Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a0284f6f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a0284f6f
编写于
11月 12, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add backward CPU kernel. test=develop
上级
36c46152
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
327 addition
and
98 deletion
+327
-98
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+54
-10
paddle/fluid/operators/yolov3_loss_op.cu
paddle/fluid/operators/yolov3_loss_op.cu
+2
-2
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+194
-62
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+45
-4
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+9
-0
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+22
-20
未找到文件。
paddle/fluid/API.spec
浏览文件 @
a0284f6f
...
...
@@ -183,6 +183,7 @@ paddle.fluid.layers.similarity_focus ArgSpec(args=['input', 'axis', 'indexes', '
paddle.fluid.layers.hash ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.grid_sampler ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.log_loss ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'anchors', 'class_num', 'ignore_thresh', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.add_position_encoding ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
...
...
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
a0284f6f
...
...
@@ -20,8 +20,6 @@ using framework::Tensor;
class
Yolov3LossOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of Yolov3LossOp should not be null."
);
...
...
@@ -32,7 +30,6 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_gt
=
ctx
->
GetInputDim
(
"GTBox"
);
auto
img_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"img_height"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) should be a 4-D tensor."
);
...
...
@@ -43,8 +40,6 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_gt
.
size
(),
3
,
"Input(GTBox) should be a 3-D tensor"
);
PADDLE_ENFORCE_EQ
(
dim_gt
[
2
],
5
,
"Input(GTBox) dim[2] should be 5"
);
PADDLE_ENFORCE_GT
(
img_height
,
0
,
"Attr(img_height) value should be greater then 0"
);
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
"Attr(anchors) length should be greater then 0."
);
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
...
...
@@ -87,13 +82,43 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
"The anchor width and height, "
"it will be parsed pair by pair."
);
AddAttr
<
int
>
(
"img_height"
,
"The input image height after crop of yolov3 network."
);
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
);
AddComment
(
R"DOC(
This operator generate yolov3 loss by given predict result and ground
truth boxes.
The output of previous network is in shape [N, C, H, W], while H and W
should be the same, specify the grid size, each grid point predict given
number boxes, this given number is specified by anchors, it should be
half anchors length, which following will be represented as S. In the
second dimention(the channel dimention), C should be S * (class_num + 5),
class_num is the box categoriy number of source dataset(such as coco),
so in the second dimention, stores 4 box location coordinates x, y, w, h
and confidence score of the box and class one-hot key of each anchor box.
While the 4 location coordinates if $$tx, ty, tw, th$$, the box predictions
correspnd to:
$$
b_x = \sigma(t_x) + c_x
b_y = \sigma(t_y) + c_y
b_w = p_w e^{t_w}
b_h = p_h e^{t_h}
$$
While $$c_x, c_y$$ is the left top corner of current grid and $$p_w, p_h$$
is specified by anchors.
As for confidence score, it is the logistic regression value of IoU between
anchor boxes and ground truth boxes, the score of the anchor box which has
the max IoU should be 1, and if the anchor box has IoU bigger then ignore
thresh, the confidence score loss of this anchor box will be ignored.
Therefore, the yolov3 loss consist of three major parts, box location loss,
confidence score loss, and classification loss. The MSE loss is used for
box location, and binary cross entropy loss is used for confidence score
loss and classification loss.
)DOC"
);
}
};
...
...
@@ -101,8 +126,6 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
class
Yolov3LossOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Loss"
)),
...
...
@@ -113,6 +136,7 @@ class Yolov3LossOpGrad : public framework::OperatorWithKernel {
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
...
...
@@ -120,12 +144,32 @@ class Yolov3LossOpGrad : public framework::OperatorWithKernel {
}
};
class
Yolov3LossGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"yolov3_loss_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"GTBox"
,
Input
(
"GTBox"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"GTBox"
),
{});
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
yolov3_loss
,
ops
::
Yolov3LossOp
,
ops
::
Yolov3LossOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
Yolov3LossGradMaker
);
REGISTER_OPERATOR
(
yolov3_loss_grad
,
ops
::
Yolov3LossOpGrad
);
REGISTER_OP_CPU_KERNEL
(
yolov3_loss
,
...
...
paddle/fluid/operators/yolov3_loss_op.cu
浏览文件 @
a0284f6f
...
...
@@ -17,7 +17,7 @@
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
yolov3_loss
,
ops
::
Yolov3Loss
Op
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
Yolov3LossKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
yolov3_loss_grad
,
ops
::
Yolov3LossGrad
Op
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
Yolov3LossGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
a0284f6f
...
...
@@ -33,10 +33,22 @@ static inline bool isZero(T x) {
}
template
<
typename
T
>
static
inline
T
sigmod
(
T
x
)
{
static
inline
T
sigmo
i
d
(
T
x
)
{
return
1.0
/
(
exp
(
-
1.0
*
x
)
+
1.0
);
}
template
<
typename
T
>
static
inline
T
CalcMaskPointNum
(
const
Tensor
&
mask
)
{
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
T
count
=
0.0
;
for
(
int
i
=
0
;
i
<
mask_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
count
+=
1.0
;
}
}
return
count
;
}
template
<
typename
T
>
static
inline
T
CalcMSEWithMask
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
)
{
...
...
@@ -55,6 +67,21 @@ static inline T CalcMSEWithMask(const Tensor& x, const Tensor& y,
return
(
error_sum
/
points
);
}
template
<
typename
T
>
static
void
CalcMSEGradWithMask
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
,
T
mf
)
{
auto
grad_t
=
EigenVector
<
T
>::
Flatten
(
*
grad
).
setConstant
(
0.0
);
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
grad_t
(
i
)
=
2.0
*
(
x_t
(
i
)
-
y_t
(
i
))
/
mf
;
}
}
}
template
<
typename
T
>
static
inline
T
CalcBCEWithMask
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
)
{
...
...
@@ -75,21 +102,34 @@ static inline T CalcBCEWithMask(const Tensor& x, const Tensor& y,
}
template
<
typename
T
>
static
void
CalcPredResult
(
const
Tensor
&
input
,
Tensor
*
pred_confs
,
Tensor
*
pred_classes
,
Tensor
*
pred_x
,
Tensor
*
pred_y
,
Tensor
*
pred_w
,
Tensor
*
pred_h
,
std
::
vector
<
int
>
anchors
,
const
int
class_num
,
const
int
stride
)
{
static
inline
void
CalcBCEGradWithMask
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
,
T
mf
)
{
auto
grad_t
=
EigenVector
<
T
>::
Flatten
(
*
grad
).
setConstant
(
0.0
);
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
grad_t
(
i
)
=
((
1.0
-
y_t
(
i
))
/
(
1.0
-
x_t
(
i
))
-
y_t
(
i
)
/
x_t
(
i
))
/
mf
;
}
}
}
template
<
typename
T
>
static
void
CalcPredResult
(
const
Tensor
&
input
,
Tensor
*
pred_conf
,
Tensor
*
pred_class
,
Tensor
*
pred_x
,
Tensor
*
pred_y
,
Tensor
*
pred_w
,
Tensor
*
pred_h
,
const
int
anchor_num
,
const
int
class_num
)
{
const
int
n
=
input
.
dims
()[
0
];
const
int
c
=
input
.
dims
()[
1
];
const
int
h
=
input
.
dims
()[
2
];
const
int
w
=
input
.
dims
()[
3
];
const
int
anchor_num
=
anchors
.
size
()
/
2
;
const
int
box_attr_num
=
5
+
class_num
;
auto
input_t
=
EigenTensor
<
T
,
4
>::
From
(
input
);
auto
pred_conf
s_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_confs
);
auto
pred_class
es_t
=
EigenTensor
<
T
,
5
>::
From
(
*
pred_classe
s
);
auto
pred_conf
_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_conf
);
auto
pred_class
_t
=
EigenTensor
<
T
,
5
>::
From
(
*
pred_clas
s
);
auto
pred_x_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_x
);
auto
pred_y_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_y
);
auto
pred_w_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_w
);
...
...
@@ -97,26 +137,23 @@ static void CalcPredResult(const Tensor& input, Tensor* pred_confs,
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
an_idx
=
0
;
an_idx
<
anchor_num
;
an_idx
++
)
{
float
an_w
=
anchors
[
an_idx
*
2
]
/
stride
;
float
an_h
=
anchors
[
an_idx
*
2
+
1
]
/
stride
;
for
(
int
j
=
0
;
j
<
h
;
j
++
)
{
for
(
int
k
=
0
;
k
<
w
;
k
++
)
{
pred_x_t
(
i
,
an_idx
,
j
,
k
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
,
j
,
k
));
sigmo
i
d
(
input_t
(
i
,
box_attr_num
*
an_idx
,
j
,
k
));
pred_y_t
(
i
,
an_idx
,
j
,
k
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
+
1
,
j
,
k
));
sigmo
i
d
(
input_t
(
i
,
box_attr_num
*
an_idx
+
1
,
j
,
k
));
pred_w_t
(
i
,
an_idx
,
j
,
k
)
=
input_t
(
i
,
box_attr_num
*
an_idx
+
2
,
j
,
k
);
pred_h_t
(
i
,
an_idx
,
j
,
k
)
=
input_t
(
i
,
box_attr_num
*
an_idx
+
3
,
j
,
k
);
pred_conf
s
_t
(
i
,
an_idx
,
j
,
k
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
+
4
,
j
,
k
));
pred_conf_t
(
i
,
an_idx
,
j
,
k
)
=
sigmo
i
d
(
input_t
(
i
,
box_attr_num
*
an_idx
+
4
,
j
,
k
));
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
pred_class
es
_t
(
i
,
an_idx
,
j
,
k
,
c
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
+
5
+
c
,
j
,
k
));
pred_class_t
(
i
,
an_idx
,
j
,
k
,
c
)
=
sigmo
i
d
(
input_t
(
i
,
box_attr_num
*
an_idx
+
5
+
c
,
j
,
k
));
}
}
}
...
...
@@ -148,27 +185,11 @@ static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
return
inter_area
/
(
b1_area
+
b2_area
-
inter_area
);
}
template
<
typename
T
>
static
inline
int
GetPredLabel
(
const
Tensor
&
pred_classes
,
int
n
,
int
best_an_index
,
int
gj
,
int
gi
)
{
auto
pred_classes_t
=
EigenTensor
<
T
,
5
>::
From
(
pred_classes
);
T
score
=
0.0
;
int
label
=
-
1
;
for
(
int
i
=
0
;
i
<
pred_classes
.
dims
()[
4
];
i
++
)
{
if
(
pred_classes_t
(
n
,
best_an_index
,
gj
,
gi
,
i
)
>
score
)
{
score
=
pred_classes_t
(
n
,
best_an_index
,
gj
,
gi
,
i
);
label
=
i
;
}
}
return
label
;
}
template
<
typename
T
>
static
void
PrePorcessGTBox
(
const
Tensor
&
gt_boxes
,
const
float
ignore_thresh
,
std
::
vector
<
int
>
anchors
,
const
int
img_height
,
const
int
grid_size
,
Tensor
*
obj_mask
,
Tensor
*
noobj_mask
,
Tensor
*
tx
,
Tensor
*
ty
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tconf
,
std
::
vector
<
int
>
anchors
,
const
int
grid_size
,
Tensor
*
obj_mask
,
Tensor
*
noobj_mask
,
Tensor
*
tx
,
Tensor
*
ty
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tconf
,
Tensor
*
tclass
)
{
const
int
n
=
gt_boxes
.
dims
()[
0
];
const
int
b
=
gt_boxes
.
dims
()[
1
];
...
...
@@ -240,6 +261,61 @@ static void ExpandObjMaskByClassNum(Tensor* obj_mask_expand,
.
broadcast
(
Array5
(
1
,
1
,
1
,
1
,
class_num
));
}
template
<
typename
T
>
static
void
AddAllGradToInputGrad
(
Tensor
*
grad
,
T
loss
,
const
Tensor
&
pred_x
,
const
Tensor
&
pred_y
,
const
Tensor
&
pred_conf
,
const
Tensor
&
pred_class
,
const
Tensor
&
grad_x
,
const
Tensor
&
grad_y
,
const
Tensor
&
grad_w
,
const
Tensor
&
grad_h
,
const
Tensor
&
grad_conf_obj
,
const
Tensor
&
grad_conf_noobj
,
const
Tensor
&
grad_class
,
const
int
class_num
)
{
const
int
n
=
pred_x
.
dims
()[
0
];
const
int
an_num
=
pred_x
.
dims
()[
1
];
const
int
h
=
pred_x
.
dims
()[
2
];
const
int
w
=
pred_x
.
dims
()[
3
];
const
int
attr_num
=
class_num
+
5
;
auto
grad_t
=
EigenTensor
<
T
,
4
>::
From
(
*
grad
).
setConstant
(
0.0
);
auto
pred_x_t
=
EigenTensor
<
T
,
4
>::
From
(
pred_x
);
auto
pred_y_t
=
EigenTensor
<
T
,
4
>::
From
(
pred_y
);
auto
pred_conf_t
=
EigenTensor
<
T
,
4
>::
From
(
pred_conf
);
auto
pred_class_t
=
EigenTensor
<
T
,
5
>::
From
(
pred_class
);
auto
grad_x_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_x
);
auto
grad_y_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_y
);
auto
grad_w_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_w
);
auto
grad_h_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_h
);
auto
grad_conf_obj_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_conf_obj
);
auto
grad_conf_noobj_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_conf_noobj
);
auto
grad_class_t
=
EigenTensor
<
T
,
5
>::
From
(
grad_class
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
grad_t
(
i
,
j
*
attr_num
,
k
,
l
)
=
grad_x_t
(
i
,
j
,
k
,
l
)
*
pred_x_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_x_t
(
i
,
j
,
k
,
l
))
*
loss
;
grad_t
(
i
,
j
*
attr_num
+
1
,
k
,
l
)
=
grad_y_t
(
i
,
j
,
k
,
l
)
*
pred_y_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_y_t
(
i
,
j
,
k
,
l
))
*
loss
;
grad_t
(
i
,
j
*
attr_num
+
2
,
k
,
l
)
=
grad_w_t
(
i
,
j
,
k
,
l
)
*
loss
;
grad_t
(
i
,
j
*
attr_num
+
3
,
k
,
l
)
=
grad_h_t
(
i
,
j
,
k
,
l
)
*
loss
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
=
grad_conf_obj_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
+=
grad_conf_noobj_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
;
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
grad_t
(
i
,
j
*
attr_num
+
5
+
c
,
k
,
l
)
=
grad_class_t
(
i
,
j
,
k
,
l
,
c
)
*
pred_class_t
(
i
,
j
,
k
,
l
,
c
)
*
(
1.0
-
pred_class_t
(
i
,
j
,
k
,
l
,
c
))
*
loss
;
}
}
}
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
Yolov3LossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -247,28 +323,25 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_boxes
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
int
img_height
=
ctx
.
Attr
<
int
>
(
"img_height"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
T
stride
=
static_cast
<
T
>
(
img_height
)
/
h
;
Tensor
pred_x
,
pred_y
,
pred_w
,
pred_h
;
Tensor
pred_conf
s
,
pred_classe
s
;
Tensor
pred_conf
,
pred_clas
s
;
pred_x
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_y
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_w
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_h
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_conf
s
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_class
es
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
CalcPredResult
<
T
>
(
*
input
,
&
pred_conf
s
,
&
pred_classe
s
,
&
pred_x
,
&
pred_y
,
&
pred_w
,
&
pred_h
,
an
chors
,
class_num
,
stride
);
pred_conf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_class
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
CalcPredResult
<
T
>
(
*
input
,
&
pred_conf
,
&
pred_clas
s
,
&
pred_x
,
&
pred_y
,
&
pred_w
,
&
pred_h
,
an
_num
,
class_num
);
Tensor
obj_mask
,
noobj_mask
;
Tensor
tx
,
ty
,
tw
,
th
,
tconf
,
tclass
;
...
...
@@ -280,9 +353,8 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PrePorcessGTBox
<
T
>
(
*
gt_boxes
,
ignore_thresh
,
anchors
,
img_height
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
PrePorcessGTBox
<
T
>
(
*
gt_boxes
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
Tensor
obj_mask_expand
;
obj_mask_expand
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
,
class_num
},
...
...
@@ -293,17 +365,9 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
T
loss_y
=
CalcMSEWithMask
<
T
>
(
pred_y
,
ty
,
obj_mask
);
T
loss_w
=
CalcMSEWithMask
<
T
>
(
pred_w
,
tw
,
obj_mask
);
T
loss_h
=
CalcMSEWithMask
<
T
>
(
pred_h
,
th
,
obj_mask
);
T
loss_conf_obj
=
CalcBCEWithMask
<
T
>
(
pred_confs
,
tconf
,
obj_mask
);
T
loss_conf_noobj
=
CalcBCEWithMask
<
T
>
(
pred_confs
,
tconf
,
noobj_mask
);
T
loss_class
=
CalcBCEWithMask
<
T
>
(
pred_classes
,
tclass
,
obj_mask_expand
);
// LOG(ERROR) << "loss_x: " << loss_x;
// LOG(ERROR) << "loss_y: " << loss_y;
// LOG(ERROR) << "loss_w: " << loss_w;
// LOG(ERROR) << "loss_h: " << loss_h;
// LOG(ERROR) << "loss_conf_obj: " << loss_conf_obj;
// LOG(ERROR) << "loss_conf_noobj: " << loss_conf_noobj;
// LOG(ERROR) << "loss_class: " << loss_class;
T
loss_conf_obj
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
obj_mask
);
T
loss_conf_noobj
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
noobj_mask
);
T
loss_class
=
CalcBCEWithMask
<
T
>
(
pred_class
,
tclass
,
obj_mask_expand
);
auto
*
loss_data
=
loss
->
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
loss_data
[
0
]
=
loss_x
+
loss_y
+
loss_w
+
loss_h
+
loss_conf_obj
+
...
...
@@ -315,8 +379,76 @@ template <typename DeviceContext, typename T>
class
Yolov3LossGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_input_t
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_output_t
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_boxes
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
T
loss
=
output_grad
->
data
<
T
>
()[
0
];
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
Tensor
pred_x
,
pred_y
,
pred_w
,
pred_h
;
Tensor
pred_conf
,
pred_class
;
pred_x
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_y
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_w
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_h
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_conf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_class
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
CalcPredResult
<
T
>
(
*
input
,
&
pred_conf
,
&
pred_class
,
&
pred_x
,
&
pred_y
,
&
pred_w
,
&
pred_h
,
an_num
,
class_num
);
Tensor
obj_mask
,
noobj_mask
;
Tensor
tx
,
ty
,
tw
,
th
,
tconf
,
tclass
;
obj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PrePorcessGTBox
<
T
>
(
*
gt_boxes
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
Tensor
obj_mask_expand
;
obj_mask_expand
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
ExpandObjMaskByClassNum
(
&
obj_mask_expand
,
obj_mask
);
Tensor
grad_x
,
grad_y
,
grad_w
,
grad_h
;
Tensor
grad_conf_obj
,
grad_conf_noobj
,
grad_class
;
grad_x
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_y
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_w
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_h
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_obj
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_noobj
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_class
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
T
obj_mf
=
CalcMaskPointNum
<
int
>
(
obj_mask
);
T
noobj_mf
=
CalcMaskPointNum
<
int
>
(
noobj_mask
);
T
obj_expand_mf
=
CalcMaskPointNum
<
int
>
(
obj_mask_expand
);
CalcMSEGradWithMask
<
T
>
(
&
grad_x
,
pred_x
,
tx
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_y
,
pred_y
,
ty
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_w
,
pred_w
,
tw
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_h
,
pred_h
,
th
,
obj_mask
,
obj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_obj
,
pred_conf
,
tconf
,
obj_mask
,
obj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_noobj
,
pred_conf
,
tconf
,
noobj_mask
,
noobj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_class
,
pred_class
,
tclass
,
obj_mask_expand
,
obj_expand_mf
);
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
AddAllGradToInputGrad
<
T
>
(
input_grad
,
loss
,
pred_x
,
pred_y
,
pred_conf
,
pred_class
,
grad_x
,
grad_y
,
grad_w
,
grad_h
,
grad_conf_obj
,
grad_conf_noobj
,
grad_class
,
class_num
);
}
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
a0284f6f
...
...
@@ -8244,14 +8244,55 @@ def log_loss(input, label, epsilon=1e-4, name=None):
return
loss
def
yolov3_loss
(
x
,
gtbox
,
img_height
,
anchors
,
ignore_thresh
,
name
=
None
):
@
templatedoc
(
op_type
=
"yolov3_loss"
)
def
yolov3_loss
(
x
,
gtbox
,
anchors
,
class_num
,
ignore_thresh
,
name
=
None
):
"""
**YOLOv3 Loss Layer**
${comment}
Args:
x (Variable): ${x_comment}
gtbox (Variable): groud truth boxes, shoulb be in shape of [N, B, 5],
in the third dimenstion, class_id, x, y, w, h should
be stored and x, y, w, h should be relative valud of
input image.
anchors (list|tuple): ${anchors_comment}
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
name (string): the name of yolov3 loss
This layer
Returns:
Variable: A 1-D tensor with shape [1], the value of yolov3 loss
Raises:
TypeError: Input x of yolov3_loss must be Variable
TypeError: Input gtbox of yolov3_loss must be Variable"
TypeError: Attr anchors of yolov3_loss must be list or tuple
TypeError: Attr class_num of yolov3_loss must be an integer
TypeError: Attr ignore_thresh of yolov3_loss must be a float number
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[10, 255, 13, 13], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[10, 6, 5], dtype='float32')
anchors = [10, 13, 16, 30, 33, 23]
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80
anchors=anchors, ignore_thresh=0.5)
"""
helper
=
LayerHelper
(
'yolov3_loss'
,
**
locals
())
if
not
isinstance
(
x
,
Variable
):
raise
TypeError
(
"Input x of yolov3_loss must be Variable"
)
if
not
isinstance
(
gtbox
,
Variable
):
raise
TypeError
(
"Input gtbox of yolov3_loss must be Variable"
)
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
raise
TypeError
(
"Attr anchors of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
class_num
,
int
):
raise
TypeError
(
"Attr class_num of yolov3_loss must be an integer"
)
if
not
isinstance
(
ignore_thresh
,
float
):
raise
TypeError
(
"Attr ignore_thresh of yolov3_loss must be a float number"
)
if
name
is
None
:
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
else
:
...
...
@@ -8264,8 +8305,8 @@ def yolov3_loss(x, gtbox, img_height, anchors, ignore_thresh, name=None):
"GTBox"
:
gtbox
},
outputs
=
{
'Loss'
:
loss
},
attrs
=
{
"img_height"
:
img_height
,
"anchors"
:
anchors
,
"class_num"
:
class_num
,
"ignore_thresh"
:
ignore_thresh
,
})
return
loss
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
a0284f6f
...
...
@@ -911,6 +911,15 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
data_1
)
print
(
str
(
program
))
def
test_yolov3_loss
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
5
],
dtype
=
'float32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
[
10
,
13
,
30
,
13
],
10
,
0.5
)
self
.
assertIsNotNone
(
loss
)
def
test_bilinear_tensor_product_layer
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
a0284f6f
...
...
@@ -12,10 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.fluid
import
core
def
sigmoid
(
x
):
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
...
...
@@ -65,10 +69,9 @@ def box_iou(box1, box2):
def
build_target
(
gtboxs
,
attrs
,
grid_size
):
n
,
b
,
_
=
gtboxs
.
shape
ignore_thresh
=
attrs
[
"ignore_thresh"
]
img_height
=
attrs
[
"img_height"
]
anchors
=
attrs
[
"anchors"
]
class_num
=
attrs
[
"class_num"
]
an_num
=
len
(
anchors
)
/
2
an_num
=
len
(
anchors
)
/
/
2
obj_mask
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
noobj_mask
=
np
.
ones
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tx
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
...
...
@@ -120,7 +123,7 @@ def build_target(gtboxs, attrs, grid_size):
def
YoloV3Loss
(
x
,
gtbox
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
an_num
=
len
(
attrs
[
'anchors'
])
/
2
an_num
=
len
(
attrs
[
'anchors'
])
/
/
2
class_num
=
attrs
[
"class_num"
]
x
=
x
.
reshape
((
n
,
an_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
pred_x
=
sigmoid
(
x
[:,
:,
:,
:,
0
])
...
...
@@ -144,13 +147,6 @@ def YoloV3Loss(x, gtbox, attrs):
noobj_mask
)
loss_class
=
bce
(
pred_cls
*
obj_mask_expand
,
tcls
*
obj_mask_expand
,
obj_mask_expand
)
# print "loss_x: ", loss_x
# print "loss_y: ", loss_y
# print "loss_w: ", loss_w
# print "loss_h: ", loss_h
# print "loss_conf_obj: ", loss_conf_obj
# print "loss_conf_noobj: ", loss_conf_noobj
# print "loss_class: ", loss_class
return
loss_x
+
loss_y
+
loss_w
+
loss_h
+
loss_conf_obj
+
loss_conf_noobj
+
loss_class
...
...
@@ -165,29 +161,35 @@ class TestYolov3LossOp(OpTest):
self
.
gtbox_shape
[:
2
])
self
.
attrs
=
{
"img_height"
:
self
.
img_height
,
"anchors"
:
self
.
anchors
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
}
self
.
outputs
=
{
'Loss'
:
np
.
array
([
YoloV3Loss
(
x
,
gtbox
,
self
.
attrs
)])}
print
self
.
outputs
self
.
outputs
=
{
'Loss'
:
np
.
array
([
YoloV3Loss
(
x
,
gtbox
,
self
.
attrs
)]).
astype
(
'float32'
)
}
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-3
)
place
=
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
# def test_check_grad_normal(self):
# self.check_grad(['X', 'Grid'], 'Output', max_relative_error=0.61)
def
test_check_grad_ignore_gtbox
(
self
):
place
=
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
(
"GTBox"
),
max_relative_error
=
0.1
)
def
initTestCase
(
self
):
self
.
img_height
=
608
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
self
.
anchors
=
[
10
,
13
,
12
,
12
]
self
.
class_num
=
10
self
.
ignore_thresh
=
0.5
self
.
x_shape
=
(
5
,
len
(
self
.
anchors
)
/
2
*
(
5
+
self
.
class_num
),
7
,
7
)
self
.
gtbox_shape
=
(
5
,
10
,
5
)
self
.
x_shape
=
(
5
,
len
(
self
.
anchors
)
/
/
2
*
(
5
+
self
.
class_num
),
7
,
7
)
self
.
gtbox_shape
=
(
5
,
5
,
5
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录