yolov3_loss_op.h 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

template <typename T>
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
  float x, y, w, h;
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75 76
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
77 78 79 80 81 82 83 84 85
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
86
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
97 98 99 100 101 102 103 104 105 106
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
107 108 109
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
110 111 112 113 114
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
115 116
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
                                int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  loss[0] += SCE<T>(input[box_idx], tx) * scale;
  loss[0] += SCE<T>(input[box_idx + stride], ty) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
                                    int grid_size, int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  input_grad[box_idx] = SCEGrad<T>(input[box_idx], tx) * scale * loss;
  input_grad[box_idx + stride] =
      SCEGrad<T>(input[box_idx + stride], ty) * scale * loss;
  input_grad[box_idx + 2 * stride] =
      L1LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
  input_grad[box_idx + 3 * stride] =
      L1LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
                                 const int label, const int class_num,
                                 const int stride) {
  for (int i = 0; i < class_num; i++) {
D
dengkaipeng 已提交
162 163 164
    T pred = input[index + i * stride] < -0.5 ? input[index + i * stride]
                                              : 1.0 / class_num;
    loss[0] += SCE<T>(pred, (i == label) ? 1.0 : 0.0);
165 166 167 168 169 170 171 172 173
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
                                     const int label, const int class_num,
                                     const int stride) {
  for (int i = 0; i < class_num; i++) {
D
dengkaipeng 已提交
174 175
    T pred = input[index + i * stride] < -0.5 ? input[index + i * stride]
                                              : 1.0 / class_num;
176
    input_grad[index + i * stride] =
D
dengkaipeng 已提交
177
        SCEGrad<T>(pred, (i == label) ? 1.0 : 0.0) * loss;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  }
}

template <typename T>
static inline void CalcObjnessLoss(T* loss, const T* input, const int* objness,
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            loss[i] += SCE<T>(input[k * w + l], static_cast<T>(obj));
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
                                       const T* input, const int* objness,
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            input_grad[k * w + l] =
                SCEGrad<T>(input[k * w + l], static_cast<T>(obj)) * loss[i];
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

242
template <typename T>
243 244 245 246
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
247 248
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
249
    auto* loss = ctx.Output<Tensor>("Loss");
250 251
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
252
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
253
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
254 255
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
256
    int downsample = ctx.Attr<int>("downsample");
257 258 259 260 261

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
262 263 264
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
    int input_size = downsample * h;
265

266 267 268
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

269 270 271
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
272
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
273
    memset(loss_data, 0, loss->numel() * sizeof(T));
274 275 276 277 278
    int* obj_mask_data =
        objness_mask->mutable_data<int>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(int));
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
279

280 281 282 283 284 285
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

286 287 288 289
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
290 291
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
292
            int box_idx =
D
dengkaipeng 已提交
293 294 295
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
296 297
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
298
              if (!gt_valid_mask_data[i * b + t]) {
299 300
                continue;
              }
301
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
302
              T iou = CalcBoxIoU(pred, gt);
303 304 305 306 307 308 309
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
310
              obj_mask_data[obj_idx] = -1;
311
            }
312 313 314
            // TODO(dengkaipeng): all losses should be calculated if best IoU
            // is bigger then truth thresh should be calculated here, but
            // currently, truth thresh is an unreachable value as 1.0.
315 316 317 318
          }
        }
      }
      for (int t = 0; t < b; t++) {
319
        if (!gt_valid_mask_data[i * b + t]) {
320
          gt_match_mask_data[i * b + t] = -1;
321 322
          continue;
        }
323
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
324 325 326 327 328 329 330
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
331 332 333
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
334 335 336 337 338 339
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
340
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
341 342
          // TODO(dengkaipeng): In paper, objectness loss is ignore when
          // best IoU > 0.5, but darknet code didn't implement this.
343 344 345 346 347 348
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
349
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
350
        gt_match_mask_data[i * b + t] = mask_idx;
351
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
352 353
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
354 355 356 357
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
                                 box_idx, gi, gj, h, input_size, stride);

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
358
          obj_mask_data[obj_idx] = 1;
359 360

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
361 362
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
363 364 365 366 367 368
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
                           class_num, stride);
        }
      }
    }

369
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
370
                       mask_num, h, w, stride, an_stride);
371 372 373
  }
};

374
template <typename T>
375 376 377
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
378
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
379 380
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
381 382
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
383 384
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
385
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
386
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
387
    int class_num = ctx.Attr<int>("class_num");
388
    int downsample = ctx.Attr<int>("downsample");
389

390 391 392 393
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
394
    const int mask_num = anchor_mask.size();
395
    const int b = gt_match_mask->dims()[1];
396 397
    int input_size = downsample * h;

398 399 400
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

401 402 403 404
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
    const T* loss_grad_data = loss_grad->data<T>();
405 406
    const int* obj_mask_data = objness_mask->data<int>();
    const int* gt_match_mask_data = gt_match_mask->data<int>();
407 408
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
409 410 411 412
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
413
        int mask_idx = gt_match_mask_data[i * b + t];
414
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
415 416 417 418
          Box<T> gt = GetGtBox(gt_box_data, i, b, t);
          int gi = static_cast<int>(gt.x * w);
          int gj = static_cast<int>(gt.y * h);

D
dengkaipeng 已提交
419 420
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
421 422 423
          CalcBoxLocationLossGrad<T>(
              input_grad_data, loss_grad_data[i], input_data, gt, anchors,
              anchor_mask[mask_idx], box_idx, gi, gj, h, input_size, stride);
424 425

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
426 427
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
428 429 430 431 432 433 434
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
                               label_idx, label, class_num, stride);
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
435
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
436
                           h, w, stride, an_stride);
437 438 439 440 441
  }
};

}  // namespace operators
}  // namespace paddle