yolov3_loss_op.h 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35 36 37 38 39 40 41 42 43
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

D
dengkaipeng 已提交
44 45 46 47 48
template <typename T>
static T L2Loss(T x, T y) {
  return 0.5 * (y - x) * (y - x);
}

49 50 51 52 53 54 55 56 57 58
template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

template <typename T>
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
}

D
dengkaipeng 已提交
59 60 61 62 63
template <typename T>
static T L2LossGrad(T x, T y) {
  return x - y;
}

D
dengkaipeng 已提交
64 65
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
  float x, y, w, h;
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
84 85 86
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
97 98 99 100 101 102 103 104 105
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
106
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
107 108 109 110 111 112 113 114 115 116
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
117 118 119
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
120 121 122 123 124
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
125 126
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
127 128 129 130 131 132 133
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
D
dengkaipeng 已提交
134
                                int input_size, int stride, T score) {
135 136 137 138 139
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

D
dengkaipeng 已提交
140
  T scale = (2.0 - gt.w * gt.h) * score;
141 142
  loss[0] += SCE<T>(input[box_idx], tx) * scale;
  loss[0] += SCE<T>(input[box_idx + stride], ty) * scale;
D
dengkaipeng 已提交
143 144
  loss[0] += L2Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L2Loss<T>(input[box_idx + 3 * stride], th) * scale;
145 146 147 148 149 150
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
D
dengkaipeng 已提交
151 152
                                    int grid_size, int input_size, int stride,
                                    T score) {
153 154 155 156 157
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

D
dengkaipeng 已提交
158
  T scale = (2.0 - gt.w * gt.h) * score;
159 160 161 162
  input_grad[box_idx] = SCEGrad<T>(input[box_idx], tx) * scale * loss;
  input_grad[box_idx + stride] =
      SCEGrad<T>(input[box_idx + stride], ty) * scale * loss;
  input_grad[box_idx + 2 * stride] =
D
dengkaipeng 已提交
163
      L2LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
164
  input_grad[box_idx + 3 * stride] =
D
dengkaipeng 已提交
165
      L2LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
166 167 168 169
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
D
dengkaipeng 已提交
170
                                 const int label, const int class_num,
D
dengkaipeng 已提交
171 172
                                 const int stride, const T pos, const T neg,
                                 T score) {
D
dengkaipeng 已提交
173 174
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
D
dengkaipeng 已提交
175
    loss[0] += SCE<T>(pred, (i == label) ? pos : neg) * score;
176 177 178 179 180 181
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
D
dengkaipeng 已提交
182
                                     const int label, const int class_num,
D
dengkaipeng 已提交
183 184
                                     const int stride, const T pos, const T neg,
                                     T score) {
D
dengkaipeng 已提交
185 186 187
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
    input_grad[index + i * stride] =
D
dengkaipeng 已提交
188
        SCEGrad<T>(pred, (i == label) ? pos : neg) * score * loss;
189 190 191 192
  }
}

template <typename T>
D
dengkaipeng 已提交
193
static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
194 195 196 197 198 199 200
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
201
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
202 203 204 205 206 207
          if (obj > 1e-5) {
            // positive sample: obj = mixup score
            loss[i] += SCE<T>(input[k * w + l], 1.0) * obj;
          } else if (obj > -0.5) {
            // negetive sample: obj = 0
            loss[i] += SCE<T>(input[k * w + l], 0.0);
208 209 210 211 212 213 214 215 216 217 218
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
D
dengkaipeng 已提交
219
                                       const T* input, const T* objness,
220 221 222 223 224 225 226
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
227
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
228 229 230 231 232
          if (obj > 1e-5) {
            input_grad[k * w + l] =
                SCEGrad<T>(input[k * w + l], 1.0) * obj * loss[i];
          } else if (obj > -0.5) {
            input_grad[k * w + l] = SCEGrad<T>(input[k * w + l], 0.0) * loss[i];
233 234 235 236 237 238 239 240 241 242
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

259
template <typename T>
260 261 262 263
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
264 265
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
266
    auto* gt_score = ctx.Input<Tensor>("GTScore");
D
dengkaipeng 已提交
267
    auto* loss = ctx.Output<Tensor>("Loss");
268 269
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
270
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
271
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
272 273
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
274
    int downsample = ctx.Attr<int>("downsample");
275
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
276 277 278 279 280

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
281 282 283
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
    int input_size = downsample * h;
284

285 286 287
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

D
dengkaipeng 已提交
288 289 290 291 292 293 294
    T label_pos = 1.0;
    T label_neg = 0.0;
    if (use_label_smooth) {
      label_pos = 1.0 - 1.0 / static_cast<T>(class_num);
      label_neg = 1.0 / static_cast<T>(class_num);
    }

295 296 297
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
D
dengkaipeng 已提交
298
    const T* gt_score_data = gt_score->data<T>();
299
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
300
    memset(loss_data, 0, loss->numel() * sizeof(T));
D
dengkaipeng 已提交
301 302 303
    T* obj_mask_data =
        objness_mask->mutable_data<T>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(T));
304 305
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
306

307 308 309 310 311 312
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

313 314 315 316
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
317 318
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
319
            int box_idx =
D
dengkaipeng 已提交
320 321 322
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
323 324
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
325
              if (!gt_valid_mask_data[i * b + t]) {
326 327
                continue;
              }
328
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
329
              T iou = CalcBoxIoU(pred, gt);
330 331 332 333 334 335 336
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
D
dengkaipeng 已提交
337
              obj_mask_data[obj_idx] = static_cast<T>(-1);
338
            }
339 340 341
            // TODO(dengkaipeng): all losses should be calculated if best IoU
            // is bigger then truth thresh should be calculated here, but
            // currently, truth thresh is an unreachable value as 1.0.
342 343 344 345
          }
        }
      }
      for (int t = 0; t < b; t++) {
346
        if (!gt_valid_mask_data[i * b + t]) {
347
          gt_match_mask_data[i * b + t] = -1;
348 349
          continue;
        }
350
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
351 352 353 354 355 356 357
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
358 359 360
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
361 362 363 364 365 366
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
367
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
368 369
          // TODO(dengkaipeng): In paper, objectness loss is ignore when
          // best IoU > 0.5, but darknet code didn't implement this.
370 371 372 373 374 375
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
376
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
377
        gt_match_mask_data[i * b + t] = mask_idx;
378
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
379
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
380 381
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
382
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
D
dengkaipeng 已提交
383
                                 box_idx, gi, gj, h, input_size, stride, score);
384 385

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
D
dengkaipeng 已提交
386
          obj_mask_data[obj_idx] = score;
387 388

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
389 390
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
D
dengkaipeng 已提交
391
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
D
dengkaipeng 已提交
392
                           class_num, stride, label_pos, label_neg, score);
393 394 395 396
        }
      }
    }

397
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
398
                       mask_num, h, w, stride, an_stride);
399 400 401
  }
};

402
template <typename T>
403 404 405
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
406
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
407 408
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
409
    auto* gt_score = ctx.Input<Tensor>("GTScore");
410 411
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
412 413
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
414
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
415
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
416
    int class_num = ctx.Attr<int>("class_num");
417
    int downsample = ctx.Attr<int>("downsample");
418
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
419

420 421 422 423
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
424
    const int mask_num = anchor_mask.size();
425
    const int b = gt_match_mask->dims()[1];
426 427
    int input_size = downsample * h;

428 429 430
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

D
dengkaipeng 已提交
431 432 433 434 435 436 437
    T label_pos = 1.0;
    T label_neg = 0.0;
    if (use_label_smooth) {
      label_pos = 1.0 - 1.0 / static_cast<T>(class_num);
      label_neg = 1.0 / static_cast<T>(class_num);
    }

438 439 440
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
D
dengkaipeng 已提交
441
    const T* gt_score_data = gt_score->data<T>();
442
    const T* loss_grad_data = loss_grad->data<T>();
D
dengkaipeng 已提交
443
    const T* obj_mask_data = objness_mask->data<T>();
444
    const int* gt_match_mask_data = gt_match_mask->data<int>();
445 446
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
447 448 449 450
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
451
        int mask_idx = gt_match_mask_data[i * b + t];
452
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
453
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
454 455 456 457
          Box<T> gt = GetGtBox(gt_box_data, i, b, t);
          int gi = static_cast<int>(gt.x * w);
          int gj = static_cast<int>(gt.y * h);

D
dengkaipeng 已提交
458 459
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
D
dengkaipeng 已提交
460 461 462 463
          CalcBoxLocationLossGrad<T>(input_grad_data, loss_grad_data[i],
                                     input_data, gt, anchors,
                                     anchor_mask[mask_idx], box_idx, gi, gj, h,
                                     input_size, stride, score);
464 465

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
466 467
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
468
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
D
dengkaipeng 已提交
469
                               label_idx, label, class_num, stride, label_pos,
D
dengkaipeng 已提交
470
                               label_neg, score);
471 472 473 474 475
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
476
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
477
                           h, w, stride, an_stride);
478 479 480 481 482
  }
};

}  // namespace operators
}  // namespace paddle