imperative.cc 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22
#include <memory>
J
Jiabin Yang 已提交
23
#include <string>
24 25
#include <unordered_map>
#include <utility>
J
Jiabin Yang 已提交
26 27
#include <vector>
#include "paddle/fluid/imperative/backward_strategy.h"
28
#include "paddle/fluid/imperative/basic_engine.h"
29
#include "paddle/fluid/imperative/data_loader.h"
30
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
31
#include "paddle/fluid/imperative/nccl_context.h"
32
#include "paddle/fluid/imperative/partial_grad_engine.h"
33
#include "paddle/fluid/imperative/profiler.h"
34
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
35
#include "paddle/fluid/imperative/type_defs.h"
36
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
37
#include "paddle/fluid/pybind/op_function.h"
38
#include "paddle/fluid/pybind/pybind_boost_headers.h"
L
Leo Chen 已提交
39
#include "paddle/fluid/pybind/tensor_py.h"
40

41 42 43
namespace paddle {
namespace pybind {

44 45
namespace py = ::pybind11;

46 47 48 49
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

50 51 52 53
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
54
                      Forward, inputs);  // NOLINT
55 56 57
  }
};

L
Leo Chen 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
  }
}

static void InitTensorForVarBase(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place place,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 std::string name = "") {
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
81
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
82 83 84 85 86 87 88 89 90
  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(
        tensor, array, boost::get<platform::CPUPlace>(place), zero_copy);
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
        tensor, array, boost::get<platform::CUDAPlace>(place), zero_copy);
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, boost::get<platform::CUDAPinnedPlace>(place), zero_copy);
91
  } else {
L
Leo Chen 已提交
92 93
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
J
Jiabin Yang 已提交
94
  }
L
Leo Chen 已提交
95
  self->SetPersistable(persistable);
96 97 98 99 100 101 102 103 104
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
  PADDLE_ENFORCE_EQ(
      kwargs.contains("value"), true,
      platform::errors::InvalidArgument("Missing argument: value"));
L
Leo Chen 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117

  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto array = kwargs.contains("value") ? kwargs["value"].cast<py::array>()
                                        : py::array();
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
  auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                        : default_place;
  InitTensorForVarBase(self, array, place, persistable, zero_copy, name);
118
}
119

120 121 122
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
123 124 125 126 127 128 129 130
                                        bool persistable = false,
                                        bool zero_copy = false,
                                        std::string name = "") {
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
131 132 133 134 135 136 137 138
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
139 140 141
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
  InitTensorForVarBase(self, array, place);
142
}
143

144 145 146 147 148
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
149
  } else {
150
    return framework::ToTypeName(var.Var().Type());
151 152
  }
}
L
Leo Chen 已提交
153

154
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

177
  if (PyList_Check(py_obj)) {  // List of VarBase
178 179 180
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
181 182 183
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
184 185 186
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
187
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
188 189 190
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
191 192 193
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
194 195 196
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
197 198 199
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
200 201 202 203 204
  }

  return result;
}

J
Jiabin Yang 已提交
205 206 207
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
208 209 210 211 212 213
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
214 215 216

  PADDLE_ENFORCE_EQ(PyErr_Occurred() == nullptr, true,
                    py::str(py::handle(PyErr_Occurred())));
217 218 219
  return result;
}

S
songyouwei 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static void ParseIndexingSlice(framework::LoDTensor *tensor, PyObject *_index,
                               std::vector<int> *slice_axes,
                               std::vector<int> *slice_starts,
                               std::vector<int> *slice_ends,
                               std::vector<int> *slice_strides,
                               std::vector<int> *decrease_axis,
                               std::vector<int> *infer_flags) {
  // We allow indexing by Integers, Slices, and tuples of those
  // types.
  // Ellipsis and None are not supported yet.
  // wrap to tuple
  PyObject *index = !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("tensor has not been initialized"));
  const auto &shape = tensor->dims();
  const int rank = shape.size();
  const int size = PyTuple_GET_SIZE(index);
  PADDLE_ENFORCE_EQ(
      size <= rank, true,
      platform::errors::InvalidArgument(
          "too many indices (%d) for tensor of dimension %d", size, rank));
  for (int dim = 0; dim < size; ++dim) {
    PyObject *slice_item = PyTuple_GetItem(index, dim);
    PADDLE_ENFORCE_EQ(
        PyNumber_Check(slice_item) || PySlice_Check(slice_item), true,
        platform::errors::InvalidArgument(
            "We allow indexing by Integers, Slices, and tuples of "
            "these types, but received %s in %dth slice item",
            std::string(Py_TYPE(slice_item)->tp_name), dim + 1));
    infer_flags->push_back(1);
    int dim_len = shape[dim];
    if (PyNumber_Check(slice_item)) {
      // integer
      int start = static_cast<int>(PyLong_AsLong(slice_item));
      start = start < 0 ? start + dim_len : start;
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(start + 1);
      slice_strides->push_back(1);
      decrease_axis->push_back(dim);
    } else {
      // slice
      Py_ssize_t start, end, step;
// The parameter type for the slice parameter was PySliceObject* before 3.2
#if PY_VERSION_HEX >= 0x03020000
      PySlice_GetIndices(slice_item, dim_len, &start, &end, &step);
#else
      PySlice_GetIndices(reinterpret_cast<PySliceObject *>(slice_item), dim_len,
                         &start, &end, &step);
#endif
      // :: or : or 0:dim_len:1
      if (start == 0 && end == dim_len && step == 1) continue;
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(end);
      slice_strides->push_back(step);
    }
  }
  if (!PyTuple_Check(_index)) Py_DecRef(index);
}

282
// Bind Methods
J
Jiabin Yang 已提交
283
void BindImperative(py::module *m_ptr) {
284 285
  auto &m = *m_ptr;

286 287
  BindOpFunctions(&m);

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
#ifndef _WIN32
  // Dygraph DataLoader signal handler
  m.def("_set_process_pid", [](int64_t key, pid_t pid) {
    imperative::SetLoadProcessPID(key, pid);
  });
  m.def("_erase_process_pid",
        [](int64_t key) { imperative::EraseLoadProcessPID(key); });
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });

  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
          void *data_ptr = t.data<void>();
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

367
  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
368 369
      m, "BackwardStrategy", R"DOC(

J
Jiabin Yang 已提交
370
    BackwardStrategy is a descriptor of how to run the backward process.
371

J
Jiabin Yang 已提交
372
    **Note**:
T
tianshuo78520a 已提交
373
        **This API is only available in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **Mode**
374

J
Jiabin Yang 已提交
375 376
    Attribute:
        **sort_sum_gradient**:
377

J
Jiabin Yang 已提交
378
        If framework will sum the gradient by the reverse order of trace. eg. x_var ( :ref:`api_guide_Variable` ) will be the input of multiple OP such as :ref:`api_fluid_layers_scale` , this attr will decide if framework will sum gradient of `x_var` by the reverse order.
L
lujun 已提交
379

J
Jiabin Yang 已提交
380
        By Default: False
L
lujun 已提交
381

J
Jiabin Yang 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    x_var = fluid.dygraph.to_variable(x)
                    sums_inputs = []
                    # x_var will be multi-scales' input here
                    for _ in range(10):
                        sums_inputs.append(fluid.layers.scale(x_var))
                    ret2 = fluid.layers.sums(sums_inputs)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
400
      )DOC");
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
416 417 418
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
419 420 421 422
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          imperative::SetCurrentTracer(tracer);
        });
Z
Zeng Jinle 已提交
423

424
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
J
Jiabin Yang 已提交
425 426
      m, "VarBase",
      R"DOC()DOC")
Z
Zeng Jinle 已提交
427
      .def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
J
Jiabin Yang 已提交
428
      .def("__init__",
429 430 431 432 433 434 435 436 437 438 439
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
                   "generated_var");
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
440 441 442 443 444 445 446 447 448
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
449 450
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
451
           py::arg("zero_copy") = false, py::arg("name") = "")
452 453
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
454
           py::arg("zero_copy") = false, py::arg("name") = "")
455 456
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
457 458
           py::arg("zero_copy") = false, py::arg("name") = "")
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
459
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
460
      .def("__getitem__",
S
songyouwei 已提交
461
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
462
             std::vector<int> slice_axes, slice_starts, slice_ends,
S
songyouwei 已提交
463 464 465 466 467 468
                 slice_strides, decrease_axis, infer_flags;
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             ParseIndexingSlice(tensor, _index.ptr(), &slice_axes,
                                &slice_starts, &slice_ends, &slice_strides,
                                &decrease_axis, &infer_flags);
469 470 471 472 473

             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
             if (slice_axes.empty()) {
S
songyouwei 已提交
474
               return self;
475
             } else {
S
songyouwei 已提交
476
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               auto out = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
               return out;
             }
           })
499 500 501 502 503 504 505 506 507 508 509 510 511
      .def("numpy",
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "%s is Empty, Please check if it has no data in",
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
512
            **This API is ONLY available in Dygraph mode**
513 514 515 516 517 518 519 520 521 522 523 524 525 526

        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
            ndarray: dtype is same as current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
527
                from paddle.fluid.dygraph import Linear
528 529 530 531
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
532
                    linear = Linear(32, 64)
533
                    data = to_variable(data)
534
                    x = linear(data)
535 536 537 538 539 540 541 542 543 544 545 546 547
                    print(x.numpy())

       )DOC")
      .def("detach",
           [](const imperative::VarBase &self) {
             const auto &tensor = self.Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(tensor.IsInitialized(), true,
                               platform::errors::InvalidArgument(
                                   "%s has not been initialized", self.Name()));
             return self.NewVarBase(tensor.place(), false);
           },
           py::return_value_policy::copy, R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
548
            **This API is ONLY available in Dygraph mode**
549 550 551 552 553 554 555 556 557 558 559 560

        Returns a new Variable, detached from the current graph.

        Returns:
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.


        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
561
                from paddle.fluid.dygraph import Linear
562 563 564 565
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
566
                    linear = Linear(32, 64)
567
                    data = to_variable(data)
568
                    x = linear(data)
569 570 571 572 573 574
                    y = x.detach()

       )DOC")
      .def("clear_gradient", &imperative::VarBase::ClearGradient, R"DOC(

        **Notes**:
T
tianshuo78520a 已提交
575
        **1. This API is ONLY available in Dygraph mode**
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

        **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**

        Clear  (set to ``0`` ) the Gradient of Current Variable

        Returns:  None

        Examples:
             .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                         tmp = fluid.dygraph.base.to_variable(x)
                         tmp.stop_gradient=False
                         inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))
      )DOC")
L
Leo Chen 已提交
605 606 607 608 609 610
      .def("_run_backward",
           [](imperative::VarBase &self,
              const imperative::detail::BackwardStrategy &bckst,
              const imperative::Tracer &tracer) {
             // TODO(jiabin): when we impl more backward execution we can select
             // them
611
             auto *engine = tracer.GetEngine();
L
Leo Chen 已提交
612
             engine->Init(&self, bckst);
613
             VLOG(3) << "Start backward";
L
Leo Chen 已提交
614 615 616 617 618 619 620 621 622 623
             engine->Execute();
             VLOG(3) << "Finish backward";
           },
           py::call_guard<py::gil_scoped_release>())
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
624
      .def("_grad_ivar",
J
Jiabin Yang 已提交
625 626
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
627 628 629 630 631 632 633 634 635 636 637
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
                             ->GetMutable<framework::SelectedRows>()
                             ->mutable_value();
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
638
             }
639
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
640 641
           },
           py::return_value_policy::copy)
642 643
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
J
Jiabin Yang 已提交
644 645
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
646 647
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
J
Jiabin Yang 已提交
648 649 650
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
651 652 653
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
654 655 656 657 658
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
J
Jiabin Yang 已提交
659 660 661 662
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
663
              return framework::vectorize<int>(
J
Jiabin Yang 已提交
664
                  self.Var().Get<framework::LoDTensor>().dims());
665 666 667
            } else if (self.Var().IsType<framework::SelectedRows>()) {
              return framework::vectorize<int>(
                  self.Var().Get<framework::SelectedRows>().value().dims());
J
Jiabin Yang 已提交
668 669 670 671 672 673 674
            } else {
              VLOG(2) << "It is meaningless to get shape of variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
675
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
676 677 678

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
679 680 681 682 683
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
684

685 686 687 688 689
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

690 691 692
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
      m, "Tracer",
      R"DOC()DOC")
693
      .def("__init__",
J
Jiabin Yang 已提交
694
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
695 696 697
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
698 699 700 701 702 703 704 705 706 707
      .def_property("_train_mode", &imperative::Tracer::NoGrad,
                    &imperative::Tracer::SetNoGrad)
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
708
              self.SetExpectedPlace(*p);
709 710
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
711
              self.SetExpectedPlace(*p);
712 713
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
714
              self.SetExpectedPlace(*p);
715
            } else {
L
Leo Chen 已提交
716
              PADDLE_THROW(platform::errors::InvalidArgument(
717
                  "Incompatible Place Type: supports CUDAPlace, CPUPlace, "
L
Leo Chen 已提交
718 719
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
720 721
            }
          })
722 723 724
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
M
minqiyang 已提交
725
      .def("trace",
J
Jiabin Yang 已提交
726 727 728 729 730 731
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
732 733
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
734 735
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
736
             }
M
minqiyang 已提交
737
           })
J
Jiabin Yang 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
751 752

  // define parallel context
753 754 755
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
756 757
      .def_property(
          "nranks",
758 759
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
760 761 762
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
763
                    [](const imperative::ParallelStrategy &self) {
764 765
                      return self.local_rank_;
                    },
766
                    [](imperative::ParallelStrategy &self, int local_rank) {
767 768 769 770
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
771
          [](const imperative::ParallelStrategy &self) {
772 773
            return self.trainer_endpoints_;
          },
774
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
775 776 777
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
778
                    [](const imperative::ParallelStrategy &self) {
779 780
                      return self.current_endpoint_;
                    },
781 782
                    [](imperative::ParallelStrategy &self,
                       const std::string &ep) { self.current_endpoint_ = ep; });
783 784 785 786 787 788 789 790 791 792

  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
         const platform::Place &place,
         const imperative::detail::BackwardStrategy &strategy,
Z
Zeng Jinle 已提交
793 794 795 796 797
         bool create_graph, bool retain_graph, bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(
            input_targets, output_targets, output_grads, no_grad_vars, place,
            strategy, create_graph, retain_graph, allow_unused, only_inputs);
798 799 800 801 802
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

803
#if defined(PADDLE_WITH_NCCL)
804 805
  py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
                                                       "NCCLParallelContext");
806 807

  nccl_ctx
808 809 810
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
811
#endif
812 813 814 815
}

}  // namespace pybind
}  // namespace paddle