStrategy &self) {
670 671
            return self.trainer_endpoints_;
          },
672
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
673 674 675
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
676
                    [](const imperative::ParallelStrategy &self) {
677 678
                      return self.current_endpoint_;
                    },
679 680
                    [](imperative::ParallelStrategy &self,
                       const std::string &ep) { self.current_endpoint_ = ep; });
681
#if defined(PADDLE_WITH_NCCL)
682 683
  py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
                                                       "NCCLParallelContext");
684 685

  nccl_ctx
686 687 688
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
689
#endif
690 691 692 693
}

}  // namespace pybind
}  // namespace paddle