yolov3_loss_op.h 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

template <typename T>
static T L1Loss(T x, T y) {
  return std::abs(y - x);
}

template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

template <typename T>
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
  float x, y, w, h;
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75 76
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
77 78 79 80 81 82 83 84 85
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
86
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
97 98 99 100 101 102 103 104 105 106
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
107 108 109
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
110 111 112 113 114
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
115 116
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
                                int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  loss[0] += SCE<T>(input[box_idx], tx) * scale;
  loss[0] += SCE<T>(input[box_idx + stride], ty) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
                                    int grid_size, int input_size, int stride) {
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

  T scale = 2.0 - gt.w * gt.h;
  input_grad[box_idx] = SCEGrad<T>(input[box_idx], tx) * scale * loss;
  input_grad[box_idx + stride] =
      SCEGrad<T>(input[box_idx + stride], ty) * scale * loss;
  input_grad[box_idx + 2 * stride] =
      L1LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
  input_grad[box_idx + 3 * stride] =
      L1LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
D
dengkaipeng 已提交
159 160
                                 const int label, const T score,
                                 const int class_num, const int stride) {
161
  for (int i = 0; i < class_num; i++) {
D
dengkaipeng 已提交
162 163
    T pred = input[index + i * stride] < -0.5 ? input[index + i * stride]
                                              : 1.0 / class_num;
D
dengkaipeng 已提交
164
    loss[0] += SCE<T>(pred, (i == label) ? score : 0.0);
165 166 167 168 169 170
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
D
dengkaipeng 已提交
171 172
                                     const int label, const T score,
                                     const int class_num, const int stride) {
173
  for (int i = 0; i < class_num; i++) {
D
dengkaipeng 已提交
174 175
    T pred = input[index + i * stride] < -0.5 ? input[index + i * stride]
                                              : 1.0 / class_num;
176
    input_grad[index + i * stride] =
D
dengkaipeng 已提交
177
        SCEGrad<T>(pred, (i == label) ? score : 0.0) * loss;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  }
}

template <typename T>
static inline void CalcObjnessLoss(T* loss, const T* input, const int* objness,
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            loss[i] += SCE<T>(input[k * w + l], static_cast<T>(obj));
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
                                       const T* input, const int* objness,
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
          int obj = objness[k * w + l];
          if (obj >= 0) {
            input_grad[k * w + l] =
                SCEGrad<T>(input[k * w + l], static_cast<T>(obj)) * loss[i];
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

242
template <typename T>
243 244 245 246
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
247 248
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
249
    auto* gt_score = ctx.Input<Tensor>("GTScore");
D
dengkaipeng 已提交
250
    auto* loss = ctx.Output<Tensor>("Loss");
251 252
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
253
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
254
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
255 256
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
257
    int downsample = ctx.Attr<int>("downsample");
258 259 260 261 262

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
263 264 265
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
    int input_size = downsample * h;
266

267 268 269
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

270 271 272
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
D
dengkaipeng 已提交
273
    const T* gt_score_data = gt_score->data<T>();
274
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
275
    memset(loss_data, 0, loss->numel() * sizeof(T));
276 277 278 279 280
    int* obj_mask_data =
        objness_mask->mutable_data<int>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(int));
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
281

282 283 284 285 286 287
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

288 289 290 291
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
292 293
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
294
            int box_idx =
D
dengkaipeng 已提交
295 296 297
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
298 299
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
300
              if (!gt_valid_mask_data[i * b + t]) {
301 302
                continue;
              }
303
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
304
              T iou = CalcBoxIoU(pred, gt);
305 306 307 308 309 310 311
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
312
              obj_mask_data[obj_idx] = -1;
313
            }
314 315 316
            // TODO(dengkaipeng): all losses should be calculated if best IoU
            // is bigger then truth thresh should be calculated here, but
            // currently, truth thresh is an unreachable value as 1.0.
317 318 319 320
          }
        }
      }
      for (int t = 0; t < b; t++) {
321
        if (!gt_valid_mask_data[i * b + t]) {
322
          gt_match_mask_data[i * b + t] = -1;
323 324
          continue;
        }
325
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
326 327 328 329 330 331 332
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
333 334 335
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
336 337 338 339 340 341
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
342
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
343 344
          // TODO(dengkaipeng): In paper, objectness loss is ignore when
          // best IoU > 0.5, but darknet code didn't implement this.
345 346 347 348 349 350
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
351
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
352
        gt_match_mask_data[i * b + t] = mask_idx;
353
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
354 355
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
356 357 358 359
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
                                 box_idx, gi, gj, h, input_size, stride);

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
360
          obj_mask_data[obj_idx] = 1;
361 362

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
363
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
364 365
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
D
dengkaipeng 已提交
366
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label, score,
367 368 369 370 371
                           class_num, stride);
        }
      }
    }

372
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
373
                       mask_num, h, w, stride, an_stride);
374 375 376
  }
};

377
template <typename T>
378 379 380
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
381
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
382 383
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
384
    auto* gt_score = ctx.Input<Tensor>("GTScore");
385 386
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
387 388
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
389
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
390
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
391
    int class_num = ctx.Attr<int>("class_num");
392
    int downsample = ctx.Attr<int>("downsample");
393

394 395 396 397
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
398
    const int mask_num = anchor_mask.size();
399
    const int b = gt_match_mask->dims()[1];
400 401
    int input_size = downsample * h;

402 403 404
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

405 406 407
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
D
dengkaipeng 已提交
408
    const T* gt_score_data = gt_score->data<T>();
409
    const T* loss_grad_data = loss_grad->data<T>();
410 411
    const int* obj_mask_data = objness_mask->data<int>();
    const int* gt_match_mask_data = gt_match_mask->data<int>();
412 413
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
414 415 416 417
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
418
        int mask_idx = gt_match_mask_data[i * b + t];
419
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
420 421 422 423
          Box<T> gt = GetGtBox(gt_box_data, i, b, t);
          int gi = static_cast<int>(gt.x * w);
          int gj = static_cast<int>(gt.y * h);

D
dengkaipeng 已提交
424 425
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
426 427 428
          CalcBoxLocationLossGrad<T>(
              input_grad_data, loss_grad_data[i], input_data, gt, anchors,
              anchor_mask[mask_idx], box_idx, gi, gj, h, input_size, stride);
429 430

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
431
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
432 433
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
434
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
D
dengkaipeng 已提交
435
                               label_idx, label, score, class_num, stride);
436 437 438 439 440
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
441
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
442
                           h, w, stride, an_stride);
443 444 445 446 447
  }
};

}  // namespace operators
}  // namespace paddle