yolov3_loss_op.h 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

template <typename T>
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
  float x, y, w, h;
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75 76
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
77 78 79 80 81 82 83 84 85
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
86
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
97 98 99 100 101 102 103 104 105 106
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
107 108 109
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
110 111 112 113 114
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
115 116
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
                                int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  loss[0] += SCE<T>(input[box_idx], tx) * scale;
  loss[0] += SCE<T>(input[box_idx + stride], ty) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
                                    int grid_size, int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  input_grad[box_idx] = SCEGrad<T>(input[box_idx], tx) * scale * loss;
  input_grad[box_idx + stride] =
      SCEGrad<T>(input[box_idx + stride], ty) * scale * loss;
  input_grad[box_idx + 2 * stride] =
      L1LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
  input_grad[box_idx + 3 * stride] =
      L1LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
D
dengkaipeng 已提交
159
                                 const int label, const T score,
160 161 162 163 164 165 166 167 168 169 170 171 172
                                 const int class_num, const int stride,
                                 const bool use_label_smooth) {
  if (use_label_smooth) {
    for (int i = 0; i < class_num; i++) {
      T pred = input[index + i * stride] < -0.5 ? input[index + i * stride]
                                                : 1.0 / class_num;
      loss[0] += SCE<T>(pred, (i == label) ? score : 0.0);
    }
  } else {
    for (int i = 0; i < class_num; i++) {
      T pred = input[index + i * stride];
      loss[0] += SCE<T>(pred, (i == label) ? score : 0.0);
    }
173 174 175 176 177 178
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
D
dengkaipeng 已提交
179
                                     const int label, const T score,
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
                                     const int class_num, const int stride,
                                     const bool use_label_smooth) {
  if (use_label_smooth) {
    for (int i = 0; i < class_num; i++) {
      T pred = input[index + i * stride] < -0.5 ? input[index + i * stride]
                                                : 1.0 / class_num;
      input_grad[index + i * stride] =
          SCEGrad<T>(pred, (i == label) ? score : 0.0) * loss;
    }
  } else {
    for (int i = 0; i < class_num; i++) {
      T pred = input[index + i * stride];
      input_grad[index + i * stride] =
          SCEGrad<T>(pred, (i == label) ? score : 0.0) * loss;
    }
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  }
}

template <typename T>
static inline void CalcObjnessLoss(T* loss, const T* input, const int* objness,
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            loss[i] += SCE<T>(input[k * w + l], static_cast<T>(obj));
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
                                       const T* input, const int* objness,
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            input_grad[k * w + l] =
                SCEGrad<T>(input[k * w + l], static_cast<T>(obj)) * loss[i];
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

259
template <typename T>
260 261 262 263
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
264 265
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
266
    auto* gt_score = ctx.Input<Tensor>("GTScore");
D
dengkaipeng 已提交
267
    auto* loss = ctx.Output<Tensor>("Loss");
268 269
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
270
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
271
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
272 273
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
274
    int downsample = ctx.Attr<int>("downsample");
275
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
276 277 278 279 280

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
281 282 283
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
    int input_size = downsample * h;
284

285 286 287
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

288 289 290
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
D
dengkaipeng 已提交
291
    const T* gt_score_data = gt_score->data<T>();
292
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
293
    memset(loss_data, 0, loss->numel() * sizeof(T));
294 295 296 297 298
    int* obj_mask_data =
        objness_mask->mutable_data<int>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(int));
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
299

300 301 302 303 304 305
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

306 307 308 309
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
310 311
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
312
            int box_idx =
D
dengkaipeng 已提交
313 314 315
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
316 317
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
318
              if (!gt_valid_mask_data[i * b + t]) {
319 320
                continue;
              }
321
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
322
              T iou = CalcBoxIoU(pred, gt);
323 324 325 326 327 328 329
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
330
              obj_mask_data[obj_idx] = -1;
331
            }
332 333 334
            // TODO(dengkaipeng): all losses should be calculated if best IoU
            // is bigger then truth thresh should be calculated here, but
            // currently, truth thresh is an unreachable value as 1.0.
335 336 337 338
          }
        }
      }
      for (int t = 0; t < b; t++) {
339
        if (!gt_valid_mask_data[i * b + t]) {
340
          gt_match_mask_data[i * b + t] = -1;
341 342
          continue;
        }
343
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
344 345 346 347 348 349 350
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
351 352 353
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
354 355 356 357 358 359
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
360
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
361 362
          // TODO(dengkaipeng): In paper, objectness loss is ignore when
          // best IoU > 0.5, but darknet code didn't implement this.
363 364 365 366 367 368
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
369
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
370
        gt_match_mask_data[i * b + t] = mask_idx;
371
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
372 373
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
374 375 376 377
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
                                 box_idx, gi, gj, h, input_size, stride);

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
378
          obj_mask_data[obj_idx] = 1;
379 380

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
381
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
382 383
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
D
dengkaipeng 已提交
384
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label, score,
385
                           class_num, stride, use_label_smooth);
386 387 388 389
        }
      }
    }

390
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
391
                       mask_num, h, w, stride, an_stride);
392 393 394
  }
};

395
template <typename T>
396 397 398
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
399
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
400 401
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
402
    auto* gt_score = ctx.Input<Tensor>("GTScore");
403 404
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
405 406
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
407
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
408
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
409
    int class_num = ctx.Attr<int>("class_num");
410
    int downsample = ctx.Attr<int>("downsample");
411
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
412

413 414 415 416
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
417
    const int mask_num = anchor_mask.size();
418
    const int b = gt_match_mask->dims()[1];
419 420
    int input_size = downsample * h;

421 422 423
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

424 425 426
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
D
dengkaipeng 已提交
427
    const T* gt_score_data = gt_score->data<T>();
428
    const T* loss_grad_data = loss_grad->data<T>();
429 430
    const int* obj_mask_data = objness_mask->data<int>();
    const int* gt_match_mask_data = gt_match_mask->data<int>();
431 432
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
433 434 435 436
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
437
        int mask_idx = gt_match_mask_data[i * b + t];
438
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
439 440 441 442
          Box<T> gt = GetGtBox(gt_box_data, i, b, t);
          int gi = static_cast<int>(gt.x * w);
          int gj = static_cast<int>(gt.y * h);

D
dengkaipeng 已提交
443 444
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
445 446 447
          CalcBoxLocationLossGrad<T>(
              input_grad_data, loss_grad_data[i], input_data, gt, anchors,
              anchor_mask[mask_idx], box_idx, gi, gj, h, input_size, stride);
448 449

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
450
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
451 452
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
453
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
454 455
                               label_idx, label, score, class_num, stride,
                               use_label_smooth);
456 457 458 459 460
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
461
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
462
                           h, w, stride, an_stride);
463 464 465 466 467
  }
};

}  // namespace operators
}  // namespace paddle