yolov3_loss_op.h 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

template <typename T>
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
  float x, y, w, h;
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75 76
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
77 78 79 80 81 82 83 84 85
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
86
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
97 98 99 100 101 102 103 104 105 106
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
107 108 109
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
110 111 112 113 114
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
115 116
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
                                int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  loss[0] += SCE<T>(input[box_idx], tx) * scale;
  loss[0] += SCE<T>(input[box_idx + stride], ty) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
                                    int grid_size, int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  input_grad[box_idx] = SCEGrad<T>(input[box_idx], tx) * scale * loss;
  input_grad[box_idx + stride] =
      SCEGrad<T>(input[box_idx + stride], ty) * scale * loss;
  input_grad[box_idx + 2 * stride] =
      L1LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
  input_grad[box_idx + 3 * stride] =
      L1LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
                                 const int label, const int class_num,
                                 const int stride) {
  for (int i = 0; i < class_num; i++) {
    loss[0] += SCE<T>(input[index + i * stride], (i == label) ? 1.0 : 0.0);
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
                                     const int label, const int class_num,
                                     const int stride) {
  for (int i = 0; i < class_num; i++) {
    input_grad[index + i * stride] =
        SCEGrad<T>(input[index + i * stride], (i == label) ? 1.0 : 0.0) * loss;
  }
}

template <typename T>
static inline void CalcObjnessLoss(T* loss, const T* input, const int* objness,
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            loss[i] += SCE<T>(input[k * w + l], static_cast<T>(obj));
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
                                       const T* input, const int* objness,
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            input_grad[k * w + l] =
                SCEGrad<T>(input[k * w + l], static_cast<T>(obj)) * loss[i];
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

238
template <typename T>
239 240 241 242
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
243 244
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
245
    auto* loss = ctx.Output<Tensor>("Loss");
246 247
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
248
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
249
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
250 251
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
252
    int downsample = ctx.Attr<int>("downsample");
253 254 255 256 257

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
258 259 260
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
    int input_size = downsample * h;
261

262 263 264
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

265 266 267
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
268
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
269
    memset(loss_data, 0, loss->numel() * sizeof(T));
270 271 272 273 274
    int* obj_mask_data =
        objness_mask->mutable_data<int>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(int));
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
275

276 277 278 279 280 281
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

282 283 284 285
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
286 287
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
288
            int box_idx =
D
dengkaipeng 已提交
289 290 291
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
292 293
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
294
              if (!gt_valid_mask_data[i * b + t]) {
295 296
                continue;
              }
297
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
298
              T iou = CalcBoxIoU(pred, gt);
299 300 301 302 303 304 305
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
306
              obj_mask_data[obj_idx] = -1;
307
            }
308 309 310
            // TODO(dengkaipeng): all losses should be calculated if best IoU
            // is bigger then truth thresh should be calculated here, but
            // currently, truth thresh is an unreachable value as 1.0.
311 312 313 314
          }
        }
      }
      for (int t = 0; t < b; t++) {
315
        if (!gt_valid_mask_data[i * b + t]) {
316
          gt_match_mask_data[i * b + t] = -1;
317 318
          continue;
        }
319
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
320 321 322 323 324 325 326
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
327 328 329
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
330 331 332 333 334 335
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
336
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
337 338
          // TODO(dengkaipeng): In paper, objectness loss is ignore when
          // best IoU > 0.5, but darknet code didn't implement this.
339 340 341 342 343 344
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
345
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
346
        gt_match_mask_data[i * b + t] = mask_idx;
347
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
348 349
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
350 351 352 353
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
                                 box_idx, gi, gj, h, input_size, stride);

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
354
          obj_mask_data[obj_idx] = 1;
355 356

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
357 358
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
359 360 361 362 363 364
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
                           class_num, stride);
        }
      }
    }

365
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
366
                       mask_num, h, w, stride, an_stride);
367 368 369
  }
};

370
template <typename T>
371 372 373
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
374
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
375 376
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
377 378
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
379 380
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
381
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
382
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
383
    int class_num = ctx.Attr<int>("class_num");
384
    int downsample = ctx.Attr<int>("downsample");
385

386 387 388 389
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
390
    const int mask_num = anchor_mask.size();
391
    const int b = gt_match_mask->dims()[1];
392 393
    int input_size = downsample * h;

394 395 396
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

397 398 399 400
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
    const T* loss_grad_data = loss_grad->data<T>();
401 402
    const int* obj_mask_data = objness_mask->data<int>();
    const int* gt_match_mask_data = gt_match_mask->data<int>();
403 404
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
405 406 407 408
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
D
dengkaipeng 已提交
409 410
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
        if (LessEqualZero<T>(gt.w) || LessEqualZero<T>(gt.h)) {
411 412 413 414 415
          continue;
        }
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);

416
        int mask_idx = gt_match_mask_data[i * b + t];
417
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
418 419
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
420 421 422
          CalcBoxLocationLossGrad<T>(
              input_grad_data, loss_grad_data[i], input_data, gt, anchors,
              anchor_mask[mask_idx], box_idx, gi, gj, h, input_size, stride);
423 424

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
425 426
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
427 428 429 430 431 432 433
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
                               label_idx, label, class_num, stride);
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
434
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
435
                           h, w, stride, an_stride);
436 437 438 439 440
  }
};

}  // namespace operators
}  // namespace paddle