imperative.cc 88.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

32
#include "paddle/fluid/framework/scope_guard.h"
33
#include "paddle/fluid/imperative/all_reduce.h"
34
#include "paddle/fluid/imperative/amp_auto_cast.h"
35
#include "paddle/fluid/imperative/basic_engine.h"
36
#include "paddle/fluid/imperative/bkcl_context.h"
37
#include "paddle/fluid/imperative/data_loader.h"
38
#include "paddle/fluid/imperative/hooks.h"
39
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
40
#include "paddle/fluid/imperative/nccl_context.h"
41
#include "paddle/fluid/imperative/partial_grad_engine.h"
42
#include "paddle/fluid/imperative/profiler.h"
43
#include "paddle/fluid/imperative/py_layer_fwd.h"
44
#include "paddle/fluid/imperative/reducer.h"
45
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
46
#include "paddle/fluid/imperative/type_defs.h"
47
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
48
#include "paddle/fluid/pybind/op_function.h"
49
#include "paddle/fluid/pybind/pybind_boost_headers.h"
L
Leo Chen 已提交
50
#include "paddle/fluid/pybind/tensor_py.h"
51

52 53 54
namespace paddle {
namespace pybind {

55 56
PyTypeObject *g_varbase_pytype = nullptr;

57 58
namespace py = ::pybind11;

59 60 61 62
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

63 64 65 66
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
67
                      Forward, inputs);  // NOLINT
68 69 70
  }
};

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
      res = PyObject_CallFunctionObjArgs(py_func_, py::cast(tmp_varbase).ptr(),
                                         nullptr);
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

    return PyObjectCast<std::shared_ptr<imperative::VarBase>>(res)->SharedVar();
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
130 131 132 133 134
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
135 136
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
137 138
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
139 140
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
141 142
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
L
Leo Chen 已提交
143 144
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
145
        "Place should be one of "
146
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace"));
L
Leo Chen 已提交
147 148 149
  }
}

L
Leo Chen 已提交
150 151 152 153 154 155 156 157 158 159
// only initialize varbase, but not its tensor.
static void InitVarBaseOnly(imperative::VarBase *self, const std::string &name,
                            bool persistable = false, int stop_gradient = -1) {
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
160
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
static void InitVarBaseAndTensor(
    imperative::VarBase *self, const py::array &array,
    const platform::Place &place, const std::string &name,
    bool persistable = false, bool zero_copy = false, int stop_gradient = -1) {
  InitVarBaseOnly(self, name, persistable, stop_gradient);
175
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
176
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
177 178
  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(
179
        tensor, array, BOOST_GET_CONST(platform::CPUPlace, place), zero_copy);
180 181 182
  } else if (platform::is_xpu_place(place)) {
    SetTensorFromPyArray<platform::XPUPlace>(
        tensor, array, BOOST_GET_CONST(platform::XPUPlace, place), zero_copy);
L
Leo Chen 已提交
183 184
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
185
        tensor, array, BOOST_GET_CONST(platform::CUDAPlace, place), zero_copy);
L
Leo Chen 已提交
186 187
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
188 189
        tensor, array, BOOST_GET_CONST(platform::CUDAPinnedPlace, place),
        zero_copy);
190 191 192
  } else if (platform::is_npu_place(place)) {
    SetTensorFromPyArray<platform::NPUPlace>(
        tensor, array, BOOST_GET_CONST(platform::NPUPlace, place), zero_copy);
193
  } else {
L
Leo Chen 已提交
194
    PADDLE_THROW(platform::errors::InvalidArgument(
195 196
        "Place should be one of "
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace"));
J
Jiabin Yang 已提交
197
  }
198 199 200 201 202
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
203
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
204 205 206 207 208 209
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
210 211 212
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
213
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
214 215 216 217 218 219 220 221 222 223 224 225

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
    InitVarBaseAndTensor(self, array, place, name, persistable, zero_copy,
                         stop_gradient);
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
226
}
227

228 229 230
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
231 232
                                        bool persistable = false,
                                        bool zero_copy = false,
233 234 235 236 237
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
238
  if (name == "") {
239 240
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
241
  }
242 243
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
244
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
245
  new (self) imperative::VarBase(name);
246 247
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
248 249 250
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
251 252 253 254 255 256
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
257 258
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
259
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
260
  InitVarBaseAndTensor(self, array, place, "");
261
}
262

263
static void InitVarBaseFromTensorWithArgDefault(
264
    imperative::VarBase *self, const framework::Tensor &tensor) {
265 266 267
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
  new (self) imperative::VarBase(
268
      imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor"));
269 270 271 272 273 274 275 276 277 278 279 280 281 282
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor.type());
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

283 284 285 286 287
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
288
  } else {
289
    return framework::ToTypeName(var.Var().Type());
290 291
  }
}
L
Leo Chen 已提交
292

293
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
294 295 296 297 298 299 300 301 302 303 304 305 306

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

307
  if (PyList_Check(py_obj)) {  // List of VarBase
308 309 310
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
311 312 313
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
314 315 316
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
317
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
318 319 320
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
321 322 323
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
324 325 326
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
327 328 329
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
330 331 332 333
  }

  return result;
}
334 335 336 337 338 339 340 341
static bool IsNumpyType(PyObject *obj) {
  // It is not a good way to judge the type of obj by its type'name. Maybe using
  // `PyArray_IsScalar` will be better. However, this interface cannot be used
  // by including pybind11, and it needs to compile with numpy.
  auto type_name = std::string(Py_TYPE(obj)->tp_name);
  return type_name == "numpy.int64" || type_name == "numpy.longlong" ||
         type_name == "numpy.int32" || type_name == "numpy.int16";
}
J
Jiabin Yang 已提交
342 343 344
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
345 346 347 348 349 350
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
351

352 353 354
  PADDLE_ENFORCE_EQ(
      PyErr_Occurred(), nullptr,
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
355 356 357
  return result;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static bool PyCheckInteger(PyObject *obj) {
#if PY_VERSION_HEX < 0x03000000
  return (PyLong_Check(obj) || PyInt_Check(obj)) && !PyBool_Check(obj);
#else
  return PyLong_Check(obj) && !PyBool_Check(obj);
#endif
}

// NOTE(zhiqiu): Revised version of PySlice_GetIndices. From:
// https://github.com/python/cpython/blob/8d21aa21f2cbc6d50aab3f420bb23be1d081dac4/Objects/sliceobject.c#L103
// Original PySlice_GetIndices return wrong result when
// slice_item contains long int, such as arr[:180L].
// NOT sure why this happens !!!
// Besides, PySlice_GetIndices cannot raise error when float in slice item.
// So, I make a revised version of PySlice_GetIndices, named to
// _PySlice_GetIndices. Try to use _PySlice_Unpack which is more robust than
// PySlice_GetIndices in the future.
static int _PySlice_GetIndices(PySliceObject *r, Py_ssize_t length,
                               Py_ssize_t *start, Py_ssize_t *stop,
                               Py_ssize_t *step) {
  /* XXX support long ints */
  if (r->step == Py_None) {
    *step = 1;
  } else {
382
    if (PyCheckInteger(r->step) || IsNumpyType(r->step)) {
383 384 385 386 387 388 389 390 391 392 393
      *step = PyLong_AsLong(r->step);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->step)->tp_name)));
    }
  }
  if (r->start == Py_None) {
    *start = *step < 0 ? length - 1 : 0;
  } else {
394
    if (PyCheckInteger(r->start) || IsNumpyType(r->start)) {
395 396 397 398 399 400 401 402
      *start = PyLong_AsLong(r->start);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->start)->tp_name)));
    }
    if (*start < 0) *start += length;
403
    *start = std::max(*start, static_cast<Py_ssize_t>(0));
404 405 406 407
  }
  if (r->stop == Py_None) {
    *stop = *step < 0 ? -1 : length;
  } else {
408
    if (PyCheckInteger(r->stop) || IsNumpyType(r->stop)) {
409 410 411 412 413 414 415 416
      *stop = PyLong_AsLong(r->stop);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->stop)->tp_name)));
    }
    if (*stop < 0) *stop += length;
417
    *stop = std::min(*stop, length);
418 419 420 421 422 423 424
  }
  if (*stop > length) return -1;
  if (*start >= length) return -1;
  if (*step == 0) return -1;
  return 0;
}

Z
zyfncg 已提交
425 426 427 428 429 430 431 432 433
static void ParseIndexingSlice(
    framework::LoDTensor *tensor, PyObject *_index,
    std::vector<int> *slice_axes, std::vector<int> *slice_starts,
    std::vector<int> *slice_ends, std::vector<int> *slice_strides,
    std::vector<int> *decrease_axis, std::vector<int> *none_axes,
    std::vector<int> *infer_flags, std::vector<int> *list_select_idxs,
    bool *list_select_flag) {
  // We allow indexing by Integers, Slices, Ellipsis, None, tuples of those
  // types, and list of Bool and Integers.
S
songyouwei 已提交
434
  // wrap to tuple
435 436

  // NOTE(zhiqiu): PyTuple_Pack increases refcount.
S
songyouwei 已提交
437
  PyObject *index = !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
438 439 440 441 442 443
  DEFINE_PADDLE_SCOPE_GUARD([index, _index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index);
      VLOG(4) << "Call Py_DECREF";
    }
  });
S
songyouwei 已提交
444 445 446 447 448 449
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("tensor has not been initialized"));
  const auto &shape = tensor->dims();
  const int rank = shape.size();
  const int size = PyTuple_GET_SIZE(index);
450 451 452 453 454 455 456 457 458 459 460 461 462 463

  // specified_dims is the number of dimensions which indexed by Interger,
  // Slices.
  int specified_dims = 0;
  for (int dim = 0; dim < size; ++dim) {
    PyObject *slice_item = PyTuple_GetItem(index, dim);
    if (PyCheckInteger(slice_item) || PySlice_Check(slice_item)) {
      specified_dims++;
    }
  }

  for (int i = 0, dim = 0; i < size; ++i) {
    PyObject *slice_item = PyTuple_GetItem(index, i);

S
songyouwei 已提交
464 465
    infer_flags->push_back(1);
    int dim_len = shape[dim];
466
    if (PyCheckInteger(slice_item) || IsNumpyType(slice_item)) {
467
      // integer, PyLong_AsLong supports both int and long
S
songyouwei 已提交
468
      int start = static_cast<int>(PyLong_AsLong(slice_item));
H
hong 已提交
469
      auto s_t = start;
S
songyouwei 已提交
470
      start = start < 0 ? start + dim_len : start;
471
      if (start >= dim_len || start < 0) {
H
hong 已提交
472 473 474 475 476 477 478 479 480
        std::string str_error_message =
            "The starting index " + std::to_string(s_t) +
            " of slice is out of bounds in tensor " + std::to_string(dim) +
            "-th axis, it shound be in the range of [" +
            std::to_string(-dim_len) + ", " + std::to_string(dim_len) + ")";
        // py::index_error is corresponding to IndexError in Python
        // Used to indicate out of bounds access in __getitem__, __setitem__
        throw py::index_error(str_error_message);
      }
S
songyouwei 已提交
481 482 483 484 485
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(start + 1);
      slice_strides->push_back(1);
      decrease_axis->push_back(dim);
486 487
      dim++;
    } else if (PySlice_Check(slice_item)) {
488
      // slice item
S
songyouwei 已提交
489
      Py_ssize_t start, end, step;
490 491 492
      PySliceObject *p = reinterpret_cast<PySliceObject *>(slice_item);
      _PySlice_GetIndices(p, dim_len, &start, &end, &step);

S
songyouwei 已提交
493
      // :: or : or 0:dim_len:1
494
      if (start == 0 && end == dim_len && step == 1) {
495
        dim++;
496 497
        continue;
      }
S
songyouwei 已提交
498 499 500 501
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(end);
      slice_strides->push_back(step);
502 503 504
      dim++;
    } else if (slice_item == Py_Ellipsis) {
      dim += rank - specified_dims;
505 506
    } else if (slice_item == Py_None) {
      none_axes->push_back(dim);
Z
zyfncg 已提交
507 508
    } else if (PyList_Check(slice_item)) {
      *list_select_flag = true;
Z
zyfncg 已提交
509 510 511 512 513 514
      PADDLE_ENFORCE_EQ(
          size, 1,
          platform::errors::InvalidArgument(
              "When index contains a list, its length is excepted to 1, "
              "but received %d",
              size));
Z
zyfncg 已提交
515 516 517 518 519 520 521 522 523 524 525 526
      bool all_bool = true;
      int list_size = PyList_GET_SIZE(slice_item);
      for (int j = 0; j < list_size; ++j) {
        PyObject *list_item = PyList_GetItem(slice_item, j);
        if (PyCheckInteger(list_item)) {
          all_bool = false;
        } else if (!PyBool_Check(list_item)) {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Only support int or bool in index list."));
        }
      }
      if (all_bool) {
Z
zyfncg 已提交
527 528 529 530 531 532 533
        PADDLE_ENFORCE_EQ(
            list_size, shape[0],
            platform::errors::InvalidArgument(
                "The dimension of bool index doesn't match indexed array along "
                "dimension 0, the target dimension is %d, but received %d.",
                shape[0], list_size));

Z
zyfncg 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
        for (int j = 0; j < list_size; ++j) {
          PyObject *list_item = PyList_GetItem(slice_item, j);
          if (list_item == Py_True) {
            list_select_idxs->push_back(j);
          }
        }
      } else {
        for (int j = 0; j < list_size; ++j) {
          PyObject *list_item = PyList_GetItem(slice_item, j);
          if (PyCheckInteger(list_item)) {
            list_select_idxs->push_back(
                static_cast<int>(PyLong_AsLong(list_item)));
          } else if (list_item == Py_True) {
            list_select_idxs->push_back(1);
          } else {
            list_select_idxs->push_back(0);
          }
        }
      }

554 555
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
Z
zyfncg 已提交
556 557 558 559
          "Currently, VarBase.__getitem__() only allows indexing "
          "by Integers, Slices, Ellipsis, None, tuples of these types "
          "and list of Bool and Integers, but received "
          "%s in %dth slice item",
560
          std::string(Py_TYPE(slice_item)->tp_name), i + 1));
S
songyouwei 已提交
561 562
    }
  }
563 564 565 566 567 568 569

  // valid_index is the number of dimensions exclude None index
  const int valid_indexs = size - none_axes->size();
  PADDLE_ENFORCE_EQ(valid_indexs <= rank, true,
                    platform::errors::InvalidArgument(
                        "Too many indices (%d) for tensor of dimension %d.",
                        valid_indexs, rank));
S
songyouwei 已提交
570 571
}

572
template <typename P>
573 574 575
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
                        const P &dst_device, const bool blocking) {
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
      if (src->Var().IsType<framework::LoDTensor>()) {
        auto &src_tensor = src->Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      } else if (src->Var().IsType<framework::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<framework::SelectedRows>();
        auto *dst_selected_rows =
            dst.MutableVar()->GetMutable<framework::SelectedRows>();
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
        framework::TensorCopy(src_selected_rows.value(), dst_device,
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

628
// Bind Methods
J
Jiabin Yang 已提交
629
void BindImperative(py::module *m_ptr) {
630 631
  auto &m = *m_ptr;

632 633
  BindOpFunctions(&m);

634 635
#ifndef _WIN32
  // Dygraph DataLoader signal handler
636 637 638 639 640 641 642 643 644 645 646 647 648
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj), true,
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
649
  });
650 651
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });

  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
          void *data_ptr = t.data<void>();
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

K
Kaipeng Deng 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  m.def("_array_to_share_memory_tensor",
        [](py::object &obj) {
          // 1. cast to python array
          auto array = obj.cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
          void *data_ptr = t.data<void>();
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);

          return t;
        },
        py::return_value_policy::take_ownership);

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

757 758 759 760 761
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
762 763 764
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
765 766 767 768
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          imperative::SetCurrentTracer(tracer);
        });
Z
Zeng Jinle 已提交
769

770 771 772 773
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
774 775 776 777 778 779 780
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
781
      .def("__init__",
782 783 784
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
785
             VLOG(4) << "Init VarBase";
786 787 788
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
789
                   "generated_tensor");
790 791 792 793
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
794 795 796 797 798 799 800 801 802
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
803 804
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
805 806
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
807 808 809 810
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
811 812
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
813 814
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
815 816
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
817 818
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
819 820 821 822
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
823
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
824
      .def("__init__", &InitVarBaseFromTensorWithArgDefault, py::arg("tensor"))
825
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
W
WeiXin 已提交
826
      .def("__setitem_varbase__",
827 828
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index,
              py::object &value_obj) {
Z
zyfncg 已提交
829
             VLOG(4) << "Call __setitem_varbase__";
830

831 832
             auto self_tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
833 834
             // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
             // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
835 836 837
             PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                       ? PyTuple_Pack(1, _index.ptr())
                                       : _index.ptr();
838 839 840 841 842 843
             DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
               if (!PyTuple_Check(_index.ptr())) {
                 Py_DECREF(index_ptr);
                 VLOG(4) << "Call Py_DECREF";
               }
             });
844
             // 1. Check argumnets
845 846
             // 1.1 Check whether value obj is a tensor.
             bool value_is_tensor = true;
847
             bool parse_index = true;
848 849 850 851 852 853
             if (py::isinstance<py::array>(value_obj) ||
                 py::isinstance<py::int_>(value_obj) ||
                 py::isinstance<py::float_>(value_obj)) {
               value_is_tensor = false;
             }

854 855 856 857 858 859 860 861 862 863 864 865
             auto is_tensor = [](py::handle var) {
               if (!var.ptr() || var.ptr() == Py_None) {
                 return false;
               }
               try {
                 py::cast<std::shared_ptr<imperative::VarBase>>(var);
                 return true;
               } catch (py::cast_error &) {
                 return false;
               }
             };

866
             // 1.2 Check whether _index can be parsed.
867 868 869
             const int size = PyTuple_GET_SIZE(index_ptr);
             for (int dim = 0; dim < size; ++dim) {
               PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
870 871
               if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                     slice_item == Py_Ellipsis || slice_item == Py_None)) {
872 873 874 875 876 877 878 879 880
                 parse_index = false;
                 break;
               }
             }

             // 2. Call op set_value to speed up if the condition is met,
             // otherwise call TensorToPyArray.
             // TODO(liym27): Try not to call TensorToPyArray because it always
             // copys data to cpu place, which reduces performance.
881
             if (parse_index && value_is_tensor) {
882
               std::vector<int> axes, starts, ends, steps, decrease_axes,
Z
zyfncg 已提交
883 884 885
                   none_axes, infer_flags, list_select_idxs;
               // if index is a list, list_select_flag will be true
               bool list_select_flag;
886
               ParseIndexingSlice(self_tensor, index_ptr, &axes, &starts, &ends,
887
                                  &steps, &decrease_axes, &none_axes,
Z
zyfncg 已提交
888 889
                                  &infer_flags, &list_select_idxs,
                                  &list_select_flag);
Z
zyfncg 已提交
890

891 892 893 894 895
               framework::AttributeMap attrs = {
                   {"axes", axes},
                   {"starts", starts},
                   {"ends", ends},
                   {"steps", steps},
896 897
                   {"decrease_axes", decrease_axes},
                   {"none_axes", none_axes}};
898 899 900

               imperative::NameVarBaseMap ins = {{"Input", {self}}};
               imperative::NameVarBaseMap outs = {{"Out", {self}}};
901

902 903 904 905 906 907 908
               PADDLE_ENFORCE_EQ(
                   self->IsLeaf() && !self->OverridedStopGradient(), false,
                   platform::errors::InvalidArgument(
                       "Leaf Tensor (%s) that doesn't stop gradient can't use "
                       "inplace strategy.",
                       self->Name()));

909 910 911 912 913 914 915 916
               auto value_tensor =
                   value_obj.cast<std::shared_ptr<imperative::VarBase>>();
               ins.insert({"ValueTensor", {value_tensor}});

               const auto &tracer = imperative::GetCurrentTracer();
               {
                 // Release gil and do tracing
                 py::gil_scoped_release release;
917 918
                 tracer->TraceOp("set_value", ins, outs, std::move(attrs),
                                 {{"Input", "Out"}});
919 920 921
               }
             } else {
               auto self_numpy = TensorToPyArray(*self_tensor);
922
               VLOG(4) << "parse_index is false";
923 924

               if (value_is_tensor) {
925
                 VLOG(4) << "value is tensor";
926 927 928 929 930
                 auto value =
                     value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                 auto value_tensor =
                     value->MutableVar()->GetMutable<framework::LoDTensor>();
                 auto value_numpy = TensorToPyArray(*value_tensor);
931 932 933 934 935 936 937 938 939 940 941 942
                 if (is_tensor(_index)) {
                   VLOG(4) << "index is tensor";
                   auto index_var =
                       py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                   auto index_tensor = index_var->MutableVar()
                                           ->GetMutable<framework::LoDTensor>();
                   auto index_numpy = TensorToPyArray(*index_tensor);
                   self_numpy[index_numpy] = value_numpy;
                 } else {
                   VLOG(4) << "index is not tensor";
                   self_numpy[_index] = value_numpy;
                 }
943 944 945
                 SetTensorFromPyArray(self_tensor, self_numpy,
                                      self_tensor->place(), true);
               } else {
946 947 948 949 950 951 952 953 954 955 956 957 958
                 VLOG(4) << "value is not tensor";
                 if (is_tensor(_index)) {
                   VLOG(4) << "index is tensor";
                   auto index_var =
                       py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                   auto index_tensor = index_var->MutableVar()
                                           ->GetMutable<framework::LoDTensor>();
                   auto index_numpy = TensorToPyArray(*index_tensor);
                   self_numpy[index_numpy] = value_obj;
                 } else {
                   VLOG(4) << "index is not tensor";
                   self_numpy[_index] = value_obj;
                 }
959 960 961
                 SetTensorFromPyArray(self_tensor, self_numpy,
                                      self_tensor->place(), true);
               }
962
             }
963 964 965 966
             // NOTE(liym27):
             // Increase the version of VarBase self because __setitem__ is an
             // inplace operator for the VarBase self.
             self->BumpInplaceVersion();
967
           })
968
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
969
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
970
             VLOG(4) << "Call _getitem_index_not_tensor";
971
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
972 973 974 975
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
S
songyouwei 已提交
976 977 978 979
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             ParseIndexingSlice(tensor, _index.ptr(), &slice_axes,
                                &slice_starts, &slice_ends, &slice_strides,
Z
zyfncg 已提交
980 981
                                &decrease_axis, &none_axes, &infer_flags,
                                &list_select_idxs, &list_select_flag);
982 983 984
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
985

Z
zyfncg 已提交
986
             auto out = slice_axes.empty() && !list_select_flag
987 988 989 990
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
991

992
             if (!slice_axes.empty()) {
S
songyouwei 已提交
993
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
                 // Deal with cases that there are more than one
                 // prefix none index, For example:
                 // [None, None, :, :, None]
                 // the none_axes int the return of ParseIndexingSlice is:
                 // [0,    0,          2   ]
                 // according to the interface of "unsqueeze2",
                 // we should convert it to:
                 // [0,    0,          4   ]
                 int prefix_zero_cnt = 0;
                 for (const auto &axis : none_axes) {
                   if (axis == 0) {
                     prefix_zero_cnt++;
                   } else {
                     break;
                   }
                 }
                 if (prefix_zero_cnt > 0) {
                   int none_axes_num = static_cast<int>(none_axes.size());
                   for (int i = prefix_zero_cnt; i < none_axes_num; ++i) {
                     none_axes[i] += prefix_zero_cnt;
                   }
                 }

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto *idx_tensor = select_index->MutableVar()
                                      ->GetMutable<framework::LoDTensor>();
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
               TensorFromVector(list_select_idxs, *dev_ctx, idx_tensor);

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1093
             return out;
1094
           })
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
                tensor.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
                  numel, 1,
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
                  offset, numel,
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
              PADDLE_ENFORCE_EQ(args.size(), dims.size(),
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
                    index, dims[i],
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
                        index, i, dims[i]));
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.type() == proto_type) {                                         \
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
    return py::array(py::dtype(py_dtype_str.c_str()), {}, {},                \
                     static_cast<void *>(&b));                               \
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported tensor data type: %s",
                framework::DataTypeToString(tensor.type())));
          },
          py::return_value_policy::copy)
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
                 var->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
      .def("_bump_inplace_version",
           [](std::shared_ptr<imperative::VarBase> &self) {
             // NOTE(liym27): _bump_inplace_version is only used for inplace
             // operation
             self->BumpInplaceVersion();
           },
           R"DOC(
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1181
      .def("numpy",
1182

1183 1184 1185 1186 1187 1188
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
1189
                     "Tensor of %s is Empty, please check if it has no data.",
1190 1191 1192 1193
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
Z
Zhou Wei 已提交
1194 1195
        Returns a numpy array shows the value of current Tensor.
        
1196
        Returns:
Z
Zhou Wei 已提交
1197
            ndarray: The numpy value of current Tensor.
1198 1199

        Returns type:
Z
Zhou Wei 已提交
1200
            ndarray: dtype is same as current Tensor
1201 1202 1203 1204

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1205
                import paddle
1206 1207
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1208 1209 1210 1211
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1212
       )DOC")
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
      .def("detach",
           [](const imperative::VarBase
                  &self) -> std::shared_ptr<imperative::VarBase> {
             PADDLE_ENFORCE_EQ(
                 self.Var().IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self.Name()));

             PADDLE_ENFORCE_EQ(
                 self.Var().IsType<framework::LoDTensor>() ||
                     self.Var().IsType<framework::SelectedRows>(),
                 true,
                 platform::errors::InvalidArgument(
                     "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                     self.Name()));

             auto detach_var = std::make_shared<imperative::VarBase>(
                 true, "detach_" + self.Name());

             detach_var->SetPersistable(self.Persistable());
             detach_var->SetType(self.Type());
             detach_var->SetDataType(self.DataType());

             if (self.Var().IsType<framework::LoDTensor>()) {
               const auto &origin_tensor =
                   self.Var().Get<framework::LoDTensor>();
               PADDLE_ENFORCE_EQ(
                   origin_tensor.IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_tensor =
                   detach_var->MutableVar()->GetMutable<framework::LoDTensor>();
               detach_tensor->ShareDataWith(origin_tensor);
               // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
               // same TensorInplaceVersion, which is used to check whether
               // inplace
               // operations are correct.
               detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
             } else {
               const auto &origin_selected_rows =
                   self.Var().Get<framework::SelectedRows>();
               PADDLE_ENFORCE_EQ(
                   origin_selected_rows.value().IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_selected_rows =
                   detach_var->MutableVar()
                       ->GetMutable<framework::SelectedRows>();
               detach_selected_rows->set_height(origin_selected_rows.height());
               detach_selected_rows->set_rows(origin_selected_rows.rows());
               detach_selected_rows->mutable_value()->ShareDataWith(
                   origin_selected_rows.value());
               detach_selected_rows->mutable_value()
                   ->ShareInplaceVersionCounterWith(
                       origin_selected_rows.value());
             }
             VLOG(3) << "The detached Tensor(" << detach_var->Name()
                     << ") share data with " << self.Name();
             return detach_var;
           },
           py::return_value_policy::take_ownership, R"DOC(
1276

1277
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1278 1279
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1280

1281
        Returns: The detached Tensor.
1282 1283 1284 1285

        Examples:
            .. code-block:: python

1286
                import paddle
Z
Zhou Wei 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
                y.backward() 
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
             
1312 1313 1314
       )DOC")
      .def("clear_gradient", &imperative::VarBase::ClearGradient, R"DOC(

1315
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1316

1317
        The Gradient of current Tensor will be set to ``0`` .
1318 1319 1320 1321 1322 1323

        Returns:  None

        Examples:
             .. code-block:: python

1324
                import paddle
Z
Zhou Wei 已提交
1325 1326 1327 1328 1329 1330 1331
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1332
      )DOC")
Z
Zhou Wei 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
      .def("clone",
           [](std::shared_ptr<imperative::VarBase> &self) {
             const auto &tensor = self->Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "%s has not been initialized", self->Name()));
             auto tracer = imperative::GetCurrentTracer();
             auto new_var = std::make_shared<imperative::VarBase>(
                 true, tracer->GenerateUniqueName(self->Name() + "_clone"));
             framework::AttributeMap attrs;
             imperative::NameVarBaseMap ins = {{"X", {self}}};
             imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
             tracer->TraceOp("assign", ins, outs, attrs);
             return new_var;
           },
           py::return_value_policy::copy, R"DOC(

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1381 1382 1383 1384 1385 1386
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
1387 1388 1389 1390
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1391
      .def("_grad_ivar",
J
Jiabin Yang 已提交
1392 1393
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
                             ->GetMutable<framework::SelectedRows>()
                             ->mutable_value();
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
1405
             }
1406
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
1407 1408
           },
           py::return_value_policy::copy)
C
chentianyu03 已提交
1409 1410 1411 1412
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1413 1414 1415 1416 1417 1418 1419 1420
      .def("_is_sparse",
           [](imperative::VarBase &self) {
             return self.Var().IsType<framework::SelectedRows>();
           })
      .def("_allreduce",
           [](imperative::VarBase &self,
              const imperative::ParallelStrategy &strategy) {
             if (strategy.nranks_ > 1) {
1421
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
#if NCCL_VERSION_CODE >= 2212
               imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
#else
               if (!self.Var().IsType<framework::SelectedRows>()) {
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1439
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1440 1441 1442
             }
           },
           py::call_guard<py::gil_scoped_release>())
1443 1444 1445
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1446
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
1447
                 platform::errors::InvalidArgument(
1448 1449 1450
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1451 1452 1453 1454 1455
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1456
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
1457
                 platform::errors::InvalidArgument(
1458 1459 1460
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1461
           })
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
      .def("_register_backward_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
                 self.IsLeaf(), true,
                 platform::errors::InvalidArgument(
                     "Only can register backward hook for leaf Tensor."));
             PADDLE_ENFORCE_EQ(
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
                 platform::errors::InvalidArgument(
                     "Cannot register backward hook on a Tensor that stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             self.GradVarBase()->AddVoidHook(
                 std::make_shared<std::function<void()>>(py_func));
           },
           R"DOC(
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
      .def("cpu",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             if (platform::is_cpu_place(self->Place())) {
               return self;
             } else {
               auto new_var = self->NewVarBase(platform::CPUPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
              
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
      .def("pin_memory",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1526
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to pinned memory in CPU version "
                 "Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#endif
             if (platform::is_cuda_pinned_place(self->Place())) {
               return self;
             } else {
               auto new_var =
                   self->NewVarBase(platform::CUDAPinnedPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
      .def("cuda",
1558 1559
           [](const std::shared_ptr<imperative::VarBase> &self,
              py::handle &handle, bool blocking) {
1560
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1561 1562 1563 1564 1565
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to GPU in CPU version Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#else
             int device_count = platform::GetCUDADeviceCount();
1566 1567
             int device_id = 0;
             if (handle == py::none()) {
1568 1569 1570
               if (platform::is_gpu_place(self->Place())) {
                 return self;
               }
1571 1572 1573 1574 1575 1576 1577
             } else {
               PyObject *py_obj = handle.ptr();
               PADDLE_ENFORCE_EQ(
                   PyCheckInteger(py_obj), true,
                   platform::errors::InvalidArgument(
                       " 'device_id' must be a positive integer"));
               device_id = py::cast<int>(handle);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
             }
             PADDLE_ENFORCE_GE(
                 device_id, 0,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             PADDLE_ENFORCE_LT(
                 device_id, device_count,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             platform::CUDAPlace place = platform::CUDAPlace(device_id);
             if (platform::is_same_place(self->Place(), place)) {
               return self;
             } else {
               auto new_var = self->NewVarBase(place, blocking);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
#endif
           },
1601
           py::arg("device_id") = py::none(), py::arg("blocking") = true, R"DOC(
1602 1603 1604 1605 1606 1607
        Returns a copy of this Tensor in GPU memory.

        If this Tensor is already in GPU memory and device_id is default, 
        then no copy is performed and the original Tensor is returned.
        
        Args:
1608
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1609 1610 1611 1612 1613 1614
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1615
              # required: gpu
1616 1617 1618 1619 1620 1621
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
              print(x.place)        # CPUPlace

              y = x.cuda()
              print(y.place)        # CUDAPlace(0)
1622 1623 1624
            
              y = x.cuda(None)
              print(y.place)        # CUDAPlace(0)
1625 1626 1627 1628

              y = x.cuda(1)
              print(y.place)        # CUDAPlace(1)
       )DOC")
K
Kaipeng Deng 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
      .def("_share_memory",
           [](const std::shared_ptr<imperative::VarBase> &self) {
#ifndef _WIN32
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(self->Place()), true,
                 platform::errors::InvalidArgument(
                     "Sharing memory only support CPU Tensor currently"));
             // 1. get LoDTensor
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             // 2. allocate shared memory
             void *data_ptr = t->data<void>();
             size_t data_size = t->numel() * framework::SizeOfType(t->type());
             auto shared_writer_holder =
                 memory::allocation::AllocateMemoryMapWriterAllocation(
                     data_size);
             // 3. maintain mmap fd set & backup ipc_name
             const std::string &ipc_name = shared_writer_holder->ipc_name();
             memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
             // 4. copy data & reset holder
             memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                          platform::CPUPlace(), data_ptr, data_size);
             t->ResetHolder(shared_writer_holder);
             return *t;
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
           },
           py::return_value_policy::reference)
1658
      .def("copy_", &imperative::VarBase::CopyFrom)
1659
      .def("_copy_to",
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
             // copy data from the tensor of self to the tensor of new varbase,
             // we need to ensure that the varbase self is not destructed until
             // the GpuCopyAsync is completed. Otherwise, the memory may be
             // freed
             // when varbase self is destructed.
             // To do that, we increase the reference count of self by 1 and
             // add a cuda event to wait the GpuCopyAsync's completion.
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1676
           py::return_value_policy::copy)
1677
      .def("_copy_to",
1678 1679 1680 1681 1682 1683 1684 1685
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPinnedPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1686
           py::return_value_policy::copy)
1687
      .def("_copy_to",
1688 1689 1690 1691 1692 1693 1694 1695
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::XPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1696
           py::return_value_policy::copy)
1697
      .def("_copy_to",
1698 1699 1700 1701 1702 1703 1704 1705
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1706
           py::return_value_policy::copy)
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::NPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
C
chentianyu03 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::Place &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
J
Jiabin Yang 已提交
1727
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
1728 1729 1730
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
1731 1732 1733 1734 1735
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
              return framework::vectorize<int>(
                  self.Var().Get<framework::LoDTensor>().dims());
            } else if (self.Var().IsType<framework::SelectedRows>()) {
              return framework::vectorize<int>(
                  self.Var().Get<framework::SelectedRows>().value().dims());
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
      .def_property_readonly("is_leaf", &imperative::VarBase::IsLeaf,
                             R"DOC(
      Whether a Tensor is leaf Tensor.

      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor. 
      
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
1781 1782 1783
      .def_property_readonly(
          "place", [](imperative::VarBase &self) { return self.Place(); },
          py::return_value_policy::copy)
1784 1785 1786 1787 1788 1789
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
1790
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
1791
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
1792 1793 1794

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
1795 1796 1797 1798 1799
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
1800

1801 1802 1803 1804 1805
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

1806
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
1807
      m, "Tracer", R"DOC()DOC")
1808
      .def("__init__",
J
Jiabin Yang 已提交
1809
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
1810 1811 1812
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
1813 1814
      .def_property("_enable_autocast", &imperative::Tracer::IsAutoCastEnabled,
                    &imperative::Tracer::SetEnableAutoCast)
1815
      .def_property("_has_grad", &imperative::Tracer::HasGrad,
1816
                    &imperative::Tracer::SetHasGrad)
1817 1818 1819 1820 1821 1822 1823 1824
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
1825
              self.SetExpectedPlace(*p);
1826 1827
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1828 1829 1830
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
1831 1832
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1833 1834
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
1835
              self.SetExpectedPlace(*p);
1836 1837
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1838 1839
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
1840
              self.SetExpectedPlace(*p);
1841 1842
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1843 1844 1845 1846 1847
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1848 1849 1850 1851 1852
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1853
            } else {
L
Leo Chen 已提交
1854
              PADDLE_THROW(platform::errors::InvalidArgument(
1855
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
1856
                  "CPUPlace, NPUPlace"
L
Leo Chen 已提交
1857 1858
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
1859 1860
            }
          })
1861 1862 1863
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
1864
      .def("_generate_unique_name", &imperative::Tracer::GenerateUniqueName,
1865
           py::arg("key") = "dygraph_tmp")
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
1882
             VLOG(5) << "AMP operators changed, "
1883 1884
                     << imperative::AmpOperators::Instance();
           })
1885 1886 1887
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
1888 1889
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
1890
           })
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::XPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           })
M
minqiyang 已提交
1904
      .def("trace",
J
Jiabin Yang 已提交
1905 1906 1907 1908 1909 1910
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
1911 1912
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
1913 1914
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
1915
             }
M
minqiyang 已提交
1916
           })
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::NPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           })
J
Jiabin Yang 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
1943 1944

  // define parallel context
1945 1946 1947
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
1948 1949
      .def_property(
          "nranks",
1950 1951
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
1952 1953 1954
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
1955
                    [](const imperative::ParallelStrategy &self) {
1956 1957
                      return self.local_rank_;
                    },
1958
                    [](imperative::ParallelStrategy &self, int local_rank) {
1959 1960 1961 1962
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
1963
          [](const imperative::ParallelStrategy &self) {
1964 1965
            return self.trainer_endpoints_;
          },
1966
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
1967 1968 1969
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
1970
                    [](const imperative::ParallelStrategy &self) {
1971 1972
                      return self.current_endpoint_;
                    },
1973
                    [](imperative::ParallelStrategy &self,
1974 1975 1976 1977 1978 1979 1980
                       const std::string &ep) { self.current_endpoint_ = ep; })
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
1981

1982 1983 1984 1985
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
1986
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
1987
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
1988

1989 1990 1991 1992 1993 1994 1995
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
1996 1997
         const platform::Place &place, bool create_graph, bool retain_graph,
         bool allow_unused, bool only_inputs) {
Z
Zeng Jinle 已提交
1998 1999
        imperative::PartialGradEngine engine(
            input_targets, output_targets, output_grads, no_grad_vars, place,
2000
            create_graph, retain_graph, allow_unused, only_inputs);
2001 2002 2003 2004 2005
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
         bool retain_graph, const imperative::Tracer &tracer) {
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2019 2020
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL)
2021 2022 2023 2024 2025 2026
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2027 2028 2029 2030 2031
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
                    const std::vector<size_t> &, bool>())
2032
      .def("prepare_for_backward", &imperative::Reducer::PrepareForBackward,
2033
           py::arg("vars"), py::call_guard<py::gil_scoped_release>());
2034 2035 2036 2037

  m.def("assign_group_by_size", &imperative::AssignGroupBySize, py::arg("vars"),
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2038
        py::arg("tensor_indices") = std::vector<int64_t>{},
2039
        py::call_guard<py::gil_scoped_release>());
2040
#endif
2041

2042
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2043 2044 2045 2046 2047
  py::class_<imperative::NCCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2048 2049 2050 2051
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2052 2053 2054 2055 2056 2057 2058 2059
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
  py::class_<imperative::BKCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2060 2061 2062 2063
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2064
#endif
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
  m.def("pylayer_apply",
        [](const platform::CPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::CUDAPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::XPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::CUDAPinnedPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2088 2089 2090 2091 2092 2093

  m.def("pylayer_apply",
        [](const platform::NPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2094 2095 2096 2097
}

}  // namespace pybind
}  // namespace paddle