vmscan.c 102.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142
#else
143 144 145 146
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
147 148
#endif

149
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150
{
151
	if (!mem_cgroup_disabled())
152
		return mem_cgroup_get_lru_size(lruvec, lru);
153

154
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 156
}

L
Linus Torvalds 已提交
157 158 159
/*
 * Add a shrinker callback to be called from the vm
 */
160
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
161
{
162
	atomic_long_set(&shrinker->nr_in_batch, 0);
163 164 165
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
166
}
167
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
168 169 170 171

/*
 * Remove one
 */
172
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
173 174 175 176 177
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
178
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
197
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
198 199 200 201 202 203 204
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
205 206
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
207
 */
208
unsigned long shrink_slab(struct shrink_control *shrink,
209
			  unsigned long nr_pages_scanned,
210
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214

215 216
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
217

218 219 220 221 222
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
223 224 225

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
226 227
		long total_scan;
		long max_pass;
228
		int shrink_ret = 0;
229 230
		long nr;
		long new_nr;
231 232
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
233

234 235 236 237
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

238 239 240 241 242
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
243
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 245

		total_scan = nr;
246
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
		delta *= max_pass;
L
Linus Torvalds 已提交
248
		do_div(delta, lru_pages + 1);
249 250
		total_scan += delta;
		if (total_scan < 0) {
251 252
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
253 254
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
255 256
		}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

272 273 274 275 276
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
277 278
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
279

280
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 282 283
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

284
		while (total_scan >= batch_size) {
285
			int nr_before;
L
Linus Torvalds 已提交
286

287 288
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289
							batch_size);
L
Linus Torvalds 已提交
290 291
			if (shrink_ret == -1)
				break;
292 293
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
294 295
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
296 297 298 299

			cond_resched();
		}

300 301 302 303 304
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
305 306 307 308 309
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 311

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
312 313
	}
	up_read(&shrinker_rwsem);
314 315
out:
	cond_resched();
316
	return ret;
L
Linus Torvalds 已提交
317 318 319 320
}

static inline int is_page_cache_freeable(struct page *page)
{
321 322 323 324 325
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
326
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
327 328
}

329 330
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
331
{
332
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
356
	lock_page(page);
357 358
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
359 360 361
	unlock_page(page);
}

362 363 364 365 366 367 368 369 370 371 372 373
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
374
/*
A
Andrew Morton 已提交
375 376
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
377
 */
378
static pageout_t pageout(struct page *page, struct address_space *mapping,
379
			 struct scan_control *sc)
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
388
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
404
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
405 406
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
407
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
415
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
416 417 418 419 420 421 422
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
423 424
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
425 426 427 428 429 430 431
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
432
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
433 434 435
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
436

L
Linus Torvalds 已提交
437 438 439 440
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
441
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
443 444 445 446 447 448
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

449
/*
N
Nick Piggin 已提交
450 451
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
452
 */
N
Nick Piggin 已提交
453
static int __remove_mapping(struct address_space *mapping, struct page *page)
454
{
455 456
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
457

N
Nick Piggin 已提交
458
	spin_lock_irq(&mapping->tree_lock);
459
	/*
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
483
	 */
N
Nick Piggin 已提交
484
	if (!page_freeze_refs(page, 2))
485
		goto cannot_free;
N
Nick Piggin 已提交
486 487 488
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
489
		goto cannot_free;
N
Nick Piggin 已提交
490
	}
491 492 493 494

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
495
		spin_unlock_irq(&mapping->tree_lock);
496
		swapcache_free(swap, page);
N
Nick Piggin 已提交
497
	} else {
498 499 500 501
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

502
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
503
		spin_unlock_irq(&mapping->tree_lock);
504
		mem_cgroup_uncharge_cache_page(page);
505 506 507

		if (freepage != NULL)
			freepage(page);
508 509 510 511 512
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
513
	spin_unlock_irq(&mapping->tree_lock);
514 515 516
	return 0;
}

N
Nick Piggin 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
550
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
551 552 553 554 555 556

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

557
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
558 559 560 561 562 563
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
564
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
565 566 567 568 569 570 571 572
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
573
		/*
574 575 576
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
577
		 * isolation/check_move_unevictable_pages,
578
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 580
		 * the page back to the evictable list.
		 *
581
		 * The other side is TestClearPageMlocked() or shmem_lock().
582 583
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
584 585 586 587 588 589 590
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
591
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
592 593 594 595 596 597 598 599 600 601
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

602 603 604 605 606
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
607 608 609
	put_page(page);		/* drop ref from isolate */
}

610 611 612
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
613
	PAGEREF_KEEP,
614 615 616 617 618 619
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
620
	int referenced_ptes, referenced_page;
621 622
	unsigned long vm_flags;

623 624
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
625
	referenced_page = TestClearPageReferenced(page);
626 627 628 629 630 631 632 633

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

634
	if (referenced_ptes) {
635
		if (PageSwapBacked(page))
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

653
		if (referenced_page || referenced_ptes > 1)
654 655
			return PAGEREF_ACTIVATE;

656 657 658 659 660 661
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

662 663
		return PAGEREF_KEEP;
	}
664 665

	/* Reclaim if clean, defer dirty pages to writeback */
666
	if (referenced_page && !PageSwapBacked(page))
667 668 669
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
670 671
}

L
Linus Torvalds 已提交
672
/*
A
Andrew Morton 已提交
673
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
674
 */
A
Andrew Morton 已提交
675
static unsigned long shrink_page_list(struct list_head *page_list,
676
				      struct zone *zone,
677
				      struct scan_control *sc,
678
				      enum ttu_flags ttu_flags,
679
				      unsigned long *ret_nr_unqueued_dirty,
680 681
				      unsigned long *ret_nr_writeback,
				      bool force_reclaim)
L
Linus Torvalds 已提交
682 683
{
	LIST_HEAD(ret_pages);
684
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
685
	int pgactivate = 0;
686
	unsigned long nr_unqueued_dirty = 0;
687 688
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
689
	unsigned long nr_reclaimed = 0;
690
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
691 692 693

	cond_resched();

694
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
695 696 697 698
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
699
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
L
Linus Torvalds 已提交
700 701 702 703 704 705

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
706
		if (!trylock_page(page))
L
Linus Torvalds 已提交
707 708
			goto keep;

N
Nick Piggin 已提交
709
		VM_BUG_ON(PageActive(page));
710
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
711 712

		sc->nr_scanned++;
713

714
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
715
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
716

717
		if (!sc->may_unmap && page_mapped(page))
718 719
			goto keep_locked;

L
Linus Torvalds 已提交
720 721 722 723
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

724 725 726 727
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
728 729 730
			/*
			 * memcg doesn't have any dirty pages throttling so we
			 * could easily OOM just because too many pages are in
731
			 * writeback and there is nothing else to reclaim.
732
			 *
733
			 * Check __GFP_IO, certainly because a loop driver
734 735 736 737
			 * thread might enter reclaim, and deadlock if it waits
			 * on a page for which it is needed to do the write
			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
			 * but more thought would probably show more reasons.
738 739 740 741 742 743
			 *
			 * Don't require __GFP_FS, since we're not going into
			 * the FS, just waiting on its writeback completion.
			 * Worryingly, ext4 gfs2 and xfs allocate pages with
			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
			 * testing may_enter_fs here is liable to OOM on them.
744
			 */
745 746 747 748 749 750 751 752 753 754 755 756 757 758
			if (global_reclaim(sc) ||
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
759
				nr_writeback++;
760
				goto keep_locked;
761
			}
762
			wait_on_page_writeback(page);
763
		}
L
Linus Torvalds 已提交
764

765 766 767
		if (!force_reclaim)
			references = page_check_references(page, sc);

768 769
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
770
			goto activate_locked;
771 772
		case PAGEREF_KEEP:
			goto keep_locked;
773 774 775 776
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
777 778 779 780 781

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
782
		if (PageAnon(page) && !PageSwapCache(page)) {
783 784
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
785
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
786
				goto activate_locked;
787
			may_enter_fs = 1;
N
Nick Piggin 已提交
788
		}
L
Linus Torvalds 已提交
789 790 791 792 793 794 795 796

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
797
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
798 799 800 801
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
802 803
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
804 805 806 807 808 809
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
810 811
			nr_dirty++;

812 813 814
			if (!PageWriteback(page))
				nr_unqueued_dirty++;

815 816
			/*
			 * Only kswapd can writeback filesystem pages to
817 818
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
819
			 */
820
			if (page_is_file_cache(page) &&
821
					(!current_is_kswapd() ||
822
					 !zone_is_reclaim_dirty(zone))) {
823 824 825 826 827 828 829 830 831
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

832 833 834
				goto keep_locked;
			}

835
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
836
				goto keep_locked;
837
			if (!may_enter_fs)
L
Linus Torvalds 已提交
838
				goto keep_locked;
839
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
840 841 842
				goto keep_locked;

			/* Page is dirty, try to write it out here */
843
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
844
			case PAGE_KEEP:
845
				nr_congested++;
L
Linus Torvalds 已提交
846 847 848 849
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
850
				if (PageWriteback(page))
851
					goto keep;
852
				if (PageDirty(page))
L
Linus Torvalds 已提交
853
					goto keep;
854

L
Linus Torvalds 已提交
855 856 857 858
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
859
				if (!trylock_page(page))
L
Linus Torvalds 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
879
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
880 881 882 883 884 885 886 887 888 889
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
890
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
891 892
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
909 910
		}

N
Nick Piggin 已提交
911
		if (!mapping || !__remove_mapping(mapping, page))
912
			goto keep_locked;
L
Linus Torvalds 已提交
913

N
Nick Piggin 已提交
914 915 916 917 918 919 920 921
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
922
free_it:
923
		nr_reclaimed++;
924 925 926 927 928 929

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
930 931
		continue;

N
Nick Piggin 已提交
932
cull_mlocked:
933 934
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
935 936 937 938
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
939
activate_locked:
940 941
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
942
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
943
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
944 945 946 947 948 949
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
950
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
951
	}
952

953 954 955 956 957 958
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
959
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
960
		zone_set_flag(zone, ZONE_CONGESTED);
961

962
	free_hot_cold_page_list(&free_pages, 1);
963

L
Linus Torvalds 已提交
964
	list_splice(&ret_pages, page_list);
965
	count_vm_events(PGACTIVATE, pgactivate);
966
	mem_cgroup_uncharge_end();
967
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
968
	*ret_nr_writeback += nr_writeback;
969
	return nr_reclaimed;
L
Linus Torvalds 已提交
970 971
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
	unsigned long ret, dummy1, dummy2;
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
				TTU_UNMAP|TTU_IGNORE_ACCESS,
				&dummy1, &dummy2, true);
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1009
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1010 1011 1012 1013 1014 1015 1016
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1017 1018
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1019 1020
		return ret;

A
Andy Whitcroft 已提交
1021
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1056

1057 1058 1059
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1084
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1085
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1086
 * @nr_scanned:	The number of pages that were scanned.
1087
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1088
 * @mode:	One of the LRU isolation modes
1089
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1090 1091 1092
 *
 * returns how many pages were moved onto *@dst.
 */
1093
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1094
		struct lruvec *lruvec, struct list_head *dst,
1095
		unsigned long *nr_scanned, struct scan_control *sc,
1096
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1097
{
H
Hugh Dickins 已提交
1098
	struct list_head *src = &lruvec->lists[lru];
1099
	unsigned long nr_taken = 0;
1100
	unsigned long scan;
L
Linus Torvalds 已提交
1101

1102
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1103
		struct page *page;
1104
		int nr_pages;
A
Andy Whitcroft 已提交
1105

L
Linus Torvalds 已提交
1106 1107 1108
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1109
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1110

1111
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1112
		case 0:
1113 1114
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1115
			list_move(&page->lru, dst);
1116
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1117 1118 1119 1120 1121 1122
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1123

A
Andy Whitcroft 已提交
1124 1125 1126
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1127 1128
	}

H
Hugh Dickins 已提交
1129
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1130 1131
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1132 1133 1134
	return nr_taken;
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1146 1147 1148
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1164 1165
	VM_BUG_ON(!page_count(page));

1166 1167
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1168
		struct lruvec *lruvec;
1169 1170

		spin_lock_irq(&zone->lru_lock);
1171
		lruvec = mem_cgroup_page_lruvec(page, zone);
1172
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1173
			int lru = page_lru(page);
1174
			get_page(page);
1175
			ClearPageLRU(page);
1176 1177
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1178 1179 1180 1181 1182 1183
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1184
/*
F
Fengguang Wu 已提交
1185 1186 1187 1188 1189
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1190 1191 1192 1193 1194 1195 1196 1197 1198
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1199
	if (!global_reclaim(sc))
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1210 1211 1212 1213 1214 1215 1216 1217
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1218 1219 1220
	return isolated > inactive;
}

1221
static noinline_for_stack void
H
Hugh Dickins 已提交
1222
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1223
{
1224 1225
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1226
	LIST_HEAD(pages_to_free);
1227 1228 1229 1230 1231

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1232
		struct page *page = lru_to_page(page_list);
1233
		int lru;
1234

1235 1236
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1237
		if (unlikely(!page_evictable(page))) {
1238 1239 1240 1241 1242
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1243 1244 1245

		lruvec = mem_cgroup_page_lruvec(page, zone);

1246
		SetPageLRU(page);
1247
		lru = page_lru(page);
1248 1249
		add_page_to_lru_list(page, lruvec, lru);

1250 1251
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1252 1253
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1254
		}
1255 1256 1257
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1258
			del_page_from_lru_list(page, lruvec, lru);
1259 1260 1261 1262 1263 1264 1265

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1266 1267 1268
		}
	}

1269 1270 1271 1272
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1273 1274
}

L
Linus Torvalds 已提交
1275
/*
A
Andrew Morton 已提交
1276 1277
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1278
 */
1279
static noinline_for_stack unsigned long
1280
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1281
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1282 1283
{
	LIST_HEAD(page_list);
1284
	unsigned long nr_scanned;
1285
	unsigned long nr_reclaimed = 0;
1286
	unsigned long nr_taken;
1287 1288
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1289
	isolate_mode_t isolate_mode = 0;
1290
	int file = is_file_lru(lru);
1291 1292
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1293

1294
	while (unlikely(too_many_isolated(zone, file, sc))) {
1295
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1296 1297 1298 1299 1300 1301

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1302
	lru_add_drain();
1303 1304

	if (!sc->may_unmap)
1305
		isolate_mode |= ISOLATE_UNMAPPED;
1306
	if (!sc->may_writepage)
1307
		isolate_mode |= ISOLATE_CLEAN;
1308

L
Linus Torvalds 已提交
1309
	spin_lock_irq(&zone->lru_lock);
1310

1311 1312
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1313 1314 1315 1316

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1317
	if (global_reclaim(sc)) {
1318 1319
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1320
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1321
		else
H
Hugh Dickins 已提交
1322
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1323
	}
1324
	spin_unlock_irq(&zone->lru_lock);
1325

1326
	if (nr_taken == 0)
1327
		return 0;
A
Andy Whitcroft 已提交
1328

1329 1330
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
					&nr_dirty, &nr_writeback, false);
1331

1332 1333
	spin_lock_irq(&zone->lru_lock);

1334
	reclaim_stat->recent_scanned[file] += nr_taken;
1335

Y
Ying Han 已提交
1336 1337 1338 1339 1340 1341 1342 1343
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1344

1345
	putback_inactive_pages(lruvec, &page_list);
1346

1347
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1348 1349 1350 1351

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1376 1377
	if (nr_writeback && nr_writeback >=
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1378 1379
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1380 1381 1382 1383 1384 1385 1386 1387 1388
	/*
	 * Similarly, if many dirty pages are encountered that are not
	 * currently being written then flag that kswapd should start
	 * writing back pages.
	 */
	if (global_reclaim(sc) && nr_dirty &&
			nr_dirty >= (nr_taken >> (DEF_PRIORITY - sc->priority)))
		zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

1389 1390 1391
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1392
		sc->priority,
M
Mel Gorman 已提交
1393
		trace_shrink_flags(file));
1394
	return nr_reclaimed;
L
Linus Torvalds 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1414

1415
static void move_active_pages_to_lru(struct lruvec *lruvec,
1416
				     struct list_head *list,
1417
				     struct list_head *pages_to_free,
1418 1419
				     enum lru_list lru)
{
1420
	struct zone *zone = lruvec_zone(lruvec);
1421 1422
	unsigned long pgmoved = 0;
	struct page *page;
1423
	int nr_pages;
1424 1425 1426

	while (!list_empty(list)) {
		page = lru_to_page(list);
1427
		lruvec = mem_cgroup_page_lruvec(page, zone);
1428 1429 1430 1431

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1432 1433
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1434
		list_move(&page->lru, &lruvec->lists[lru]);
1435
		pgmoved += nr_pages;
1436

1437 1438 1439
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1440
			del_page_from_lru_list(page, lruvec, lru);
1441 1442 1443 1444 1445 1446 1447

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1448 1449 1450 1451 1452 1453
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1454

H
Hugh Dickins 已提交
1455
static void shrink_active_list(unsigned long nr_to_scan,
1456
			       struct lruvec *lruvec,
1457
			       struct scan_control *sc,
1458
			       enum lru_list lru)
L
Linus Torvalds 已提交
1459
{
1460
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1461
	unsigned long nr_scanned;
1462
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1463
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1464
	LIST_HEAD(l_active);
1465
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1466
	struct page *page;
1467
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1468
	unsigned long nr_rotated = 0;
1469
	isolate_mode_t isolate_mode = 0;
1470
	int file = is_file_lru(lru);
1471
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1472 1473

	lru_add_drain();
1474 1475

	if (!sc->may_unmap)
1476
		isolate_mode |= ISOLATE_UNMAPPED;
1477
	if (!sc->may_writepage)
1478
		isolate_mode |= ISOLATE_CLEAN;
1479

L
Linus Torvalds 已提交
1480
	spin_lock_irq(&zone->lru_lock);
1481

1482 1483
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1484
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1485
		zone->pages_scanned += nr_scanned;
1486

1487
	reclaim_stat->recent_scanned[file] += nr_taken;
1488

H
Hugh Dickins 已提交
1489
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1490
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1491
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1492 1493 1494 1495 1496 1497
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1498

1499
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1500 1501 1502 1503
			putback_lru_page(page);
			continue;
		}

1504 1505 1506 1507 1508 1509 1510 1511
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1512 1513
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1514
			nr_rotated += hpage_nr_pages(page);
1515 1516 1517 1518 1519 1520 1521 1522 1523
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1524
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1525 1526 1527 1528
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1529

1530
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1531 1532 1533
		list_add(&page->lru, &l_inactive);
	}

1534
	/*
1535
	 * Move pages back to the lru list.
1536
	 */
1537
	spin_lock_irq(&zone->lru_lock);
1538
	/*
1539 1540 1541 1542
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1543
	 */
1544
	reclaim_stat->recent_rotated[file] += nr_rotated;
1545

1546 1547
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1548
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1549
	spin_unlock_irq(&zone->lru_lock);
1550 1551

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1552 1553
}

1554
#ifdef CONFIG_SWAP
1555
static int inactive_anon_is_low_global(struct zone *zone)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1568 1569
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1570
 * @lruvec: LRU vector to check
1571 1572 1573 1574
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1575
static int inactive_anon_is_low(struct lruvec *lruvec)
1576
{
1577 1578 1579 1580 1581 1582 1583
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1584
	if (!mem_cgroup_disabled())
1585
		return mem_cgroup_inactive_anon_is_low(lruvec);
1586

1587
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1588
}
1589
#else
1590
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1591 1592 1593 1594
{
	return 0;
}
#endif
1595

1596 1597
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1598
 * @lruvec: LRU vector to check
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1610
static int inactive_file_is_low(struct lruvec *lruvec)
1611
{
1612 1613 1614 1615 1616
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1617

1618
	return active > inactive;
1619 1620
}

H
Hugh Dickins 已提交
1621
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1622
{
H
Hugh Dickins 已提交
1623
	if (is_file_lru(lru))
1624
		return inactive_file_is_low(lruvec);
1625
	else
1626
		return inactive_anon_is_low(lruvec);
1627 1628
}

1629
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1630
				 struct lruvec *lruvec, struct scan_control *sc)
1631
{
1632
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1633
		if (inactive_list_is_low(lruvec, lru))
1634
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1635 1636 1637
		return 0;
	}

1638
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1639 1640
}

1641
static int vmscan_swappiness(struct scan_control *sc)
1642
{
1643
	if (global_reclaim(sc))
1644
		return vm_swappiness;
1645
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1646 1647
}

1648 1649 1650 1651 1652 1653 1654
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1655 1656 1657 1658 1659 1660
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1661 1662
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1663
 */
1664
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1665
			   unsigned long *nr)
1666
{
1667 1668 1669 1670
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1671
	unsigned long anon_prio, file_prio;
1672 1673 1674
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1675
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1676
	enum lru_list lru;
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1688
	if (current_is_kswapd() && zone->all_unreclaimable)
1689
		force_scan = true;
1690
	if (!global_reclaim(sc))
1691
		force_scan = true;
1692 1693

	/* If we have no swap space, do not bother scanning anon pages. */
1694
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1695
		scan_balance = SCAN_FILE;
1696 1697
		goto out;
	}
1698

1699 1700 1701 1702 1703 1704 1705 1706
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1707
		scan_balance = SCAN_FILE;
1708 1709 1710 1711 1712 1713 1714 1715 1716
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1717
		scan_balance = SCAN_EQUAL;
1718 1719 1720
		goto out;
	}

1721 1722 1723 1724
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1725

1726 1727 1728 1729 1730 1731
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1732
	if (global_reclaim(sc)) {
1733
		free = zone_page_state(zone, NR_FREE_PAGES);
1734
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1735
			scan_balance = SCAN_ANON;
1736
			goto out;
1737
		}
1738 1739
	}

1740 1741 1742 1743 1744
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1745
		scan_balance = SCAN_FILE;
1746 1747 1748
		goto out;
	}

1749 1750
	scan_balance = SCAN_FRACT;

1751 1752 1753 1754
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1755
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1756
	file_prio = 200 - anon_prio;
1757

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1769
	spin_lock_irq(&zone->lru_lock);
1770 1771 1772
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1773 1774
	}

1775 1776 1777
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1778 1779 1780
	}

	/*
1781 1782 1783
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1784
	 */
1785
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1786
	ap /= reclaim_stat->recent_rotated[0] + 1;
1787

1788
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1789
	fp /= reclaim_stat->recent_rotated[1] + 1;
1790
	spin_unlock_irq(&zone->lru_lock);
1791

1792 1793 1794 1795
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1796 1797
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1798
		unsigned long size;
1799
		unsigned long scan;
1800

1801
		size = get_lru_size(lruvec, lru);
1802
		scan = size >> sc->priority;
1803

1804 1805
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1828
		nr[lru] = scan;
1829
	}
1830
}
1831

1832 1833 1834 1835 1836 1837
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1838
	unsigned long targets[NR_LRU_LISTS];
1839 1840 1841 1842 1843
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1844
	bool scan_adjusted = false;
1845 1846 1847

	get_scan_count(lruvec, sc, nr);

1848 1849 1850
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1851 1852 1853
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1854 1855 1856
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1857 1858 1859 1860 1861 1862 1863 1864 1865
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1866 1867 1868 1869

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

1870
		/*
1871 1872 1873 1874
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
1875
		 */
1876
		if (global_reclaim(sc) && !current_is_kswapd())
1877
			break;
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
1935
/* Use reclaim/compaction for costly allocs or under memory pressure */
1936
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1937
{
1938
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
1939
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1940
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1941 1942 1943 1944 1945
		return true;

	return false;
}

1946
/*
M
Mel Gorman 已提交
1947 1948 1949 1950 1951
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1952
 */
1953
static inline bool should_continue_reclaim(struct zone *zone,
1954 1955 1956 1957 1958 1959 1960 1961
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1962
	if (!in_reclaim_compaction(sc))
1963 1964
		return false;

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1987 1988 1989 1990 1991 1992

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1993
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
1994
	if (get_nr_swap_pages() > 0)
1995
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
1996 1997 1998 1999 2000
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2001
	switch (compaction_suitable(zone, sc->order)) {
2002 2003 2004 2005 2006 2007 2008 2009
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2010
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2011
{
2012
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2013

2014 2015 2016 2017 2018 2019 2020
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2021

2022 2023
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2024

2025 2026 2027
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2028

2029
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2030

2031
			shrink_lruvec(lruvec, sc);
2032

2033
			/*
2034 2035
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2036
			 * zone.
2037 2038 2039 2040 2041
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2042
			 */
2043 2044
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2045 2046 2047 2048 2049
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2050 2051 2052 2053 2054

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2055 2056
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2057 2058
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2076
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2077 2078 2079 2080 2081 2082 2083 2084
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2085
	if (compaction_deferred(zone, sc->order))
2086 2087 2088 2089 2090 2091 2092 2093 2094
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2095 2096 2097 2098 2099
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2100 2101
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2102 2103
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2104 2105 2106
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2107 2108 2109
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2110 2111
 *
 * This function returns true if a zone is being reclaimed for a costly
2112
 * high-order allocation and compaction is ready to begin. This indicates to
2113 2114
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2115
 */
2116
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2117
{
2118
	struct zoneref *z;
2119
	struct zone *zone;
2120 2121
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2122
	bool aborted_reclaim = false;
2123

2124 2125 2126 2127 2128 2129 2130 2131
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2132 2133
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2134
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2135
			continue;
2136 2137 2138 2139
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2140
		if (global_reclaim(sc)) {
2141 2142
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2143 2144
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2145
				continue;	/* Let kswapd poll it */
2146
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2147
				/*
2148 2149 2150 2151 2152
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2153 2154
				 * noticeable problem, like transparent huge
				 * page allocations.
2155
				 */
2156
				if (compaction_ready(zone, sc)) {
2157
					aborted_reclaim = true;
2158
					continue;
2159
				}
2160
			}
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2174
		}
2175

2176
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2177
	}
2178

2179
	return aborted_reclaim;
2180 2181 2182 2183 2184 2185 2186
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2187
/* All zones in zonelist are unreclaimable? */
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2200 2201
		if (!zone->all_unreclaimable)
			return false;
2202 2203
	}

2204
	return true;
L
Linus Torvalds 已提交
2205
}
2206

L
Linus Torvalds 已提交
2207 2208 2209 2210 2211 2212 2213 2214
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2215 2216 2217 2218
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2219 2220 2221
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2222
 */
2223
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2224 2225
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2226
{
2227
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2228
	struct reclaim_state *reclaim_state = current->reclaim_state;
2229
	struct zoneref *z;
2230
	struct zone *zone;
2231
	unsigned long writeback_threshold;
2232
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2233

2234 2235
	delayacct_freepages_start();

2236
	if (global_reclaim(sc))
2237
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2238

2239
	do {
2240 2241
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2242
		sc->nr_scanned = 0;
2243
		aborted_reclaim = shrink_zones(zonelist, sc);
2244

2245 2246 2247 2248
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2249
		if (global_reclaim(sc)) {
2250
			unsigned long lru_pages = 0;
2251 2252
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2253 2254 2255 2256 2257 2258
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2259
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2260
			if (reclaim_state) {
2261
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2262 2263
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2264
		}
2265
		total_scanned += sc->nr_scanned;
2266
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2267 2268
			goto out;

2269 2270 2271 2272 2273 2274 2275
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2276 2277 2278 2279 2280 2281 2282
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2283 2284
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2285 2286
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2287
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2288 2289 2290
		}

		/* Take a nap, wait for some writeback to complete */
2291
		if (!sc->hibernation_mode && sc->nr_scanned &&
2292
		    sc->priority < DEF_PRIORITY - 2) {
2293 2294 2295
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2296 2297
						&cpuset_current_mems_allowed,
						&preferred_zone);
2298 2299
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2300
	} while (--sc->priority >= 0);
2301

L
Linus Torvalds 已提交
2302
out:
2303 2304
	delayacct_freepages_end();

2305 2306 2307
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2316 2317
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2318 2319
		return 1;

2320
	/* top priority shrink_zones still had more to do? don't OOM, then */
2321
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2322 2323 2324
		return 1;

	return 0;
L
Linus Torvalds 已提交
2325 2326
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2357 2358 2359 2360
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2361
 */
2362
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2377 2378 2379 2380 2381 2382 2383 2384
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2385 2386 2387 2388 2389

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2390
		goto out;
2391

2392 2393 2394
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2406 2407

		goto check_pending;
2408 2409 2410 2411 2412
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2413 2414 2415 2416 2417 2418 2419

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2420 2421
}

2422
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2423
				gfp_t gfp_mask, nodemask_t *nodemask)
2424
{
2425
	unsigned long nr_reclaimed;
2426
	struct scan_control sc = {
2427
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2428
		.may_writepage = !laptop_mode,
2429
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2430
		.may_unmap = 1,
2431
		.may_swap = 1,
2432
		.order = order,
2433
		.priority = DEF_PRIORITY,
2434
		.target_mem_cgroup = NULL,
2435
		.nodemask = nodemask,
2436
	};
2437 2438 2439
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2440

2441
	/*
2442 2443 2444
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2445
	 */
2446
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2447 2448
		return 1;

2449 2450 2451 2452
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2453
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2454 2455 2456 2457

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2458 2459
}

A
Andrew Morton 已提交
2460
#ifdef CONFIG_MEMCG
2461

2462
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2463
						gfp_t gfp_mask, bool noswap,
2464 2465
						struct zone *zone,
						unsigned long *nr_scanned)
2466 2467
{
	struct scan_control sc = {
2468
		.nr_scanned = 0,
2469
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2470 2471 2472 2473
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2474
		.priority = 0,
2475
		.target_mem_cgroup = memcg,
2476
	};
2477
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2478

2479 2480
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2481

2482
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2483 2484 2485
						      sc.may_writepage,
						      sc.gfp_mask);

2486 2487 2488 2489 2490 2491 2492
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2493
	shrink_lruvec(lruvec, &sc);
2494 2495 2496

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2497
	*nr_scanned = sc.nr_scanned;
2498 2499 2500
	return sc.nr_reclaimed;
}

2501
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2502
					   gfp_t gfp_mask,
2503
					   bool noswap)
2504
{
2505
	struct zonelist *zonelist;
2506
	unsigned long nr_reclaimed;
2507
	int nid;
2508 2509
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2510
		.may_unmap = 1,
2511
		.may_swap = !noswap,
2512
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2513
		.order = 0,
2514
		.priority = DEF_PRIORITY,
2515
		.target_mem_cgroup = memcg,
2516
		.nodemask = NULL, /* we don't care the placement */
2517 2518 2519 2520 2521
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2522 2523
	};

2524 2525 2526 2527 2528
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2529
	nid = mem_cgroup_select_victim_node(memcg);
2530 2531

	zonelist = NODE_DATA(nid)->node_zonelists;
2532 2533 2534 2535 2536

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2537
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2538 2539 2540 2541

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2542 2543 2544
}
#endif

2545
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2546
{
2547
	struct mem_cgroup *memcg;
2548

2549 2550 2551 2552 2553
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2554
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2555

2556
		if (inactive_anon_is_low(lruvec))
2557
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2558
					   sc, LRU_ACTIVE_ANON);
2559 2560 2561

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2562 2563
}

2564 2565 2566 2567 2568 2569 2570
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2571 2572
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2573 2574 2575 2576 2577
		return false;

	return true;
}

2578
/*
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2589 2590 2591 2592
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2593
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2594 2595 2596 2597
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2598
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2599
{
2600
	unsigned long managed_pages = 0;
2601
	unsigned long balanced_pages = 0;
2602 2603
	int i;

2604 2605 2606
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2607

2608 2609 2610
		if (!populated_zone(zone))
			continue;

2611
		managed_pages += zone->managed_pages;
2612 2613 2614 2615 2616 2617 2618 2619 2620

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
2621
			balanced_pages += zone->managed_pages;
2622 2623 2624 2625
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2626
			balanced_pages += zone->managed_pages;
2627 2628 2629 2630 2631
		else if (!order)
			return false;
	}

	if (order)
2632
		return balanced_pages >= (managed_pages >> 2);
2633 2634
	else
		return true;
2635 2636
}

2637 2638 2639 2640 2641 2642 2643
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2644
					int classzone_idx)
2645 2646 2647
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2663

2664
	return pgdat_balanced(pgdat, order, classzone_idx);
2665 2666
}

2667 2668 2669
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2670 2671 2672 2673
 *
 * Returns true if kswapd scanned at least the requested number of pages to
 * reclaim. This is used to determine if the scanning priority needs to be
 * raised.
2674
 */
2675
static bool kswapd_shrink_zone(struct zone *zone,
2676
			       struct scan_control *sc,
2677 2678
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
{
	unsigned long nr_slab;
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2694 2695 2696
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2697 2698
	if (nr_slab == 0 && !zone_reclaimable(zone))
		zone->all_unreclaimable = 1;
2699 2700

	return sc->nr_scanned >= sc->nr_to_reclaim;
2701 2702
}

L
Linus Torvalds 已提交
2703 2704
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2705
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2706
 *
2707
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2718 2719 2720 2721 2722
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2723
 */
2724
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2725
							int *classzone_idx)
L
Linus Torvalds 已提交
2726 2727
{
	int i;
2728
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2729 2730
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2731 2732
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2733
		.priority = DEF_PRIORITY,
2734
		.may_unmap = 1,
2735
		.may_swap = 1,
2736
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2737
		.order = order,
2738
		.target_mem_cgroup = NULL,
2739
	};
2740
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2741

2742
	do {
L
Linus Torvalds 已提交
2743
		unsigned long lru_pages = 0;
2744
		unsigned long nr_attempted = 0;
2745
		bool raise_priority = true;
2746
		bool pgdat_needs_compaction = (order > 0);
2747 2748

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2749

2750 2751 2752 2753 2754 2755
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2756

2757 2758
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2759

2760 2761
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2762
				continue;
L
Linus Torvalds 已提交
2763

2764 2765 2766 2767
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2768
			age_active_anon(zone, &sc);
2769

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2781
			if (!zone_balanced(zone, order, 0, 0)) {
2782
				end_zone = i;
A
Andrew Morton 已提交
2783
				break;
2784
			} else {
2785 2786 2787 2788
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2789
				zone_clear_flag(zone, ZONE_CONGESTED);
2790
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2791 2792
			}
		}
2793

2794
		if (i < 0)
A
Andrew Morton 已提交
2795 2796
			goto out;

L
Linus Torvalds 已提交
2797 2798 2799
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2800 2801 2802
			if (!populated_zone(zone))
				continue;

2803
			lru_pages += zone_reclaimable_pages(zone);
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2828
			int testorder;
2829
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2830

2831
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2832 2833
				continue;

2834 2835
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2836 2837 2838
				continue;

			sc.nr_scanned = 0;
2839

2840
			nr_soft_scanned = 0;
2841 2842 2843
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2844 2845 2846 2847
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
2848

2849
			/*
2850 2851 2852 2853 2854 2855
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2856
			 */
2857
			balance_gap = min(low_wmark_pages(zone),
2858
				(zone->managed_pages +
2859 2860
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2861 2862 2863 2864 2865 2866 2867 2868
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
2869
			if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2870 2871 2872 2873
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2874
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2875
			    !zone_balanced(zone, testorder,
2876 2877 2878 2879 2880 2881 2882
					   balance_gap, end_zone)) {
				/*
				 * There should be no need to raise the
				 * scanning priority if enough pages are
				 * already being scanned that high
				 * watermark would be met at 100% efficiency.
				 */
2883 2884
				if (kswapd_shrink_zone(zone, &sc, lru_pages,
						       &nr_attempted))
2885 2886
					raise_priority = false;
			}
2887

L
Linus Torvalds 已提交
2888
			/*
2889 2890
			 * If we're getting trouble reclaiming, start doing
			 * writepage even in laptop mode.
L
Linus Torvalds 已提交
2891
			 */
2892
			if (sc.priority < DEF_PRIORITY - 2)
L
Linus Torvalds 已提交
2893
				sc.may_writepage = 1;
2894

2895 2896 2897
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2898
				continue;
2899
			}
2900

2901
			if (zone_balanced(zone, testorder, 0, end_zone))
2902 2903 2904 2905 2906
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
2907
				 * speculatively avoid congestion waits
2908
				 * or writing pages from kswapd context.
2909 2910
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2911
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2912
		}
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
2923
		/*
2924 2925 2926 2927 2928 2929
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
2930
		 */
2931 2932
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
2933

2934 2935 2936
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
2937

2938 2939 2940 2941 2942 2943 2944
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

2945
		/*
2946 2947
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
2948
		 */
2949 2950
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
2951
	} while (sc.priority >= 1 &&
2952
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
2953

2954
out:
2955
	/*
2956
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2957 2958 2959 2960
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2961
	*classzone_idx = end_zone;
2962
	return order;
L
Linus Torvalds 已提交
2963 2964
}

2965
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2976
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2977 2978 2979 2980 2981 2982 2983 2984 2985
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2986
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2998

2999 3000 3001 3002 3003 3004 3005 3006
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3007 3008 3009
		if (!kthread_should_stop())
			schedule();

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3020 3021
/*
 * The background pageout daemon, started as a kernel thread
3022
 * from the init process.
L
Linus Torvalds 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3035
	unsigned long order, new_order;
3036
	unsigned balanced_order;
3037
	int classzone_idx, new_classzone_idx;
3038
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3039 3040
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3041

L
Linus Torvalds 已提交
3042 3043 3044
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3045
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3046

3047 3048
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3049
	if (!cpumask_empty(cpumask))
3050
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3065
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3066
	set_freezable();
L
Linus Torvalds 已提交
3067

3068
	order = new_order = 0;
3069
	balanced_order = 0;
3070
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3071
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3072
	for ( ; ; ) {
3073
		bool ret;
3074

3075 3076 3077 3078 3079
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3080 3081
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3082 3083 3084 3085 3086 3087
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3088
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3089 3090
			/*
			 * Don't sleep if someone wants a larger 'order'
3091
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3092 3093
			 */
			order = new_order;
3094
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3095
		} else {
3096 3097
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3098
			order = pgdat->kswapd_max_order;
3099
			classzone_idx = pgdat->classzone_idx;
3100 3101
			new_order = order;
			new_classzone_idx = classzone_idx;
3102
			pgdat->kswapd_max_order = 0;
3103
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3104 3105
		}

3106 3107 3108 3109 3110 3111 3112 3113
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3114 3115
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3116 3117 3118
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3119
		}
L
Linus Torvalds 已提交
3120
	}
3121 3122

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3123 3124 3125 3126 3127 3128
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3129
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3130 3131 3132
{
	pg_data_t *pgdat;

3133
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3134 3135
		return;

3136
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3137
		return;
3138
	pgdat = zone->zone_pgdat;
3139
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3140
		pgdat->kswapd_max_order = order;
3141 3142
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3143
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3144
		return;
3145 3146 3147 3148
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3149
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3150 3151
}

3152 3153 3154 3155 3156 3157 3158 3159
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3160
{
3161 3162 3163 3164 3165
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3166
	if (get_nr_swap_pages() > 0)
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

3180
	if (get_nr_swap_pages() > 0)
3181 3182 3183 3184
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3185 3186
}

3187
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3188
/*
3189
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3190 3191 3192 3193 3194
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3195
 */
3196
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3197
{
3198 3199
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3200 3201 3202
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3203
		.may_writepage = 1,
3204 3205 3206
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3207
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3208
	};
3209 3210 3211 3212
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3213 3214
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3215

3216 3217 3218 3219
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3220

3221
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3222

3223 3224 3225
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3226

3227
	return nr_reclaimed;
L
Linus Torvalds 已提交
3228
}
3229
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3230 3231 3232 3233 3234

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3235 3236
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3237
{
3238
	int nid;
L
Linus Torvalds 已提交
3239

3240
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3241
		for_each_node_state(nid, N_MEMORY) {
3242
			pg_data_t *pgdat = NODE_DATA(nid);
3243 3244 3245
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3246

3247
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3248
				/* One of our CPUs online: restore mask */
3249
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3250 3251 3252 3253 3254
		}
	}
	return NOTIFY_OK;
}

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3271 3272
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3273
		pgdat->kswapd = NULL;
3274 3275 3276 3277
	}
	return ret;
}

3278
/*
3279 3280
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3281 3282 3283 3284 3285
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3286
	if (kswapd) {
3287
		kthread_stop(kswapd);
3288 3289
		NODE_DATA(nid)->kswapd = NULL;
	}
3290 3291
}

L
Linus Torvalds 已提交
3292 3293
static int __init kswapd_init(void)
{
3294
	int nid;
3295

L
Linus Torvalds 已提交
3296
	swap_setup();
3297
	for_each_node_state(nid, N_MEMORY)
3298
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3299 3300 3301 3302 3303
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3314
#define RECLAIM_OFF 0
3315
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3316 3317 3318
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3319 3320 3321 3322 3323 3324 3325
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3326 3327 3328 3329 3330 3331
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3332 3333 3334 3335 3336 3337
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3380 3381 3382
/*
 * Try to free up some pages from this zone through reclaim.
 */
3383
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3384
{
3385
	/* Minimum pages needed in order to stay on node */
3386
	const unsigned long nr_pages = 1 << order;
3387 3388
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3389 3390
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3391
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3392
		.may_swap = 1,
3393
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3394
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3395
		.order = order,
3396
		.priority = ZONE_RECLAIM_PRIORITY,
3397
	};
3398 3399 3400
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3401
	unsigned long nr_slab_pages0, nr_slab_pages1;
3402 3403

	cond_resched();
3404 3405 3406 3407 3408 3409
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3410
	lockdep_set_current_reclaim_state(gfp_mask);
3411 3412
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3413

3414
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3415 3416 3417 3418 3419
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3420 3421
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3422
	}
3423

3424 3425
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3426
		/*
3427
		 * shrink_slab() does not currently allow us to determine how
3428 3429 3430 3431
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3432
		 *
3433 3434
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3435
		 */
3436 3437 3438 3439
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3440
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3441 3442 3443 3444 3445 3446 3447 3448
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3449 3450 3451 3452 3453

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3454 3455 3456
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3457 3458
	}

3459
	p->reclaim_state = NULL;
3460
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3461
	lockdep_clear_current_reclaim_state();
3462
	return sc.nr_reclaimed >= nr_pages;
3463
}
3464 3465 3466 3467

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3468
	int ret;
3469 3470

	/*
3471 3472
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3473
	 *
3474 3475 3476 3477 3478
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3479
	 */
3480 3481
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3482
		return ZONE_RECLAIM_FULL;
3483

3484
	if (zone->all_unreclaimable)
3485
		return ZONE_RECLAIM_FULL;
3486

3487
	/*
3488
	 * Do not scan if the allocation should not be delayed.
3489
	 */
3490
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3491
		return ZONE_RECLAIM_NOSCAN;
3492 3493 3494 3495 3496 3497 3498

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3499
	node_id = zone_to_nid(zone);
3500
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3501
		return ZONE_RECLAIM_NOSCAN;
3502 3503

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3504 3505
		return ZONE_RECLAIM_NOSCAN;

3506 3507 3508
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3509 3510 3511
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3512
	return ret;
3513
}
3514
#endif
L
Lee Schermerhorn 已提交
3515 3516 3517 3518 3519 3520

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3521
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3522 3523
 *
 * Reasons page might not be evictable:
3524
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3525
 * (2) page is part of an mlocked VMA
3526
 *
L
Lee Schermerhorn 已提交
3527
 */
3528
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3529
{
3530
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3531
}
3532

3533
#ifdef CONFIG_SHMEM
3534
/**
3535 3536 3537
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3538
 *
3539
 * Checks pages for evictability and moves them to the appropriate lru list.
3540 3541
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3542
 */
3543
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3544
{
3545
	struct lruvec *lruvec;
3546 3547 3548 3549
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3550

3551 3552 3553
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3554

3555 3556 3557 3558 3559 3560 3561 3562
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3563
		lruvec = mem_cgroup_page_lruvec(page, zone);
3564

3565 3566
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3567

3568
		if (page_evictable(page)) {
3569 3570 3571 3572
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3573 3574
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3575
			pgrescued++;
3576
		}
3577
	}
3578

3579 3580 3581 3582
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3583 3584
	}
}
3585
#endif /* CONFIG_SHMEM */
3586

3587
static void warn_scan_unevictable_pages(void)
3588
{
3589
	printk_once(KERN_WARNING
3590
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3591
		    "disabled for lack of a legitimate use case.  If you have "
3592 3593
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3594 3595 3596 3597 3598 3599 3600 3601 3602
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3603
			   void __user *buffer,
3604 3605
			   size_t *length, loff_t *ppos)
{
3606
	warn_scan_unevictable_pages();
3607
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3608 3609 3610 3611
	scan_unevictable_pages = 0;
	return 0;
}

3612
#ifdef CONFIG_NUMA
3613 3614 3615 3616 3617
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3618 3619
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3620 3621
					  char *buf)
{
3622
	warn_scan_unevictable_pages();
3623 3624 3625
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3626 3627
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3628 3629
					const char *buf, size_t count)
{
3630
	warn_scan_unevictable_pages();
3631 3632 3633 3634
	return 1;
}


3635
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3636 3637 3638 3639 3640
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3641
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3642 3643 3644 3645
}

void scan_unevictable_unregister_node(struct node *node)
{
3646
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3647
}
3648
#endif