vmscan.c 110.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86
	/* Scan (total_size >> priority) pages at once */
	int priority;

87 88 89
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

90 91 92 93 94 95 96 97
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

98 99 100
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

101 102 103 104 105 106 107 108 109 110
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
145 146 147 148 149
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
150 151 152 153

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
154
#ifdef CONFIG_MEMCG
155 156
static bool global_reclaim(struct scan_control *sc)
{
157
	return !sc->target_mem_cgroup;
158
}
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
180
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 182 183 184
		return true;
#endif
	return false;
}
185
#else
186 187 188 189
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
190 191 192 193 194

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
195 196
#endif

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
215 216 217 218 219 220 221
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222 223

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
224 225 226
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227 228 229 230

	return nr;
}

M
Mel Gorman 已提交
231
bool pgdat_reclaimable(struct pglist_data *pgdat)
232
{
M
Mel Gorman 已提交
233 234
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
235 236
}

237
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238
{
239
	if (!mem_cgroup_disabled())
240
		return mem_cgroup_get_lru_size(lruvec, lru);
241

M
Mel Gorman 已提交
242
	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243 244
}

L
Linus Torvalds 已提交
245
/*
G
Glauber Costa 已提交
246
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
247
 */
G
Glauber Costa 已提交
248
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
249
{
G
Glauber Costa 已提交
250 251 252 253 254 255 256 257 258
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

259 260 261
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
262
	return 0;
L
Linus Torvalds 已提交
263
}
264
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
265 266 267 268

/*
 * Remove one
 */
269
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
270 271 272 273
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
274
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
275
}
276
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
277 278

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
279

280 281 282 283
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
284 285 286 287
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
288
	long freeable;
G
Glauber Costa 已提交
289 290 291 292 293 294
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

295 296
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
297 298 299 300 301 302 303 304 305 306
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
307
	delta = (4 * nr_scanned) / shrinker->seeks;
308
	delta *= freeable;
309
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
310 311
	total_scan += delta;
	if (total_scan < 0) {
312
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
313
		       shrinker->scan_objects, total_scan);
314
		total_scan = freeable;
G
Glauber Costa 已提交
315 316 317 318 319 320 321 322
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
323
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
324 325 326 327 328
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
329 330
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
331 332 333 334 335 336

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
337 338
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
339 340

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
341 342
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
343

344 345 346 347 348 349 350 351 352 353 354
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
355
	 * than the total number of objects on slab (freeable), we must be
356 357 358 359
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
360
	       total_scan >= freeable) {
D
Dave Chinner 已提交
361
		unsigned long ret;
362
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
363

364
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
365 366 367 368
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
369

370 371
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

387
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
388
	return freed;
389 390
}

391
/**
392
 * shrink_slab - shrink slab caches
393 394
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
395
 * @memcg: memory cgroup whose slab caches to target
396 397
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
398
 *
399
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
400
 *
401 402
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
403
 *
404 405
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
406 407
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
408
 *
409 410 411 412 413 414 415
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
416
 *
417
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
418
 */
419 420 421 422
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
423 424
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
425
	unsigned long freed = 0;
L
Linus Torvalds 已提交
426

427
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
428 429
		return 0;

430 431
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
432

433
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
434 435 436 437 438 439 440
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
441 442
		goto out;
	}
L
Linus Torvalds 已提交
443 444

	list_for_each_entry(shrinker, &shrinker_list, list) {
445 446 447
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
448
			.memcg = memcg,
449
		};
450

451 452 453 454 455 456 457
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
458 459
			continue;

460 461
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
462

463
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
464
	}
465

L
Linus Torvalds 已提交
466
	up_read(&shrinker_rwsem);
467 468
out:
	cond_resched();
D
Dave Chinner 已提交
469
	return freed;
L
Linus Torvalds 已提交
470 471
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
495 496
static inline int is_page_cache_freeable(struct page *page)
{
497 498 499 500 501
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
502
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
503 504
}

505
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
506
{
507
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
508
		return 1;
509
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
510
		return 1;
511
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
531
	lock_page(page);
532 533
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
534 535 536
	unlock_page(page);
}

537 538 539 540 541 542 543 544 545 546 547 548
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
549
/*
A
Andrew Morton 已提交
550 551
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
552
 */
553
static pageout_t pageout(struct page *page, struct address_space *mapping,
554
			 struct scan_control *sc)
L
Linus Torvalds 已提交
555 556 557 558 559 560 561 562
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
563
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
579
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
580 581
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
582
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
583 584 585 586 587 588 589
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
590
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
591 592 593 594 595 596 597
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
598 599
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
600 601 602 603 604 605 606
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
607
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
608 609 610
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
611

L
Linus Torvalds 已提交
612 613 614 615
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
616
		trace_mm_vmscan_writepage(page);
617
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
618 619 620 621 622 623
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

624
/*
N
Nick Piggin 已提交
625 626
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
627
 */
628 629
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
630
{
631 632
	unsigned long flags;

633 634
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
635

636
	spin_lock_irqsave(&mapping->tree_lock, flags);
637
	/*
N
Nick Piggin 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
657
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
658 659 660
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
661
	 */
662
	if (!page_ref_freeze(page, 2))
663
		goto cannot_free;
N
Nick Piggin 已提交
664 665
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
666
		page_ref_unfreeze(page, 2);
667
		goto cannot_free;
N
Nick Piggin 已提交
668
	}
669 670 671

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
672
		mem_cgroup_swapout(page, swap);
673
		__delete_from_swap_cache(page);
674
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
675
		swapcache_free(swap);
N
Nick Piggin 已提交
676
	} else {
677
		void (*freepage)(struct page *);
678
		void *shadow = NULL;
679 680

		freepage = mapping->a_ops->freepage;
681 682 683 684 685 686 687 688 689
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
690 691 692 693 694 695
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
696 697
		 */
		if (reclaimed && page_is_file_cache(page) &&
698
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
699
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
700
		__delete_from_page_cache(page, shadow);
701
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
702 703 704

		if (freepage != NULL)
			freepage(page);
705 706 707 708 709
	}

	return 1;

cannot_free:
710
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 712 713
	return 0;
}

N
Nick Piggin 已提交
714 715 716 717 718 719 720 721
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
722
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
723 724 725 726 727
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
728
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
729 730 731 732 733
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
734 735 736 737 738 739 740 741 742 743 744
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
745
	bool is_unevictable;
746
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
747

748
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
749 750 751 752

redo:
	ClearPageUnevictable(page);

753
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
754 755 756 757 758 759
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
760
		is_unevictable = false;
761
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
762 763 764 765 766
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
767
		is_unevictable = true;
L
Lee Schermerhorn 已提交
768
		add_page_to_unevictable_list(page);
769
		/*
770 771 772
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
773
		 * isolation/check_move_unevictable_pages,
774
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
775 776
		 * the page back to the evictable list.
		 *
777
		 * The other side is TestClearPageMlocked() or shmem_lock().
778 779
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
780 781 782 783 784 785 786
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
787
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
788 789 790 791 792 793 794 795 796 797
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

798
	if (was_unevictable && !is_unevictable)
799
		count_vm_event(UNEVICTABLE_PGRESCUED);
800
	else if (!was_unevictable && is_unevictable)
801 802
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
803 804 805
	put_page(page);		/* drop ref from isolate */
}

806 807 808
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
809
	PAGEREF_KEEP,
810 811 812 813 814 815
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
816
	int referenced_ptes, referenced_page;
817 818
	unsigned long vm_flags;

819 820
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
821
	referenced_page = TestClearPageReferenced(page);
822 823 824 825 826 827 828 829

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

830
	if (referenced_ptes) {
831
		if (PageSwapBacked(page))
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

849
		if (referenced_page || referenced_ptes > 1)
850 851
			return PAGEREF_ACTIVATE;

852 853 854 855 856 857
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

858 859
		return PAGEREF_KEEP;
	}
860 861

	/* Reclaim if clean, defer dirty pages to writeback */
862
	if (referenced_page && !PageSwapBacked(page))
863 864 865
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
866 867
}

868 869 870 871
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
872 873
	struct address_space *mapping;

874 875 876 877 878 879 880 881 882 883 884 885 886
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
887 888 889 890 891 892 893 894

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
895 896
}

L
Linus Torvalds 已提交
897
/*
A
Andrew Morton 已提交
898
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
899
 */
A
Andrew Morton 已提交
900
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
901
				      struct pglist_data *pgdat,
902
				      struct scan_control *sc,
903
				      enum ttu_flags ttu_flags,
904
				      unsigned long *ret_nr_dirty,
905
				      unsigned long *ret_nr_unqueued_dirty,
906
				      unsigned long *ret_nr_congested,
907
				      unsigned long *ret_nr_writeback,
908
				      unsigned long *ret_nr_immediate,
909
				      bool force_reclaim)
L
Linus Torvalds 已提交
910 911
{
	LIST_HEAD(ret_pages);
912
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
913
	int pgactivate = 0;
914
	unsigned long nr_unqueued_dirty = 0;
915 916
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
917
	unsigned long nr_reclaimed = 0;
918
	unsigned long nr_writeback = 0;
919
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
920 921 922 923 924 925 926

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
927
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
928
		bool dirty, writeback;
M
Minchan Kim 已提交
929 930
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
931 932 933 934 935 936

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
937
		if (!trylock_page(page))
L
Linus Torvalds 已提交
938 939
			goto keep;

940
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
941 942

		sc->nr_scanned++;
943

944
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
945
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
946

947
		if (!sc->may_unmap && page_mapped(page))
948 949
			goto keep_locked;

L
Linus Torvalds 已提交
950 951 952 953
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

954 955 956
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

957 958 959 960 961 962 963 964 965 966 967 968 969
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

970 971 972 973 974 975
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
976
		mapping = page_mapping(page);
977
		if (((dirty || writeback) && mapping &&
978
		     inode_write_congested(mapping->host)) ||
979
		    (writeback && PageReclaim(page)))
980 981
			nr_congested++;

982 983 984 985 986 987 988 989 990 991 992
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
993 994
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
995
		 *
996
		 * 2) Global or new memcg reclaim encounters a page that is
997 998 999
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1000
		 *    reclaim and continue scanning.
1001
		 *
1002 1003
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1004 1005 1006 1007 1008
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1009
		 * 3) Legacy memcg encounters a page that is already marked
1010 1011 1012 1013 1014
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
1015
		if (PageWriteback(page)) {
1016 1017 1018
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1019
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1020 1021
				nr_immediate++;
				goto keep_locked;
1022 1023

			/* Case 2 above */
1024
			} else if (sane_reclaim(sc) ||
1025
			    !PageReclaim(page) || !may_enter_fs) {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1038
				nr_writeback++;
1039
				goto keep_locked;
1040 1041 1042

			/* Case 3 above */
			} else {
1043
				unlock_page(page);
1044
				wait_on_page_writeback(page);
1045 1046 1047
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1048
			}
1049
		}
L
Linus Torvalds 已提交
1050

1051 1052 1053
		if (!force_reclaim)
			references = page_check_references(page, sc);

1054 1055
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1056
			goto activate_locked;
1057 1058
		case PAGEREF_KEEP:
			goto keep_locked;
1059 1060 1061 1062
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1063 1064 1065 1066 1067

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1068
		if (PageAnon(page) && !PageSwapCache(page)) {
1069 1070
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1071
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1072
				goto activate_locked;
M
Minchan Kim 已提交
1073
			lazyfree = true;
1074
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1075

1076 1077
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1078 1079 1080 1081
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1082
		}
L
Linus Torvalds 已提交
1083

1084 1085
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1086 1087 1088 1089 1090
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1091 1092 1093
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1094 1095 1096 1097
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1098 1099
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1100 1101
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1102 1103 1104 1105 1106 1107
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1108 1109
			/*
			 * Only kswapd can writeback filesystem pages to
1110 1111
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1112
			 */
1113
			if (page_is_file_cache(page) &&
1114
					(!current_is_kswapd() ||
M
Mel Gorman 已提交
1115
					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1116 1117 1118 1119 1120 1121
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1122
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1123 1124
				SetPageReclaim(page);

1125 1126 1127
				goto keep_locked;
			}

1128
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1129
				goto keep_locked;
1130
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1131
				goto keep_locked;
1132
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1133 1134
				goto keep_locked;

1135 1136 1137 1138 1139 1140
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1141
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1142 1143 1144 1145 1146
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1147
				if (PageWriteback(page))
1148
					goto keep;
1149
				if (PageDirty(page))
L
Linus Torvalds 已提交
1150
					goto keep;
1151

L
Linus Torvalds 已提交
1152 1153 1154 1155
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1156
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1176
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1187
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1188 1189
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1206 1207
		}

M
Minchan Kim 已提交
1208
lazyfree:
1209
		if (!mapping || !__remove_mapping(mapping, page, true))
1210
			goto keep_locked;
L
Linus Torvalds 已提交
1211

N
Nick Piggin 已提交
1212 1213 1214 1215 1216 1217 1218
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1219
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1220
free_it:
M
Minchan Kim 已提交
1221 1222 1223
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1224
		nr_reclaimed++;
1225 1226 1227 1228 1229 1230

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1231 1232
		continue;

N
Nick Piggin 已提交
1233
cull_mlocked:
1234 1235
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1236
		unlock_page(page);
1237
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1238 1239
		continue;

L
Linus Torvalds 已提交
1240
activate_locked:
1241
		/* Not a candidate for swapping, so reclaim swap space. */
1242
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1243
			try_to_free_swap(page);
1244
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1245 1246 1247 1248 1249 1250
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1251
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1252
	}
1253

1254
	mem_cgroup_uncharge_list(&free_pages);
1255
	try_to_unmap_flush();
1256
	free_hot_cold_page_list(&free_pages, true);
1257

L
Linus Torvalds 已提交
1258
	list_splice(&ret_pages, page_list);
1259
	count_vm_events(PGACTIVATE, pgactivate);
1260

1261 1262
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1263
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1264
	*ret_nr_writeback += nr_writeback;
1265
	*ret_nr_immediate += nr_immediate;
1266
	return nr_reclaimed;
L
Linus Torvalds 已提交
1267 1268
}

1269 1270 1271 1272 1273 1274 1275 1276
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1277
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1278 1279 1280 1281
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1282
		if (page_is_file_cache(page) && !PageDirty(page) &&
1283
		    !__PageMovable(page)) {
1284 1285 1286 1287 1288
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1289
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1290 1291
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1292
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1293
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1294 1295 1296
	return ret;
}

A
Andy Whitcroft 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1307
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1308 1309 1310 1311 1312 1313 1314
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1315 1316
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1317 1318
		return ret;

A
Andy Whitcroft 已提交
1319
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1354

1355 1356 1357
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
			enum lru_list lru, unsigned long *nr_zone_taken,
			unsigned long nr_taken)
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
	}

#ifdef CONFIG_MEMCG
	mem_cgroup_update_lru_size(lruvec, lru, -nr_taken);
#endif
}

L
Linus Torvalds 已提交
1394
/*
1395
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1405
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1406
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1407
 * @nr_scanned:	The number of pages that were scanned.
1408
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1409
 * @mode:	One of the LRU isolation modes
1410
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1411 1412 1413
 *
 * returns how many pages were moved onto *@dst.
 */
1414
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1415
		struct lruvec *lruvec, struct list_head *dst,
1416
		unsigned long *nr_scanned, struct scan_control *sc,
1417
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1418
{
H
Hugh Dickins 已提交
1419
	struct list_head *src = &lruvec->lists[lru];
1420
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1421
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1422
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
M
Mel Gorman 已提交
1423
	unsigned long scan, nr_pages;
1424
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1425

1426
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1427
					!list_empty(src);) {
A
Andy Whitcroft 已提交
1428 1429
		struct page *page;

L
Linus Torvalds 已提交
1430 1431 1432
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1433
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1434

1435 1436
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1437
			nr_skipped[page_zonenum(page)]++;
1438 1439 1440
			continue;
		}

1441 1442 1443 1444 1445 1446
		/*
		 * Account for scanned and skipped separetly to avoid the pgdat
		 * being prematurely marked unreclaimable by pgdat_reclaimable.
		 */
		scan++;

1447
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1448
		case 0:
M
Mel Gorman 已提交
1449 1450 1451
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1452 1453 1454 1455 1456 1457 1458
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1459

A
Andy Whitcroft 已提交
1460 1461 1462
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1463 1464
	}

1465 1466 1467 1468 1469 1470 1471
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1472 1473
	if (!list_empty(&pages_skipped)) {
		int zid;
1474
		unsigned long total_skipped = 0;
1475 1476 1477 1478 1479 1480

		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1481
			total_skipped += nr_skipped[zid];
1482
		}
1483 1484 1485 1486 1487 1488 1489 1490 1491

		/*
		 * Account skipped pages as a partial scan as the pgdat may be
		 * close to unreclaimable. If the LRU list is empty, account
		 * skipped pages as a full scan.
		 */
		scan += list_empty(src) ? total_skipped : total_skipped >> 2;

		list_splice(&pages_skipped, src);
1492
	}
H
Hugh Dickins 已提交
1493
	*nr_scanned = scan;
1494
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
H
Hugh Dickins 已提交
1495
				    nr_taken, mode, is_file_lru(lru));
1496
	update_lru_sizes(lruvec, lru, nr_zone_taken, nr_taken);
L
Linus Torvalds 已提交
1497 1498 1499
	return nr_taken;
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1511 1512 1513
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1529
	VM_BUG_ON_PAGE(!page_count(page), page);
1530
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1531

1532 1533
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1534
		struct lruvec *lruvec;
1535

1536
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1537
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1538
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1539
			int lru = page_lru(page);
1540
			get_page(page);
1541
			ClearPageLRU(page);
1542 1543
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1544
		}
1545
		spin_unlock_irq(zone_lru_lock(zone));
1546 1547 1548 1549
	}
	return ret;
}

1550
/*
F
Fengguang Wu 已提交
1551 1552 1553 1554 1555
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1556
 */
M
Mel Gorman 已提交
1557
static int too_many_isolated(struct pglist_data *pgdat, int file,
1558 1559 1560 1561 1562 1563 1564
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1565
	if (!sane_reclaim(sc))
1566 1567 1568
		return 0;

	if (file) {
M
Mel Gorman 已提交
1569 1570
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1571
	} else {
M
Mel Gorman 已提交
1572 1573
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1574 1575
	}

1576 1577 1578 1579 1580
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1581
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1582 1583
		inactive >>= 3;

1584 1585 1586
	return isolated > inactive;
}

1587
static noinline_for_stack void
H
Hugh Dickins 已提交
1588
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1589
{
1590
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1591
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1592
	LIST_HEAD(pages_to_free);
1593 1594 1595 1596 1597

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1598
		struct page *page = lru_to_page(page_list);
1599
		int lru;
1600

1601
		VM_BUG_ON_PAGE(PageLRU(page), page);
1602
		list_del(&page->lru);
1603
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1604
			spin_unlock_irq(&pgdat->lru_lock);
1605
			putback_lru_page(page);
M
Mel Gorman 已提交
1606
			spin_lock_irq(&pgdat->lru_lock);
1607 1608
			continue;
		}
1609

M
Mel Gorman 已提交
1610
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1611

1612
		SetPageLRU(page);
1613
		lru = page_lru(page);
1614 1615
		add_page_to_lru_list(page, lruvec, lru);

1616 1617
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1618 1619
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1620
		}
1621 1622 1623
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1624
			del_page_from_lru_list(page, lruvec, lru);
1625 1626

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1627
				spin_unlock_irq(&pgdat->lru_lock);
1628
				mem_cgroup_uncharge(page);
1629
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1630
				spin_lock_irq(&pgdat->lru_lock);
1631 1632
			} else
				list_add(&page->lru, &pages_to_free);
1633 1634 1635
		}
	}

1636 1637 1638 1639
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1640 1641
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static bool inactive_reclaimable_pages(struct lruvec *lruvec,
				struct scan_control *sc, enum lru_list lru)
{
	int zid;
	struct zone *zone;
	int file = is_file_lru(lru);
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);

	if (!global_reclaim(sc))
		return true;

	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
		zone = &pgdat->node_zones[zid];
1668
		if (!managed_zone(zone))
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
			continue;

		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
			return true;
	}

	return false;
}

L
Linus Torvalds 已提交
1679
/*
1680
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1681
 * of reclaimed pages
L
Linus Torvalds 已提交
1682
 */
1683
static noinline_for_stack unsigned long
1684
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1685
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1686 1687
{
	LIST_HEAD(page_list);
1688
	unsigned long nr_scanned;
1689
	unsigned long nr_reclaimed = 0;
1690
	unsigned long nr_taken;
1691 1692
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1693
	unsigned long nr_unqueued_dirty = 0;
1694
	unsigned long nr_writeback = 0;
1695
	unsigned long nr_immediate = 0;
1696
	isolate_mode_t isolate_mode = 0;
1697
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1698
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1699
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1700

1701 1702 1703
	if (!inactive_reclaimable_pages(lruvec, sc, lru))
		return 0;

M
Mel Gorman 已提交
1704
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1705
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1706 1707 1708 1709 1710 1711

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1712
	lru_add_drain();
1713 1714

	if (!sc->may_unmap)
1715
		isolate_mode |= ISOLATE_UNMAPPED;
1716
	if (!sc->may_writepage)
1717
		isolate_mode |= ISOLATE_CLEAN;
1718

M
Mel Gorman 已提交
1719
	spin_lock_irq(&pgdat->lru_lock);
1720

1721 1722
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1723

M
Mel Gorman 已提交
1724
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1725
	reclaim_stat->recent_scanned[file] += nr_taken;
1726

1727
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1728
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1729
		if (current_is_kswapd())
M
Mel Gorman 已提交
1730
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1731
		else
M
Mel Gorman 已提交
1732
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1733
	}
M
Mel Gorman 已提交
1734
	spin_unlock_irq(&pgdat->lru_lock);
1735

1736
	if (nr_taken == 0)
1737
		return 0;
A
Andy Whitcroft 已提交
1738

M
Mel Gorman 已提交
1739
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1740 1741 1742
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1743

M
Mel Gorman 已提交
1744
	spin_lock_irq(&pgdat->lru_lock);
1745

Y
Ying Han 已提交
1746 1747
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1748
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1749
		else
M
Mel Gorman 已提交
1750
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1751
	}
N
Nick Piggin 已提交
1752

1753
	putback_inactive_pages(lruvec, &page_list);
1754

M
Mel Gorman 已提交
1755
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1756

M
Mel Gorman 已提交
1757
	spin_unlock_irq(&pgdat->lru_lock);
1758

1759
	mem_cgroup_uncharge_list(&page_list);
1760
	free_hot_cold_page_list(&page_list, true);
1761

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1772 1773 1774
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1775
	 */
1776
	if (nr_writeback && nr_writeback == nr_taken)
M
Mel Gorman 已提交
1777
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1778

1779
	/*
1780 1781
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1782
	 */
1783
	if (sane_reclaim(sc)) {
1784 1785 1786 1787 1788
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
M
Mel Gorman 已提交
1789
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1790

1791 1792 1793
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
M
Mel Gorman 已提交
1794
		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
J
Johannes Weiner 已提交
1795
		 * reclaim context.
1796 1797
		 */
		if (nr_unqueued_dirty == nr_taken)
M
Mel Gorman 已提交
1798
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1799 1800

		/*
1801 1802 1803
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1804 1805
		 * they are written so also forcibly stall.
		 */
1806
		if (nr_immediate && current_may_throttle())
1807
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1808
	}
1809

1810 1811 1812 1813 1814
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1815 1816
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1817
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1818

M
Mel Gorman 已提交
1819 1820
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1821
			sc->priority, file);
1822
	return nr_reclaimed;
L
Linus Torvalds 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1832
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1833
 * the pages are mapped, the processing is slow (page_referenced()) so we
1834
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1835 1836 1837 1838
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1839
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1840 1841
 * But we had to alter page->flags anyway.
 */
1842

1843
static void move_active_pages_to_lru(struct lruvec *lruvec,
1844
				     struct list_head *list,
1845
				     struct list_head *pages_to_free,
1846 1847
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1848
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1849 1850
	unsigned long pgmoved = 0;
	struct page *page;
1851
	int nr_pages;
1852 1853 1854

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1855
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1856

1857
		VM_BUG_ON_PAGE(PageLRU(page), page);
1858 1859
		SetPageLRU(page);

1860
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1861
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1862
		list_move(&page->lru, &lruvec->lists[lru]);
1863
		pgmoved += nr_pages;
1864

1865 1866 1867
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1868
			del_page_from_lru_list(page, lruvec, lru);
1869 1870

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1871
				spin_unlock_irq(&pgdat->lru_lock);
1872
				mem_cgroup_uncharge(page);
1873
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1874
				spin_lock_irq(&pgdat->lru_lock);
1875 1876
			} else
				list_add(&page->lru, pages_to_free);
1877 1878
		}
	}
1879

1880 1881 1882
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1883

H
Hugh Dickins 已提交
1884
static void shrink_active_list(unsigned long nr_to_scan,
1885
			       struct lruvec *lruvec,
1886
			       struct scan_control *sc,
1887
			       enum lru_list lru)
L
Linus Torvalds 已提交
1888
{
1889
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1890
	unsigned long nr_scanned;
1891
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1892
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1893
	LIST_HEAD(l_active);
1894
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1895
	struct page *page;
1896
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1897
	unsigned long nr_rotated = 0;
1898
	isolate_mode_t isolate_mode = 0;
1899
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1900
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1901 1902

	lru_add_drain();
1903 1904

	if (!sc->may_unmap)
1905
		isolate_mode |= ISOLATE_UNMAPPED;
1906
	if (!sc->may_writepage)
1907
		isolate_mode |= ISOLATE_CLEAN;
1908

M
Mel Gorman 已提交
1909
	spin_lock_irq(&pgdat->lru_lock);
1910

1911 1912
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1913

M
Mel Gorman 已提交
1914
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1915
	reclaim_stat->recent_scanned[file] += nr_taken;
1916

1917
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1918 1919
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1920

M
Mel Gorman 已提交
1921
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1927

1928
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1929 1930 1931 1932
			putback_lru_page(page);
			continue;
		}

1933 1934 1935 1936 1937 1938 1939 1940
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1941 1942
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1943
			nr_rotated += hpage_nr_pages(page);
1944 1945 1946 1947 1948 1949 1950 1951 1952
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1953
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1954 1955 1956 1957
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1958

1959
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1960 1961 1962
		list_add(&page->lru, &l_inactive);
	}

1963
	/*
1964
	 * Move pages back to the lru list.
1965
	 */
M
Mel Gorman 已提交
1966
	spin_lock_irq(&pgdat->lru_lock);
1967
	/*
1968 1969 1970
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1971
	 * get_scan_count.
1972
	 */
1973
	reclaim_stat->recent_rotated[file] += nr_rotated;
1974

1975 1976
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
1977 1978
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
1979

1980
	mem_cgroup_uncharge_list(&l_hold);
1981
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1982 1983
}

1984 1985 1986
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
1987
 *
1988 1989 1990
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
1991
 *
1992 1993
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
1994
 *
1995 1996 1997
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1998
 *
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2009
 */
2010 2011
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
						struct scan_control *sc)
2012
{
2013
	unsigned long inactive_ratio;
2014 2015
	unsigned long inactive;
	unsigned long active;
2016
	unsigned long gb;
2017 2018
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	int zid;
2019

2020 2021 2022 2023 2024 2025
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2026

2027 2028
	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
2029

2030 2031 2032 2033 2034 2035 2036 2037 2038
	/*
	 * For zone-constrained allocations, it is necessary to check if
	 * deactivations are required for lowmem to be reclaimed. This
	 * calculates the inactive/active pages available in eligible zones.
	 */
	for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];
		unsigned long inactive_zone, active_zone;

2039
		if (!managed_zone(zone))
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
			continue;

		inactive_zone = zone_page_state(zone,
				NR_ZONE_LRU_BASE + (file * LRU_FILE));
		active_zone = zone_page_state(zone,
				NR_ZONE_LRU_BASE + (file * LRU_FILE) + LRU_ACTIVE);

		inactive -= min(inactive, inactive_zone);
		active -= min(active, active_zone);
	}

2051 2052 2053
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2054
	else
2055 2056 2057
		inactive_ratio = 1;

	return inactive * inactive_ratio < active;
2058 2059
}

2060
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2061
				 struct lruvec *lruvec, struct scan_control *sc)
2062
{
2063
	if (is_active_lru(lru)) {
2064
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2065
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2066 2067 2068
		return 0;
	}

2069
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2070 2071
}

2072 2073 2074 2075 2076 2077 2078
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2079 2080 2081 2082 2083 2084
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2085 2086
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2087
 */
2088
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2089 2090
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2091
{
2092
	int swappiness = mem_cgroup_swappiness(memcg);
2093 2094 2095
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2096
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2097
	unsigned long anon_prio, file_prio;
2098
	enum scan_balance scan_balance;
2099
	unsigned long anon, file;
2100
	bool force_scan = false;
2101
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2102
	enum lru_list lru;
2103 2104
	bool some_scanned;
	int pass;
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2116
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2117
		if (!pgdat_reclaimable(pgdat))
2118
			force_scan = true;
2119
		if (!mem_cgroup_online(memcg))
2120 2121
			force_scan = true;
	}
2122
	if (!global_reclaim(sc))
2123
		force_scan = true;
2124 2125

	/* If we have no swap space, do not bother scanning anon pages. */
2126
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2127
		scan_balance = SCAN_FILE;
2128 2129
		goto out;
	}
2130

2131 2132 2133 2134 2135 2136 2137
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2138
	if (!global_reclaim(sc) && !swappiness) {
2139
		scan_balance = SCAN_FILE;
2140 2141 2142 2143 2144 2145 2146 2147
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2148
	if (!sc->priority && swappiness) {
2149
		scan_balance = SCAN_EQUAL;
2150 2151 2152
		goto out;
	}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2163 2164 2165 2166
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2167

M
Mel Gorman 已提交
2168 2169 2170 2171 2172 2173
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2174
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2175 2176 2177 2178
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2179

M
Mel Gorman 已提交
2180
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2181 2182 2183 2184 2185
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2186
	/*
2187 2188 2189 2190 2191 2192 2193
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2194
	 */
2195
	if (!inactive_list_is_low(lruvec, true, sc) &&
2196
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2197
		scan_balance = SCAN_FILE;
2198 2199 2200
		goto out;
	}

2201 2202
	scan_balance = SCAN_FRACT;

2203 2204 2205 2206
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2207
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2208
	file_prio = 200 - anon_prio;
2209

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2221

2222 2223 2224 2225
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2226

M
Mel Gorman 已提交
2227
	spin_lock_irq(&pgdat->lru_lock);
2228 2229 2230
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2231 2232
	}

2233 2234 2235
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2236 2237 2238
	}

	/*
2239 2240 2241
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2242
	 */
2243
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2244
	ap /= reclaim_stat->recent_rotated[0] + 1;
2245

2246
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2247
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2248
	spin_unlock_irq(&pgdat->lru_lock);
2249

2250 2251 2252 2253
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2254 2255 2256
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2257
		*lru_pages = 0;
2258 2259 2260 2261
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2262

2263
			size = lruvec_lru_size(lruvec, lru);
2264
			scan = size >> sc->priority;
2265

2266 2267
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2284 2285
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2286
					scan = 0;
2287
				}
2288 2289 2290 2291 2292
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2293 2294

			*lru_pages += size;
2295
			nr[lru] = scan;
2296

2297
			/*
2298 2299
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2300
			 */
2301
			some_scanned |= !!scan;
2302
		}
2303
	}
2304
}
2305

2306
/*
2307
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2308
 */
2309
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2310
			      struct scan_control *sc, unsigned long *lru_pages)
2311
{
2312
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2313
	unsigned long nr[NR_LRU_LISTS];
2314
	unsigned long targets[NR_LRU_LISTS];
2315 2316 2317 2318 2319
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2320
	bool scan_adjusted;
2321

2322
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2323

2324 2325 2326
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2341 2342 2343
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2344 2345 2346
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2347 2348 2349 2350 2351 2352 2353 2354 2355
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2356 2357 2358 2359 2360 2361

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2362
		 * requested. Ensure that the anon and file LRUs are scanned
2363 2364 2365 2366 2367 2368 2369
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2370 2371 2372 2373 2374 2375 2376 2377 2378
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2410 2411 2412 2413 2414 2415 2416 2417
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2418
	if (inactive_list_is_low(lruvec, false, sc))
2419 2420 2421 2422 2423 2424
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2425
/* Use reclaim/compaction for costly allocs or under memory pressure */
2426
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2427
{
2428
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2429
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2430
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2431 2432 2433 2434 2435
		return true;

	return false;
}

2436
/*
M
Mel Gorman 已提交
2437 2438 2439 2440 2441
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2442
 */
2443
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2444 2445 2446 2447 2448 2449
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2450
	int z;
2451 2452

	/* If not in reclaim/compaction mode, stop */
2453
	if (!in_reclaim_compaction(sc))
2454 2455
		return false;

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2478 2479 2480 2481 2482 2483

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2484
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2485
	if (get_nr_swap_pages() > 0)
2486
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2487 2488 2489 2490 2491
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2492 2493
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2494
		if (!managed_zone(zone))
2495 2496 2497
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2498
		case COMPACT_SUCCESS:
2499 2500 2501 2502 2503 2504
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2505
	}
2506
	return true;
2507 2508
}

2509
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2510
{
2511
	struct reclaim_state *reclaim_state = current->reclaim_state;
2512
	unsigned long nr_reclaimed, nr_scanned;
2513
	bool reclaimable = false;
L
Linus Torvalds 已提交
2514

2515 2516 2517
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2518
			.pgdat = pgdat,
2519 2520
			.priority = sc->priority,
		};
2521
		unsigned long node_lru_pages = 0;
2522
		struct mem_cgroup *memcg;
2523

2524 2525
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2526

2527 2528
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2529
			unsigned long lru_pages;
2530
			unsigned long reclaimed;
2531
			unsigned long scanned;
2532

2533 2534 2535 2536 2537 2538
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2539
			reclaimed = sc->nr_reclaimed;
2540
			scanned = sc->nr_scanned;
2541

2542 2543
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2544

2545
			if (memcg)
2546
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2547 2548 2549
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2550 2551 2552 2553 2554
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2555
			/*
2556 2557
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2558
			 * node.
2559 2560 2561 2562 2563
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2564
			 */
2565 2566
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2567 2568 2569
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2570
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2571

2572 2573 2574 2575
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2576
		if (global_reclaim(sc))
2577
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2578
				    sc->nr_scanned - nr_scanned,
2579
				    node_lru_pages);
2580 2581 2582 2583

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2584 2585
		}

2586 2587
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2588 2589 2590
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2591 2592 2593
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2594
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2595
					 sc->nr_scanned - nr_scanned, sc));
2596 2597

	return reclaimable;
2598 2599
}

2600 2601 2602 2603
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2604
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2605
{
M
Mel Gorman 已提交
2606
	unsigned long watermark;
2607 2608 2609 2610 2611 2612 2613 2614
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2615 2616
	watermark = high_wmark_pages(zone) + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2617 2618 2619 2620 2621

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2622
	if (compaction_deferred(zone, sc->order))
2623 2624
		return watermark_ok;

2625 2626 2627 2628
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2629
	if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED)
2630 2631 2632 2633 2634
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2635 2636 2637 2638 2639 2640 2641 2642
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2643
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2644
{
2645
	struct zoneref *z;
2646
	struct zone *zone;
2647 2648
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2649
	gfp_t orig_mask;
2650
	pg_data_t *last_pgdat = NULL;
2651

2652 2653 2654 2655 2656
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2657
	orig_mask = sc->gfp_mask;
2658
	if (buffer_heads_over_limit) {
2659
		sc->gfp_mask |= __GFP_HIGHMEM;
2660
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2661
	}
2662

2663
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2664
					sc->reclaim_idx, sc->nodemask) {
2665 2666 2667 2668
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2669
		if (global_reclaim(sc)) {
2670 2671
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2672
				continue;
2673

2674
			if (sc->priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
2675
			    !pgdat_reclaimable(zone->zone_pgdat))
2676
				continue;	/* Let kswapd poll it */
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2689
			    compaction_ready(zone, sc)) {
2690 2691
				sc->compaction_ready = true;
				continue;
2692
			}
2693

2694 2695 2696 2697 2698 2699 2700 2701 2702
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2703 2704 2705 2706 2707 2708 2709
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2710
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2711 2712 2713 2714
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2715
			/* need some check for avoid more shrink_zone() */
2716
		}
2717

2718 2719 2720 2721
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2722
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2723
	}
2724

2725 2726 2727 2728 2729
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2730
}
2731

L
Linus Torvalds 已提交
2732 2733 2734 2735 2736 2737 2738 2739
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2740 2741 2742 2743
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2744 2745 2746
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2747
 */
2748
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2749
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2750
{
2751
	int initial_priority = sc->priority;
2752
	unsigned long total_scanned = 0;
2753
	unsigned long writeback_threshold;
2754
retry:
2755 2756
	delayacct_freepages_start();

2757
	if (global_reclaim(sc))
2758
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2759

2760
	do {
2761 2762
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2763
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2764
		shrink_zones(zonelist, sc);
2765

2766
		total_scanned += sc->nr_scanned;
2767
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2768 2769 2770 2771
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2772

2773 2774 2775 2776 2777 2778 2779
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2780 2781 2782 2783 2784 2785 2786
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2787 2788
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2789 2790
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2791
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2792
		}
2793
	} while (--sc->priority >= 0);
2794

2795 2796
	delayacct_freepages_end();

2797 2798 2799
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2800
	/* Aborted reclaim to try compaction? don't OOM, then */
2801
	if (sc->compaction_ready)
2802 2803
		return 1;

2804 2805 2806 2807 2808 2809 2810
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2811
	return 0;
L
Linus Torvalds 已提交
2812 2813
}

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2824
		if (!managed_zone(zone) ||
M
Mel Gorman 已提交
2825
		    pgdat_reclaimable_pages(pgdat) == 0)
2826 2827
			continue;

2828 2829 2830 2831
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2832 2833 2834 2835
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2836 2837 2838 2839
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2840
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2852 2853 2854 2855
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2856
 */
2857
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2858 2859
					nodemask_t *nodemask)
{
2860
	struct zoneref *z;
2861
	struct zone *zone;
2862
	pg_data_t *pgdat = NULL;
2863 2864 2865 2866 2867 2868 2869 2870 2871

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2872 2873 2874 2875 2876 2877 2878 2879
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2880

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2896
					gfp_zone(gfp_mask), nodemask) {
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2909
		goto out;
2910

2911 2912 2913
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2925 2926

		goto check_pending;
2927 2928 2929 2930 2931
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2932 2933 2934 2935 2936 2937 2938

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2939 2940
}

2941
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2942
				gfp_t gfp_mask, nodemask_t *nodemask)
2943
{
2944
	unsigned long nr_reclaimed;
2945
	struct scan_control sc = {
2946
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2947
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2948
		.reclaim_idx = gfp_zone(gfp_mask),
2949 2950 2951
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2952
		.may_writepage = !laptop_mode,
2953
		.may_unmap = 1,
2954
		.may_swap = 1,
2955 2956
	};

2957
	/*
2958 2959 2960
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2961
	 */
2962
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2963 2964
		return 1;

2965 2966
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2967 2968
				gfp_mask,
				sc.reclaim_idx);
2969

2970
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2971 2972 2973 2974

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2975 2976
}

A
Andrew Morton 已提交
2977
#ifdef CONFIG_MEMCG
2978

2979
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2980
						gfp_t gfp_mask, bool noswap,
2981
						pg_data_t *pgdat,
2982
						unsigned long *nr_scanned)
2983 2984
{
	struct scan_control sc = {
2985
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2986
		.target_mem_cgroup = memcg,
2987 2988
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2989
		.reclaim_idx = MAX_NR_ZONES - 1,
2990 2991
		.may_swap = !noswap,
	};
2992
	unsigned long lru_pages;
2993

2994 2995
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2996

2997
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2998
						      sc.may_writepage,
2999 3000
						      sc.gfp_mask,
						      sc.reclaim_idx);
3001

3002 3003 3004
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3005
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3006 3007 3008
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3009
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3010 3011 3012

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3013
	*nr_scanned = sc.nr_scanned;
3014 3015 3016
	return sc.nr_reclaimed;
}

3017
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3018
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3019
					   gfp_t gfp_mask,
3020
					   bool may_swap)
3021
{
3022
	struct zonelist *zonelist;
3023
	unsigned long nr_reclaimed;
3024
	int nid;
3025
	struct scan_control sc = {
3026
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3027 3028
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3029
		.reclaim_idx = MAX_NR_ZONES - 1,
3030 3031 3032 3033
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3034
		.may_swap = may_swap,
3035
	};
3036

3037 3038 3039 3040 3041
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3042
	nid = mem_cgroup_select_victim_node(memcg);
3043 3044

	zonelist = NODE_DATA(nid)->node_zonelists;
3045 3046 3047

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3048 3049
					    sc.gfp_mask,
					    sc.reclaim_idx);
3050

3051
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3052 3053 3054 3055

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3056 3057 3058
}
#endif

3059
static void age_active_anon(struct pglist_data *pgdat,
3060
				struct scan_control *sc)
3061
{
3062
	struct mem_cgroup *memcg;
3063

3064 3065 3066 3067 3068
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3069
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3070

3071
		if (inactive_list_is_low(lruvec, false, sc))
3072
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3073
					   sc, LRU_ACTIVE_ANON);
3074 3075 3076

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3077 3078
}

M
Mel Gorman 已提交
3079
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3080
{
M
Mel Gorman 已提交
3081
	unsigned long mark = high_wmark_pages(zone);
3082

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);

	return true;
3094 3095
}

3096 3097 3098 3099 3100 3101
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3102
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3103
{
3104 3105
	int i;

3106
	/*
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3118
	 */
3119 3120
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3121

3122 3123 3124
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

3125
		if (!managed_zone(zone))
3126 3127
			continue;

3128 3129
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3130 3131
	}

3132
	return true;
3133 3134
}

3135
/*
3136 3137
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3138 3139
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3140 3141
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3142
 */
3143
static bool kswapd_shrink_node(pg_data_t *pgdat,
3144
			       struct scan_control *sc)
3145
{
3146 3147
	struct zone *zone;
	int z;
3148

3149 3150
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3151
	for (z = 0; z <= sc->reclaim_idx; z++) {
3152
		zone = pgdat->node_zones + z;
3153
		if (!managed_zone(zone))
3154
			continue;
3155

3156 3157
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3158 3159

	/*
3160 3161
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3162
	 */
3163
	shrink_node(pgdat, sc);
3164

3165
	/*
3166 3167 3168 3169 3170
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3171
	 */
3172 3173
	if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
		sc->order = 0;
3174

3175
	return sc->nr_scanned >= sc->nr_to_reclaim;
3176 3177
}

L
Linus Torvalds 已提交
3178
/*
3179 3180 3181
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3182
 *
3183
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3184 3185
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3186
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3187 3188 3189
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3190
 */
3191
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3192 3193
{
	int i;
3194 3195
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3196
	struct zone *zone;
3197 3198
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3199
		.order = order,
3200
		.priority = DEF_PRIORITY,
3201
		.may_writepage = !laptop_mode,
3202
		.may_unmap = 1,
3203
		.may_swap = 1,
3204
	};
3205
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3206

3207
	do {
3208 3209 3210
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
3211
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3212

3213
		/*
3214 3215 3216 3217 3218 3219 3220 3221
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3222 3223 3224 3225
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3226
				if (!managed_zone(zone))
3227
					continue;
3228

3229
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3230
				break;
L
Linus Torvalds 已提交
3231 3232
			}
		}
3233

3234 3235 3236 3237 3238 3239
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3240 3241 3242
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3243
		 */
3244
		for (i = classzone_idx; i >= 0; i--) {
3245
			zone = pgdat->node_zones + i;
3246
			if (!managed_zone(zone))
3247 3248
				continue;

3249
			if (zone_balanced(zone, sc.order, classzone_idx))
3250 3251
				goto out;
		}
A
Andrew Morton 已提交
3252

3253 3254 3255 3256 3257 3258
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3259
		age_active_anon(pgdat, &sc);
3260

3261 3262 3263 3264
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3265
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3266 3267
			sc.may_writepage = 1;

3268 3269 3270
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3271
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3272 3273 3274
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3275
		/*
3276 3277 3278
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3279
		 */
3280
		if (kswapd_shrink_node(pgdat, &sc))
3281
			raise_priority = false;
3282 3283 3284 3285 3286 3287 3288 3289

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3290
			wake_up_all(&pgdat->pfmemalloc_wait);
3291

3292 3293 3294
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3295

3296
		/*
3297 3298
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3299
		 */
3300 3301
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3302
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3303

3304
out:
3305
	/*
3306 3307 3308 3309
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3310
	 */
3311
	return sc.order;
L
Linus Torvalds 已提交
3312 3313
}

3314 3315
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3326
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3339
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3340

3341
		remaining = schedule_timeout(HZ/10);
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3353 3354 3355 3356 3357 3358 3359 3360
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3361 3362
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3374 3375 3376 3377

		if (!kthread_should_stop())
			schedule();

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3388 3389
/*
 * The background pageout daemon, started as a kernel thread
3390
 * from the init process.
L
Linus Torvalds 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3403
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3404 3405
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3406

L
Linus Torvalds 已提交
3407 3408 3409
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3410
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3411

3412 3413
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3414
	if (!cpumask_empty(cpumask))
3415
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3430
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3431
	set_freezable();
L
Linus Torvalds 已提交
3432

3433 3434
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3435
	for ( ; ; ) {
3436
		bool ret;
3437

3438 3439 3440
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3441

3442 3443 3444 3445 3446
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3447

3448 3449 3450 3451 3452 3453 3454 3455
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3467 3468
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3469 3470 3471
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3472

3473 3474
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3475
	}
3476

3477
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3478
	current->reclaim_state = NULL;
3479 3480
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3481 3482 3483 3484 3485 3486
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3487
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3488 3489
{
	pg_data_t *pgdat;
3490
	int z;
L
Linus Torvalds 已提交
3491

3492
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3493 3494
		return;

3495
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3496
		return;
3497
	pgdat = zone->zone_pgdat;
3498 3499
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3500
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3501
		return;
3502 3503 3504 3505

	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
3506
		if (!managed_zone(zone))
3507 3508 3509 3510 3511
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3512 3513

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3514
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3515 3516
}

3517
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3518
/*
3519
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3520 3521 3522 3523 3524
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3525
 */
3526
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3527
{
3528 3529
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3530
		.nr_to_reclaim = nr_to_reclaim,
3531
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3532
		.reclaim_idx = MAX_NR_ZONES - 1,
3533
		.priority = DEF_PRIORITY,
3534
		.may_writepage = 1,
3535 3536
		.may_unmap = 1,
		.may_swap = 1,
3537
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3538
	};
3539
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3540 3541
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3542

3543 3544 3545 3546
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3547

3548
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3549

3550 3551 3552
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3553

3554
	return nr_reclaimed;
L
Linus Torvalds 已提交
3555
}
3556
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3557 3558 3559 3560 3561

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3562 3563
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3564
{
3565
	int nid;
L
Linus Torvalds 已提交
3566

3567
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3568
		for_each_node_state(nid, N_MEMORY) {
3569
			pg_data_t *pgdat = NODE_DATA(nid);
3570 3571 3572
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3573

3574
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3575
				/* One of our CPUs online: restore mask */
3576
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3577 3578 3579 3580 3581
		}
	}
	return NOTIFY_OK;
}

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3598 3599
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3600
		pgdat->kswapd = NULL;
3601 3602 3603 3604
	}
	return ret;
}

3605
/*
3606
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3607
 * hold mem_hotplug_begin/end().
3608 3609 3610 3611 3612
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3613
	if (kswapd) {
3614
		kthread_stop(kswapd);
3615 3616
		NODE_DATA(nid)->kswapd = NULL;
	}
3617 3618
}

L
Linus Torvalds 已提交
3619 3620
static int __init kswapd_init(void)
{
3621
	int nid;
3622

L
Linus Torvalds 已提交
3623
	swap_setup();
3624
	for_each_node_state(nid, N_MEMORY)
3625
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3626 3627 3628 3629 3630
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3631 3632 3633

#ifdef CONFIG_NUMA
/*
3634
 * Node reclaim mode
3635
 *
3636
 * If non-zero call node_reclaim when the number of free pages falls below
3637 3638
 * the watermarks.
 */
3639
int node_reclaim_mode __read_mostly;
3640

3641
#define RECLAIM_OFF 0
3642
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3643
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3644
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3645

3646
/*
3647
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3648 3649 3650
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3651
#define NODE_RECLAIM_PRIORITY 4
3652

3653
/*
3654
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3655 3656 3657 3658
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3659 3660 3661 3662 3663 3664
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3665
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3666
{
3667 3668 3669
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3680
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3681
{
3682 3683
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3684 3685

	/*
3686
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3687
	 * potentially reclaimable. Otherwise, we have to worry about
3688
	 * pages like swapcache and node_unmapped_file_pages() provides
3689 3690
	 * a better estimate
	 */
3691 3692
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3693
	else
3694
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3695 3696

	/* If we can't clean pages, remove dirty pages from consideration */
3697 3698
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3699 3700 3701 3702 3703 3704 3705 3706

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3707
/*
3708
 * Try to free up some pages from this node through reclaim.
3709
 */
3710
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3711
{
3712
	/* Minimum pages needed in order to stay on node */
3713
	const unsigned long nr_pages = 1 << order;
3714 3715
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3716
	int classzone_idx = gfp_zone(gfp_mask);
3717
	struct scan_control sc = {
3718
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3719
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3720
		.order = order,
3721 3722 3723
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3724
		.may_swap = 1,
3725
		.reclaim_idx = classzone_idx,
3726
	};
3727 3728

	cond_resched();
3729
	/*
3730
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3731
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3732
	 * and RECLAIM_UNMAP.
3733 3734
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3735
	lockdep_set_current_reclaim_state(gfp_mask);
3736 3737
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3738

3739
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3740 3741 3742 3743 3744
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3745
			shrink_node(pgdat, &sc);
3746
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3747
	}
3748

3749
	p->reclaim_state = NULL;
3750
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3751
	lockdep_clear_current_reclaim_state();
3752
	return sc.nr_reclaimed >= nr_pages;
3753
}
3754

3755
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3756
{
3757
	int ret;
3758 3759

	/*
3760
	 * Node reclaim reclaims unmapped file backed pages and
3761
	 * slab pages if we are over the defined limits.
3762
	 *
3763 3764
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3765 3766
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3767
	 * unmapped file backed pages.
3768
	 */
3769 3770 3771
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3772

3773 3774
	if (!pgdat_reclaimable(pgdat))
		return NODE_RECLAIM_FULL;
3775

3776
	/*
3777
	 * Do not scan if the allocation should not be delayed.
3778
	 */
3779
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3780
		return NODE_RECLAIM_NOSCAN;
3781 3782

	/*
3783
	 * Only run node reclaim on the local node or on nodes that do not
3784 3785 3786 3787
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3788 3789
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3790

3791 3792
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3793

3794 3795
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3796

3797 3798 3799
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3800
	return ret;
3801
}
3802
#endif
L
Lee Schermerhorn 已提交
3803 3804 3805 3806 3807 3808

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3809
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3810 3811
 *
 * Reasons page might not be evictable:
3812
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3813
 * (2) page is part of an mlocked VMA
3814
 *
L
Lee Schermerhorn 已提交
3815
 */
3816
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3817
{
3818
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3819
}
3820

3821
#ifdef CONFIG_SHMEM
3822
/**
3823 3824 3825
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3826
 *
3827
 * Checks pages for evictability and moves them to the appropriate lru list.
3828 3829
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3830
 */
3831
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3832
{
3833
	struct lruvec *lruvec;
3834
	struct pglist_data *pgdat = NULL;
3835 3836 3837
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3838

3839 3840
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3841
		struct pglist_data *pagepgdat = page_pgdat(page);
3842

3843
		pgscanned++;
3844 3845 3846 3847 3848
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3849
		}
3850
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3851

3852 3853
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3854

3855
		if (page_evictable(page)) {
3856 3857
			enum lru_list lru = page_lru_base_type(page);

3858
			VM_BUG_ON_PAGE(PageActive(page), page);
3859
			ClearPageUnevictable(page);
3860 3861
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3862
			pgrescued++;
3863
		}
3864
	}
3865

3866
	if (pgdat) {
3867 3868
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3869
		spin_unlock_irq(&pgdat->lru_lock);
3870 3871
	}
}
3872
#endif /* CONFIG_SHMEM */