vmscan.c 108.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
L
Linus Torvalds 已提交
49 50 51 52 53

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
54
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
55

56 57
#include "internal.h"

58 59 60
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
61
struct scan_control {
62 63 64
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
65
	/* This context's GFP mask */
A
Al Viro 已提交
66
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
67

68
	/* Allocation order */
A
Andy Whitcroft 已提交
69
	int order;
70

71 72 73 74 75
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
76

77 78 79 80 81
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
140 141 142 143 144
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
145 146 147 148

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
149
#ifdef CONFIG_MEMCG
150 151
static bool global_reclaim(struct scan_control *sc)
{
152
	return !sc->target_mem_cgroup;
153
}
154
#else
155 156 157 158
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
159 160
#endif

161
static unsigned long zone_reclaimable_pages(struct zone *zone)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
177 178
	return zone_page_state(zone, NR_PAGES_SCANNED) <
		zone_reclaimable_pages(zone) * 6;
179 180
}

181
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
182
{
183
	if (!mem_cgroup_disabled())
184
		return mem_cgroup_get_lru_size(lruvec, lru);
185

186
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
187 188
}

L
Linus Torvalds 已提交
189
/*
G
Glauber Costa 已提交
190
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
191
 */
G
Glauber Costa 已提交
192
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
193
{
G
Glauber Costa 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

211 212 213
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
214
	return 0;
L
Linus Torvalds 已提交
215
}
216
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
217 218 219 220

/*
 * Remove one
 */
221
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
222 223 224 225
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
226
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
227
}
228
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
229 230

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
231 232 233 234 235 236 237 238

static unsigned long
shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
		 unsigned long nr_pages_scanned, unsigned long lru_pages)
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
239
	long freeable;
G
Glauber Costa 已提交
240 241 242 243 244 245
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

246 247
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
248 249 250 251 252 253 254 255 256 257 258
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
	delta = (4 * nr_pages_scanned) / shrinker->seeks;
259
	delta *= freeable;
G
Glauber Costa 已提交
260 261 262
	do_div(delta, lru_pages + 1);
	total_scan += delta;
	if (total_scan < 0) {
263
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
264
		       shrinker->scan_objects, total_scan);
265
		total_scan = freeable;
G
Glauber Costa 已提交
266 267 268 269 270 271 272 273
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
274
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
275 276 277 278 279
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
280 281
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
282 283 284 285 286 287

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
288 289
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
290 291 292

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
				nr_pages_scanned, lru_pages,
293
				freeable, delta, total_scan);
G
Glauber Costa 已提交
294

295 296 297 298 299 300 301 302 303 304 305
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
306
	 * than the total number of objects on slab (freeable), we must be
307 308 309 310
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
311
	       total_scan >= freeable) {
D
Dave Chinner 已提交
312
		unsigned long ret;
313
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
314

315
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
316 317 318 319
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
320

321 322
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

338
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
339
	return freed;
340 341
}

L
Linus Torvalds 已提交
342 343 344 345 346 347 348 349
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
350
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
351 352 353 354 355 356 357
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
358 359
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
360
 */
D
Dave Chinner 已提交
361
unsigned long shrink_slab(struct shrink_control *shrinkctl,
362
			  unsigned long nr_pages_scanned,
363
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
364 365
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
366
	unsigned long freed = 0;
L
Linus Torvalds 已提交
367

368 369
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
370

371
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
372 373 374 375 376 377 378
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
379 380
		goto out;
	}
L
Linus Torvalds 已提交
381 382

	list_for_each_entry(shrinker, &shrinker_list, list) {
383 384
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
			shrinkctl->nid = 0;
G
Glauber Costa 已提交
385
			freed += shrink_slab_node(shrinkctl, shrinker,
386 387 388 389 390 391 392 393
					nr_pages_scanned, lru_pages);
			continue;
		}

		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
			if (node_online(shrinkctl->nid))
				freed += shrink_slab_node(shrinkctl, shrinker,
						nr_pages_scanned, lru_pages);
L
Linus Torvalds 已提交
394 395 396 397

		}
	}
	up_read(&shrinker_rwsem);
398 399
out:
	cond_resched();
D
Dave Chinner 已提交
400
	return freed;
L
Linus Torvalds 已提交
401 402 403 404
}

static inline int is_page_cache_freeable(struct page *page)
{
405 406 407 408 409
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
410
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
411 412
}

413 414
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
415
{
416
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
440
	lock_page(page);
441 442
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
443 444 445
	unlock_page(page);
}

446 447 448 449 450 451 452 453 454 455 456 457
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
458
/*
A
Andrew Morton 已提交
459 460
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
461
 */
462
static pageout_t pageout(struct page *page, struct address_space *mapping,
463
			 struct scan_control *sc)
L
Linus Torvalds 已提交
464 465 466 467 468 469 470 471
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
472
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
488
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
489 490
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
491
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
492 493 494 495 496 497 498
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
499
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
500 501 502 503 504 505 506
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
507 508
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
509 510 511 512 513 514 515
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
516
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
517 518 519
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
520

L
Linus Torvalds 已提交
521 522 523 524
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
525
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
526
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
527 528 529 530 531 532
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

533
/*
N
Nick Piggin 已提交
534 535
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
536
 */
537 538
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
539
{
540 541
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
542

N
Nick Piggin 已提交
543
	spin_lock_irq(&mapping->tree_lock);
544
	/*
N
Nick Piggin 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
568
	 */
N
Nick Piggin 已提交
569
	if (!page_freeze_refs(page, 2))
570
		goto cannot_free;
N
Nick Piggin 已提交
571 572 573
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
574
		goto cannot_free;
N
Nick Piggin 已提交
575
	}
576 577 578

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
579
		mem_cgroup_swapout(page, swap);
580
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
581
		spin_unlock_irq(&mapping->tree_lock);
582
		swapcache_free(swap);
N
Nick Piggin 已提交
583
	} else {
584
		void (*freepage)(struct page *);
585
		void *shadow = NULL;
586 587

		freepage = mapping->a_ops->freepage;
588 589 590 591 592 593 594 595 596 597 598 599 600 601
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
		__delete_from_page_cache(page, shadow);
N
Nick Piggin 已提交
602
		spin_unlock_irq(&mapping->tree_lock);
603 604 605

		if (freepage != NULL)
			freepage(page);
606 607 608 609 610
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
611
	spin_unlock_irq(&mapping->tree_lock);
612 613 614
	return 0;
}

N
Nick Piggin 已提交
615 616 617 618 619 620 621 622
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
623
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
624 625 626 627 628 629 630 631 632 633 634
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
635 636 637 638 639 640 641 642 643 644 645
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
646
	bool is_unevictable;
647
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
648

649
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
650 651 652 653

redo:
	ClearPageUnevictable(page);

654
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
655 656 657 658 659 660
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
661
		is_unevictable = false;
662
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
663 664 665 666 667
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
668
		is_unevictable = true;
L
Lee Schermerhorn 已提交
669
		add_page_to_unevictable_list(page);
670
		/*
671 672 673
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
674
		 * isolation/check_move_unevictable_pages,
675
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
676 677
		 * the page back to the evictable list.
		 *
678
		 * The other side is TestClearPageMlocked() or shmem_lock().
679 680
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
681 682 683 684 685 686 687
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
688
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
689 690 691 692 693 694 695 696 697 698
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

699
	if (was_unevictable && !is_unevictable)
700
		count_vm_event(UNEVICTABLE_PGRESCUED);
701
	else if (!was_unevictable && is_unevictable)
702 703
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
704 705 706
	put_page(page);		/* drop ref from isolate */
}

707 708 709
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
710
	PAGEREF_KEEP,
711 712 713 714 715 716
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
717
	int referenced_ptes, referenced_page;
718 719
	unsigned long vm_flags;

720 721
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
722
	referenced_page = TestClearPageReferenced(page);
723 724 725 726 727 728 729 730

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

731
	if (referenced_ptes) {
732
		if (PageSwapBacked(page))
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

750
		if (referenced_page || referenced_ptes > 1)
751 752
			return PAGEREF_ACTIVATE;

753 754 755 756 757 758
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

759 760
		return PAGEREF_KEEP;
	}
761 762

	/* Reclaim if clean, defer dirty pages to writeback */
763
	if (referenced_page && !PageSwapBacked(page))
764 765 766
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
767 768
}

769 770 771 772
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
773 774
	struct address_space *mapping;

775 776 777 778 779 780 781 782 783 784 785 786 787
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
788 789 790 791 792 793 794 795

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
796 797
}

L
Linus Torvalds 已提交
798
/*
A
Andrew Morton 已提交
799
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
800
 */
A
Andrew Morton 已提交
801
static unsigned long shrink_page_list(struct list_head *page_list,
802
				      struct zone *zone,
803
				      struct scan_control *sc,
804
				      enum ttu_flags ttu_flags,
805
				      unsigned long *ret_nr_dirty,
806
				      unsigned long *ret_nr_unqueued_dirty,
807
				      unsigned long *ret_nr_congested,
808
				      unsigned long *ret_nr_writeback,
809
				      unsigned long *ret_nr_immediate,
810
				      bool force_reclaim)
L
Linus Torvalds 已提交
811 812
{
	LIST_HEAD(ret_pages);
813
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
814
	int pgactivate = 0;
815
	unsigned long nr_unqueued_dirty = 0;
816 817
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
818
	unsigned long nr_reclaimed = 0;
819
	unsigned long nr_writeback = 0;
820
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
821 822 823 824 825 826 827

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
828
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
829
		bool dirty, writeback;
L
Linus Torvalds 已提交
830 831 832 833 834 835

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
836
		if (!trylock_page(page))
L
Linus Torvalds 已提交
837 838
			goto keep;

839 840
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
841 842

		sc->nr_scanned++;
843

844
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
845
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
846

847
		if (!sc->may_unmap && page_mapped(page))
848 849
			goto keep_locked;

L
Linus Torvalds 已提交
850 851 852 853
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

854 855 856
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

857 858 859 860 861 862 863 864 865 866 867 868 869
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

870 871 872 873 874 875
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
876
		mapping = page_mapping(page);
877 878
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
879 880
			nr_congested++;

881 882 883 884 885 886 887 888 889 890 891
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
892 893
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
918
		if (PageWriteback(page)) {
919 920 921
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
J
Johannes Weiner 已提交
922
			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
923 924
				nr_immediate++;
				goto keep_locked;
925 926 927

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
928 929 930 931 932 933 934 935 936 937 938 939 940
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
941
				nr_writeback++;
942

943
				goto keep_locked;
944 945 946 947

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
948
			}
949
		}
L
Linus Torvalds 已提交
950

951 952 953
		if (!force_reclaim)
			references = page_check_references(page, sc);

954 955
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
956
			goto activate_locked;
957 958
		case PAGEREF_KEEP:
			goto keep_locked;
959 960 961 962
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
963 964 965 966 967

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
968
		if (PageAnon(page) && !PageSwapCache(page)) {
969 970
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
971
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
972
				goto activate_locked;
973
			may_enter_fs = 1;
L
Linus Torvalds 已提交
974

975 976 977
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
978 979 980 981 982 983

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
984
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
985 986 987 988
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
989 990
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
991 992 993 994 995 996
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
997 998
			/*
			 * Only kswapd can writeback filesystem pages to
999 1000
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1001
			 */
1002
			if (page_is_file_cache(page) &&
1003
					(!current_is_kswapd() ||
J
Johannes Weiner 已提交
1004
					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1005 1006 1007 1008 1009 1010 1011 1012 1013
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1014 1015 1016
				goto keep_locked;
			}

1017
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1018
				goto keep_locked;
1019
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1020
				goto keep_locked;
1021
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1022 1023 1024
				goto keep_locked;

			/* Page is dirty, try to write it out here */
1025
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1031
				if (PageWriteback(page))
1032
					goto keep;
1033
				if (PageDirty(page))
L
Linus Torvalds 已提交
1034
					goto keep;
1035

L
Linus Torvalds 已提交
1036 1037 1038 1039
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1040
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1060
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1071
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1072 1073
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1090 1091
		}

1092
		if (!mapping || !__remove_mapping(mapping, page, true))
1093
			goto keep_locked;
L
Linus Torvalds 已提交
1094

N
Nick Piggin 已提交
1095 1096 1097 1098 1099 1100 1101 1102
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1103
free_it:
1104
		nr_reclaimed++;
1105 1106 1107 1108 1109 1110

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1111 1112
		continue;

N
Nick Piggin 已提交
1113
cull_mlocked:
1114 1115
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1116 1117 1118 1119
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1120
activate_locked:
1121 1122
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1123
			try_to_free_swap(page);
1124
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1125 1126 1127 1128 1129 1130
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1131
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1132
	}
1133

1134
	mem_cgroup_uncharge_list(&free_pages);
1135
	free_hot_cold_page_list(&free_pages, true);
1136

L
Linus Torvalds 已提交
1137
	list_splice(&ret_pages, page_list);
1138
	count_vm_events(PGACTIVATE, pgactivate);
1139

1140 1141
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1142
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1143
	*ret_nr_writeback += nr_writeback;
1144
	*ret_nr_immediate += nr_immediate;
1145
	return nr_reclaimed;
L
Linus Torvalds 已提交
1146 1147
}

1148 1149 1150 1151 1152 1153 1154 1155
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1156
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1157 1158 1159 1160
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1161 1162
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1163 1164 1165 1166 1167 1168
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1169 1170
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1171
	list_splice(&clean_pages, page_list);
1172
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1173 1174 1175
	return ret;
}

A
Andy Whitcroft 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1186
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1187 1188 1189 1190 1191 1192 1193
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1194 1195
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1196 1197
		return ret;

A
Andy Whitcroft 已提交
1198
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1233

1234 1235 1236
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1261
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1262
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1263
 * @nr_scanned:	The number of pages that were scanned.
1264
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1265
 * @mode:	One of the LRU isolation modes
1266
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1267 1268 1269
 *
 * returns how many pages were moved onto *@dst.
 */
1270
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1271
		struct lruvec *lruvec, struct list_head *dst,
1272
		unsigned long *nr_scanned, struct scan_control *sc,
1273
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1274
{
H
Hugh Dickins 已提交
1275
	struct list_head *src = &lruvec->lists[lru];
1276
	unsigned long nr_taken = 0;
1277
	unsigned long scan;
L
Linus Torvalds 已提交
1278

1279
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1280
		struct page *page;
1281
		int nr_pages;
A
Andy Whitcroft 已提交
1282

L
Linus Torvalds 已提交
1283 1284 1285
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1286
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1287

1288
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1289
		case 0:
1290 1291
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1292
			list_move(&page->lru, dst);
1293
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1294 1295 1296 1297 1298 1299
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1300

A
Andy Whitcroft 已提交
1301 1302 1303
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1304 1305
	}

H
Hugh Dickins 已提交
1306
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1307 1308
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1309 1310 1311
	return nr_taken;
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1323 1324 1325
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1341
	VM_BUG_ON_PAGE(!page_count(page), page);
1342

1343 1344
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1345
		struct lruvec *lruvec;
1346 1347

		spin_lock_irq(&zone->lru_lock);
1348
		lruvec = mem_cgroup_page_lruvec(page, zone);
1349
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1350
			int lru = page_lru(page);
1351
			get_page(page);
1352
			ClearPageLRU(page);
1353 1354
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1355 1356 1357 1358 1359 1360
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1361
/*
F
Fengguang Wu 已提交
1362 1363 1364 1365 1366
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1367 1368 1369 1370 1371 1372 1373 1374 1375
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1376
	if (!global_reclaim(sc))
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1395 1396 1397
	return isolated > inactive;
}

1398
static noinline_for_stack void
H
Hugh Dickins 已提交
1399
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1400
{
1401 1402
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1403
	LIST_HEAD(pages_to_free);
1404 1405 1406 1407 1408

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1409
		struct page *page = lru_to_page(page_list);
1410
		int lru;
1411

1412
		VM_BUG_ON_PAGE(PageLRU(page), page);
1413
		list_del(&page->lru);
1414
		if (unlikely(!page_evictable(page))) {
1415 1416 1417 1418 1419
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1420 1421 1422

		lruvec = mem_cgroup_page_lruvec(page, zone);

1423
		SetPageLRU(page);
1424
		lru = page_lru(page);
1425 1426
		add_page_to_lru_list(page, lruvec, lru);

1427 1428
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1429 1430
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1431
		}
1432 1433 1434
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1435
			del_page_from_lru_list(page, lruvec, lru);
1436 1437 1438

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1439
				mem_cgroup_uncharge(page);
1440 1441 1442 1443
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1444 1445 1446
		}
	}

1447 1448 1449 1450
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1451 1452
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1466
/*
A
Andrew Morton 已提交
1467 1468
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1469
 */
1470
static noinline_for_stack unsigned long
1471
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1472
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1473 1474
{
	LIST_HEAD(page_list);
1475
	unsigned long nr_scanned;
1476
	unsigned long nr_reclaimed = 0;
1477
	unsigned long nr_taken;
1478 1479
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1480
	unsigned long nr_unqueued_dirty = 0;
1481
	unsigned long nr_writeback = 0;
1482
	unsigned long nr_immediate = 0;
1483
	isolate_mode_t isolate_mode = 0;
1484
	int file = is_file_lru(lru);
1485 1486
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1487

1488
	while (unlikely(too_many_isolated(zone, file, sc))) {
1489
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1490 1491 1492 1493 1494 1495

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1496
	lru_add_drain();
1497 1498

	if (!sc->may_unmap)
1499
		isolate_mode |= ISOLATE_UNMAPPED;
1500
	if (!sc->may_writepage)
1501
		isolate_mode |= ISOLATE_CLEAN;
1502

L
Linus Torvalds 已提交
1503
	spin_lock_irq(&zone->lru_lock);
1504

1505 1506
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1507 1508 1509 1510

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1511
	if (global_reclaim(sc)) {
1512
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1513
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1514
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1515
		else
H
Hugh Dickins 已提交
1516
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1517
	}
1518
	spin_unlock_irq(&zone->lru_lock);
1519

1520
	if (nr_taken == 0)
1521
		return 0;
A
Andy Whitcroft 已提交
1522

1523
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1524 1525 1526
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1527

1528 1529
	spin_lock_irq(&zone->lru_lock);

1530
	reclaim_stat->recent_scanned[file] += nr_taken;
1531

Y
Ying Han 已提交
1532 1533 1534 1535 1536 1537 1538 1539
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1540

1541
	putback_inactive_pages(lruvec, &page_list);
1542

1543
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1544 1545 1546

	spin_unlock_irq(&zone->lru_lock);

1547
	mem_cgroup_uncharge_list(&page_list);
1548
	free_hot_cold_page_list(&page_list, true);
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1560 1561 1562
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1563
	 */
1564
	if (nr_writeback && nr_writeback == nr_taken)
J
Johannes Weiner 已提交
1565
		set_bit(ZONE_WRITEBACK, &zone->flags);
1566

1567
	/*
1568 1569
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1570
	 */
1571
	if (global_reclaim(sc)) {
1572 1573 1574 1575 1576
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
J
Johannes Weiner 已提交
1577
			set_bit(ZONE_CONGESTED, &zone->flags);
1578

1579 1580 1581
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
J
Johannes Weiner 已提交
1582 1583
		 * the zone ZONE_DIRTY and kswapd will start writing pages from
		 * reclaim context.
1584 1585
		 */
		if (nr_unqueued_dirty == nr_taken)
J
Johannes Weiner 已提交
1586
			set_bit(ZONE_DIRTY, &zone->flags);
1587 1588

		/*
1589 1590 1591
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1592 1593
		 * they are written so also forcibly stall.
		 */
1594
		if (nr_immediate && current_may_throttle())
1595
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1596
	}
1597

1598 1599 1600 1601 1602
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1603 1604
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1605 1606
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1607 1608 1609
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1610
		sc->priority,
M
Mel Gorman 已提交
1611
		trace_shrink_flags(file));
1612
	return nr_reclaimed;
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1632

1633
static void move_active_pages_to_lru(struct lruvec *lruvec,
1634
				     struct list_head *list,
1635
				     struct list_head *pages_to_free,
1636 1637
				     enum lru_list lru)
{
1638
	struct zone *zone = lruvec_zone(lruvec);
1639 1640
	unsigned long pgmoved = 0;
	struct page *page;
1641
	int nr_pages;
1642 1643 1644

	while (!list_empty(list)) {
		page = lru_to_page(list);
1645
		lruvec = mem_cgroup_page_lruvec(page, zone);
1646

1647
		VM_BUG_ON_PAGE(PageLRU(page), page);
1648 1649
		SetPageLRU(page);

1650 1651
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1652
		list_move(&page->lru, &lruvec->lists[lru]);
1653
		pgmoved += nr_pages;
1654

1655 1656 1657
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1658
			del_page_from_lru_list(page, lruvec, lru);
1659 1660 1661

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1662
				mem_cgroup_uncharge(page);
1663 1664 1665 1666
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1667 1668 1669 1670 1671 1672
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1673

H
Hugh Dickins 已提交
1674
static void shrink_active_list(unsigned long nr_to_scan,
1675
			       struct lruvec *lruvec,
1676
			       struct scan_control *sc,
1677
			       enum lru_list lru)
L
Linus Torvalds 已提交
1678
{
1679
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1680
	unsigned long nr_scanned;
1681
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1682
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1683
	LIST_HEAD(l_active);
1684
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1685
	struct page *page;
1686
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1687
	unsigned long nr_rotated = 0;
1688
	isolate_mode_t isolate_mode = 0;
1689
	int file = is_file_lru(lru);
1690
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1691 1692

	lru_add_drain();
1693 1694

	if (!sc->may_unmap)
1695
		isolate_mode |= ISOLATE_UNMAPPED;
1696
	if (!sc->may_writepage)
1697
		isolate_mode |= ISOLATE_CLEAN;
1698

L
Linus Torvalds 已提交
1699
	spin_lock_irq(&zone->lru_lock);
1700

1701 1702
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1703
	if (global_reclaim(sc))
1704
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1705

1706
	reclaim_stat->recent_scanned[file] += nr_taken;
1707

H
Hugh Dickins 已提交
1708
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1709
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1710
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1711 1712 1713 1714 1715 1716
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1717

1718
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1719 1720 1721 1722
			putback_lru_page(page);
			continue;
		}

1723 1724 1725 1726 1727 1728 1729 1730
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1731 1732
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1733
			nr_rotated += hpage_nr_pages(page);
1734 1735 1736 1737 1738 1739 1740 1741 1742
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1743
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1744 1745 1746 1747
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1748

1749
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1750 1751 1752
		list_add(&page->lru, &l_inactive);
	}

1753
	/*
1754
	 * Move pages back to the lru list.
1755
	 */
1756
	spin_lock_irq(&zone->lru_lock);
1757
	/*
1758 1759 1760
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1761
	 * get_scan_count.
1762
	 */
1763
	reclaim_stat->recent_rotated[file] += nr_rotated;
1764

1765 1766
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1767
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1768
	spin_unlock_irq(&zone->lru_lock);
1769

1770
	mem_cgroup_uncharge_list(&l_hold);
1771
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1772 1773
}

1774
#ifdef CONFIG_SWAP
1775
static int inactive_anon_is_low_global(struct zone *zone)
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1788 1789
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1790
 * @lruvec: LRU vector to check
1791 1792 1793 1794
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1795
static int inactive_anon_is_low(struct lruvec *lruvec)
1796
{
1797 1798 1799 1800 1801 1802 1803
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1804
	if (!mem_cgroup_disabled())
1805
		return mem_cgroup_inactive_anon_is_low(lruvec);
1806

1807
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1808
}
1809
#else
1810
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1811 1812 1813 1814
{
	return 0;
}
#endif
1815

1816 1817
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1818
 * @lruvec: LRU vector to check
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1830
static int inactive_file_is_low(struct lruvec *lruvec)
1831
{
1832 1833 1834 1835 1836
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1837

1838
	return active > inactive;
1839 1840
}

H
Hugh Dickins 已提交
1841
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1842
{
H
Hugh Dickins 已提交
1843
	if (is_file_lru(lru))
1844
		return inactive_file_is_low(lruvec);
1845
	else
1846
		return inactive_anon_is_low(lruvec);
1847 1848
}

1849
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1850
				 struct lruvec *lruvec, struct scan_control *sc)
1851
{
1852
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1853
		if (inactive_list_is_low(lruvec, lru))
1854
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1855 1856 1857
		return 0;
	}

1858
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1859 1860
}

1861 1862 1863 1864 1865 1866 1867
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1868 1869 1870 1871 1872 1873
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1874 1875
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1876
 */
1877 1878
static void get_scan_count(struct lruvec *lruvec, int swappiness,
			   struct scan_control *sc, unsigned long *nr)
1879
{
1880 1881 1882 1883
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1884
	unsigned long anon_prio, file_prio;
1885
	enum scan_balance scan_balance;
1886
	unsigned long anon, file;
1887
	bool force_scan = false;
1888
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1889
	enum lru_list lru;
1890 1891
	bool some_scanned;
	int pass;
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1903
	if (current_is_kswapd() && !zone_reclaimable(zone))
1904
		force_scan = true;
1905
	if (!global_reclaim(sc))
1906
		force_scan = true;
1907 1908

	/* If we have no swap space, do not bother scanning anon pages. */
1909
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1910
		scan_balance = SCAN_FILE;
1911 1912
		goto out;
	}
1913

1914 1915 1916 1917 1918 1919 1920
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
1921
	if (!global_reclaim(sc) && !swappiness) {
1922
		scan_balance = SCAN_FILE;
1923 1924 1925 1926 1927 1928 1929 1930
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
1931
	if (!sc->priority && swappiness) {
1932
		scan_balance = SCAN_EQUAL;
1933 1934 1935
		goto out;
	}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
1946 1947 1948 1949 1950 1951
		unsigned long zonefile;
		unsigned long zonefree;

		zonefree = zone_page_state(zone, NR_FREE_PAGES);
		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
			   zone_page_state(zone, NR_INACTIVE_FILE);
1952

1953
		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1954 1955 1956 1957 1958
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

1959 1960 1961 1962 1963
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1964
		scan_balance = SCAN_FILE;
1965 1966 1967
		goto out;
	}

1968 1969
	scan_balance = SCAN_FRACT;

1970 1971 1972 1973
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1974
	anon_prio = swappiness;
H
Hugh Dickins 已提交
1975
	file_prio = 200 - anon_prio;
1976

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1988 1989 1990 1991 1992 1993

	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);

1994
	spin_lock_irq(&zone->lru_lock);
1995 1996 1997
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1998 1999
	}

2000 2001 2002
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2003 2004 2005
	}

	/*
2006 2007 2008
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2009
	 */
2010
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2011
	ap /= reclaim_stat->recent_rotated[0] + 1;
2012

2013
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2014
	fp /= reclaim_stat->recent_rotated[1] + 1;
2015
	spin_unlock_irq(&zone->lru_lock);
2016

2017 2018 2019 2020
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2021 2022 2023 2024 2025 2026 2027
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2028

2029 2030
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2031

2032 2033
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
				if ((scan_balance == SCAN_FILE) != file)
					scan = 0;
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
			nr[lru] = scan;
2058
			/*
2059 2060
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2061
			 */
2062
			some_scanned |= !!scan;
2063
		}
2064
	}
2065
}
2066

2067 2068 2069
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2070 2071
static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
			  struct scan_control *sc)
2072 2073
{
	unsigned long nr[NR_LRU_LISTS];
2074
	unsigned long targets[NR_LRU_LISTS];
2075 2076 2077 2078 2079
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2080
	bool scan_adjusted;
2081

2082
	get_scan_count(lruvec, swappiness, sc, nr);
2083

2084 2085 2086
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2101 2102 2103
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2104 2105 2106
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2107 2108 2109 2110 2111 2112 2113 2114 2115
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2116 2117 2118 2119 2120 2121

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2122
		 * requested. Ensure that the anon and file LRUs are scanned
2123 2124 2125 2126 2127 2128 2129
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2130 2131 2132 2133 2134 2135 2136 2137 2138
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2185
/* Use reclaim/compaction for costly allocs or under memory pressure */
2186
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2187
{
2188
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2189
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2190
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2191 2192 2193 2194 2195
		return true;

	return false;
}

2196
/*
M
Mel Gorman 已提交
2197 2198 2199 2200 2201
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2202
 */
2203
static inline bool should_continue_reclaim(struct zone *zone,
2204 2205 2206 2207 2208 2209 2210 2211
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2212
	if (!in_reclaim_compaction(sc))
2213 2214
		return false;

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2237 2238 2239 2240 2241 2242

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2243
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2244
	if (get_nr_swap_pages() > 0)
2245
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2246 2247 2248 2249 2250
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2251
	switch (compaction_suitable(zone, sc->order)) {
2252 2253 2254 2255 2256 2257 2258 2259
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2260
static bool shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2261
{
2262
	unsigned long nr_reclaimed, nr_scanned;
2263
	bool reclaimable = false;
L
Linus Torvalds 已提交
2264

2265 2266 2267 2268 2269 2270
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2271
		struct mem_cgroup *memcg;
2272

2273 2274
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2275

2276 2277
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2278
			struct lruvec *lruvec;
2279
			int swappiness;
2280

2281
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2282
			swappiness = mem_cgroup_swappiness(memcg);
2283

2284
			shrink_lruvec(lruvec, swappiness, sc);
2285

2286
			/*
2287 2288
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2289
			 * zone.
2290 2291 2292 2293 2294
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2295
			 */
2296 2297
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2298 2299 2300
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2301 2302
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2303 2304 2305 2306 2307

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2308 2309 2310
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2311 2312
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2313 2314

	return reclaimable;
2315 2316
}

2317 2318 2319 2320
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2321
static inline bool compaction_ready(struct zone *zone, int order)
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2332 2333
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2334
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2335 2336 2337 2338 2339 2340
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2341
	if (compaction_deferred(zone, order))
2342 2343
		return watermark_ok;

2344 2345 2346 2347 2348
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
	if (compaction_suitable(zone, order) == COMPACT_SKIPPED)
2349 2350 2351 2352 2353
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2354 2355 2356 2357 2358
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2359 2360
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2361 2362
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2363 2364 2365
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2366 2367 2368
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2369 2370
 *
 * Returns true if a zone was reclaimable.
L
Linus Torvalds 已提交
2371
 */
2372
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2373
{
2374
	struct zoneref *z;
2375
	struct zone *zone;
2376 2377
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2378 2379
	unsigned long lru_pages = 0;
	struct reclaim_state *reclaim_state = current->reclaim_state;
2380
	gfp_t orig_mask;
2381 2382 2383
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2384
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2385
	bool reclaimable = false;
2386

2387 2388 2389 2390 2391
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2392
	orig_mask = sc->gfp_mask;
2393 2394 2395
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2396
	nodes_clear(shrink.nodes_to_scan);
2397

2398 2399
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2400
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2401
			continue;
2402 2403 2404 2405
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2406
		if (global_reclaim(sc)) {
2407 2408
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2409 2410

			lru_pages += zone_reclaimable_pages(zone);
2411
			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2412

2413 2414
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2415
				continue;	/* Let kswapd poll it */
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
			    compaction_ready(zone, sc->order)) {
				sc->compaction_ready = true;
				continue;
2432
			}
2433

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2446 2447
			if (nr_soft_reclaimed)
				reclaimable = true;
2448
			/* need some check for avoid more shrink_zone() */
2449
		}
2450

2451 2452 2453 2454 2455 2456
		if (shrink_zone(zone, sc))
			reclaimable = true;

		if (global_reclaim(sc) &&
		    !reclaimable && zone_reclaimable(zone))
			reclaimable = true;
L
Linus Torvalds 已提交
2457
	}
2458

2459 2460 2461 2462 2463 2464 2465
	/*
	 * Don't shrink slabs when reclaiming memory from over limit cgroups
	 * but do shrink slab at least once when aborting reclaim for
	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
	 * pages.
	 */
	if (global_reclaim(sc)) {
2466
		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2467 2468 2469 2470 2471 2472
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
		}
	}

2473 2474 2475 2476 2477
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
2478

2479
	return reclaimable;
L
Linus Torvalds 已提交
2480
}
2481

L
Linus Torvalds 已提交
2482 2483 2484 2485 2486 2487 2488 2489
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2490 2491 2492 2493
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2494 2495 2496
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2497
 */
2498
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2499
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2500
{
2501
	unsigned long total_scanned = 0;
2502
	unsigned long writeback_threshold;
2503
	bool zones_reclaimable;
L
Linus Torvalds 已提交
2504

2505 2506
	delayacct_freepages_start();

2507
	if (global_reclaim(sc))
2508
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2509

2510
	do {
2511 2512
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2513
		sc->nr_scanned = 0;
2514
		zones_reclaimable = shrink_zones(zonelist, sc);
2515

2516
		total_scanned += sc->nr_scanned;
2517
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2518 2519 2520 2521
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2522

2523 2524 2525 2526 2527 2528 2529
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2530 2531 2532 2533 2534 2535 2536
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2537 2538
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2539 2540
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2541
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2542
		}
2543
	} while (--sc->priority >= 0);
2544

2545 2546
	delayacct_freepages_end();

2547 2548 2549
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2550
	/* Aborted reclaim to try compaction? don't OOM, then */
2551
	if (sc->compaction_ready)
2552 2553
		return 1;

2554 2555
	/* Any of the zones still reclaimable?  Don't OOM. */
	if (zones_reclaimable)
2556 2557 2558
		return 1;

	return 0;
L
Linus Torvalds 已提交
2559 2560
}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2571 2572 2573
		if (!populated_zone(zone))
			continue;

2574 2575 2576 2577
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2578 2579 2580 2581
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2598 2599 2600 2601
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2602
 */
2603
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2604 2605
					nodemask_t *nodemask)
{
2606
	struct zoneref *z;
2607
	struct zone *zone;
2608
	pg_data_t *pgdat = NULL;
2609 2610 2611 2612 2613 2614 2615 2616 2617

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2618 2619 2620 2621 2622 2623 2624 2625
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2626

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_mask, nodemask) {
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2655
		goto out;
2656

2657 2658 2659
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2671 2672

		goto check_pending;
2673 2674 2675 2676 2677
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2678 2679 2680 2681 2682 2683 2684

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2685 2686
}

2687
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2688
				gfp_t gfp_mask, nodemask_t *nodemask)
2689
{
2690
	unsigned long nr_reclaimed;
2691
	struct scan_control sc = {
2692
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2693
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2694 2695 2696
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2697
		.may_writepage = !laptop_mode,
2698
		.may_unmap = 1,
2699
		.may_swap = 1,
2700 2701
	};

2702
	/*
2703 2704 2705
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2706
	 */
2707
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2708 2709
		return 1;

2710 2711 2712 2713
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2714
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2715 2716 2717 2718

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2719 2720
}

A
Andrew Morton 已提交
2721
#ifdef CONFIG_MEMCG
2722

2723
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2724
						gfp_t gfp_mask, bool noswap,
2725 2726
						struct zone *zone,
						unsigned long *nr_scanned)
2727 2728
{
	struct scan_control sc = {
2729
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2730
		.target_mem_cgroup = memcg,
2731 2732 2733 2734
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2735
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2736
	int swappiness = mem_cgroup_swappiness(memcg);
2737

2738 2739
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2740

2741
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2742 2743 2744
						      sc.may_writepage,
						      sc.gfp_mask);

2745 2746 2747 2748 2749 2750 2751
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2752
	shrink_lruvec(lruvec, swappiness, &sc);
2753 2754 2755

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2756
	*nr_scanned = sc.nr_scanned;
2757 2758 2759
	return sc.nr_reclaimed;
}

2760
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2761
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2762
					   gfp_t gfp_mask,
2763
					   bool may_swap)
2764
{
2765
	struct zonelist *zonelist;
2766
	unsigned long nr_reclaimed;
2767
	int nid;
2768
	struct scan_control sc = {
2769
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2770 2771
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2772 2773 2774 2775
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2776
		.may_swap = may_swap,
2777
	};
2778

2779 2780 2781 2782 2783
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2784
	nid = mem_cgroup_select_victim_node(memcg);
2785 2786

	zonelist = NODE_DATA(nid)->node_zonelists;
2787 2788 2789 2790 2791

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2792
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2793 2794 2795 2796

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2797 2798 2799
}
#endif

2800
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2801
{
2802
	struct mem_cgroup *memcg;
2803

2804 2805 2806 2807 2808
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2809
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2810

2811
		if (inactive_anon_is_low(lruvec))
2812
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2813
					   sc, LRU_ACTIVE_ANON);
2814 2815 2816

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2817 2818
}

2819 2820 2821 2822 2823 2824 2825
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2826
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2827
	    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2828 2829 2830 2831 2832
		return false;

	return true;
}

2833
/*
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2844 2845 2846 2847
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2848
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2849 2850 2851 2852
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2853
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2854
{
2855
	unsigned long managed_pages = 0;
2856
	unsigned long balanced_pages = 0;
2857 2858
	int i;

2859 2860 2861
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2862

2863 2864 2865
		if (!populated_zone(zone))
			continue;

2866
		managed_pages += zone->managed_pages;
2867 2868 2869 2870 2871 2872 2873 2874

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2875
		if (!zone_reclaimable(zone)) {
2876
			balanced_pages += zone->managed_pages;
2877 2878 2879 2880
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2881
			balanced_pages += zone->managed_pages;
2882 2883 2884 2885 2886
		else if (!order)
			return false;
	}

	if (order)
2887
		return balanced_pages >= (managed_pages >> 2);
2888 2889
	else
		return true;
2890 2891
}

2892 2893 2894 2895 2896 2897 2898
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2899
					int classzone_idx)
2900 2901 2902
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2918

2919
	return pgdat_balanced(pgdat, order, classzone_idx);
2920 2921
}

2922 2923 2924
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2925 2926
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2927 2928
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2929
 */
2930
static bool kswapd_shrink_zone(struct zone *zone,
2931
			       int classzone_idx,
2932
			       struct scan_control *sc,
2933 2934
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2935
{
2936 2937
	int testorder = sc->order;
	unsigned long balance_gap;
2938 2939 2940 2941
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2942
	bool lowmem_pressure;
2943 2944 2945

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
2964 2965
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2976
	shrink_zone(zone, sc);
D
Dave Chinner 已提交
2977 2978
	nodes_clear(shrink.nodes_to_scan);
	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2979 2980

	reclaim_state->reclaimed_slab = 0;
2981
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2982 2983
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2984 2985 2986
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

J
Johannes Weiner 已提交
2987
	clear_bit(ZONE_WRITEBACK, &zone->flags);
2988

2989 2990 2991 2992 2993 2994
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2995
	if (zone_reclaimable(zone) &&
2996
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
J
Johannes Weiner 已提交
2997 2998
		clear_bit(ZONE_CONGESTED, &zone->flags);
		clear_bit(ZONE_DIRTY, &zone->flags);
2999 3000
	}

3001
	return sc->nr_scanned >= sc->nr_to_reclaim;
3002 3003
}

L
Linus Torvalds 已提交
3004 3005
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3006
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
3007
 *
3008
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3019 3020 3021 3022 3023
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3024
 */
3025
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3026
							int *classzone_idx)
L
Linus Torvalds 已提交
3027 3028
{
	int i;
3029
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3030 3031
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3032 3033
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3034
		.order = order,
3035
		.priority = DEF_PRIORITY,
3036
		.may_writepage = !laptop_mode,
3037
		.may_unmap = 1,
3038
		.may_swap = 1,
3039
	};
3040
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3041

3042
	do {
L
Linus Torvalds 已提交
3043
		unsigned long lru_pages = 0;
3044
		unsigned long nr_attempted = 0;
3045
		bool raise_priority = true;
3046
		bool pgdat_needs_compaction = (order > 0);
3047 3048

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3049

3050 3051 3052 3053 3054 3055
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3056

3057 3058
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3059

3060 3061
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3062
				continue;
L
Linus Torvalds 已提交
3063

3064 3065 3066 3067
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3068
			age_active_anon(zone, &sc);
3069

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3081
			if (!zone_balanced(zone, order, 0, 0)) {
3082
				end_zone = i;
A
Andrew Morton 已提交
3083
				break;
3084
			} else {
3085 3086 3087 3088
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
J
Johannes Weiner 已提交
3089 3090
				clear_bit(ZONE_CONGESTED, &zone->flags);
				clear_bit(ZONE_DIRTY, &zone->flags);
L
Linus Torvalds 已提交
3091 3092
			}
		}
3093

3094
		if (i < 0)
A
Andrew Morton 已提交
3095 3096
			goto out;

L
Linus Torvalds 已提交
3097 3098 3099
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3100 3101 3102
			if (!populated_zone(zone))
				continue;

3103
			lru_pages += zone_reclaimable_pages(zone);
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3115 3116
		}

3117 3118 3119 3120 3121 3122 3123
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3136
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3137 3138
				continue;

3139 3140
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3141 3142 3143
				continue;

			sc.nr_scanned = 0;
3144

3145 3146 3147 3148 3149 3150 3151 3152 3153
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3154
			/*
3155 3156 3157 3158
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3159
			 */
3160 3161 3162
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3163
		}
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3174
		/*
3175 3176 3177 3178 3179 3180
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3181
		 */
3182 3183
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3184

3185 3186 3187
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3188

3189 3190 3191 3192 3193 3194 3195
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3196
		/*
3197 3198
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3199
		 */
3200 3201
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3202
	} while (sc.priority >= 1 &&
3203
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3204

3205
out:
3206
	/*
3207
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3208 3209 3210 3211
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3212
	*classzone_idx = end_zone;
3213
	return order;
L
Linus Torvalds 已提交
3214 3215
}

3216
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3227
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3228 3229 3230 3231 3232 3233 3234 3235 3236
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3237
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3249

3250 3251 3252 3253 3254 3255 3256 3257
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3258 3259 3260
		if (!kthread_should_stop())
			schedule();

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3271 3272
/*
 * The background pageout daemon, started as a kernel thread
3273
 * from the init process.
L
Linus Torvalds 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3286
	unsigned long order, new_order;
3287
	unsigned balanced_order;
3288
	int classzone_idx, new_classzone_idx;
3289
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3290 3291
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3292

L
Linus Torvalds 已提交
3293 3294 3295
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3296
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3297

3298 3299
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3300
	if (!cpumask_empty(cpumask))
3301
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3316
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3317
	set_freezable();
L
Linus Torvalds 已提交
3318

3319
	order = new_order = 0;
3320
	balanced_order = 0;
3321
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3322
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3323
	for ( ; ; ) {
3324
		bool ret;
3325

3326 3327 3328 3329 3330
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3331 3332
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3333 3334 3335 3336 3337 3338
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3339
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3340 3341
			/*
			 * Don't sleep if someone wants a larger 'order'
3342
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3343 3344
			 */
			order = new_order;
3345
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3346
		} else {
3347 3348
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3349
			order = pgdat->kswapd_max_order;
3350
			classzone_idx = pgdat->classzone_idx;
3351 3352
			new_order = order;
			new_classzone_idx = classzone_idx;
3353
			pgdat->kswapd_max_order = 0;
3354
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3355 3356
		}

3357 3358 3359 3360 3361 3362 3363 3364
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3365 3366
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3367 3368 3369
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3370
		}
L
Linus Torvalds 已提交
3371
	}
3372

3373
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3374
	current->reclaim_state = NULL;
3375 3376
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3377 3378 3379 3380 3381 3382
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3383
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3384 3385 3386
{
	pg_data_t *pgdat;

3387
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3388 3389
		return;

3390
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3391
		return;
3392
	pgdat = zone->zone_pgdat;
3393
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3394
		pgdat->kswapd_max_order = order;
3395 3396
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3397
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3398
		return;
3399
	if (zone_balanced(zone, order, 0, 0))
3400 3401 3402
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3403
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3404 3405
}

3406
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3407
/*
3408
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3409 3410 3411 3412 3413
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3414
 */
3415
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3416
{
3417 3418
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3419
		.nr_to_reclaim = nr_to_reclaim,
3420
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3421
		.priority = DEF_PRIORITY,
3422
		.may_writepage = 1,
3423 3424
		.may_unmap = 1,
		.may_swap = 1,
3425
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3426
	};
3427
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3428 3429
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3430

3431 3432 3433 3434
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3435

3436
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3437

3438 3439 3440
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3441

3442
	return nr_reclaimed;
L
Linus Torvalds 已提交
3443
}
3444
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3445 3446 3447 3448 3449

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3450 3451
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3452
{
3453
	int nid;
L
Linus Torvalds 已提交
3454

3455
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3456
		for_each_node_state(nid, N_MEMORY) {
3457
			pg_data_t *pgdat = NODE_DATA(nid);
3458 3459 3460
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3461

3462
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3463
				/* One of our CPUs online: restore mask */
3464
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469
		}
	}
	return NOTIFY_OK;
}

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3486 3487
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3488
		pgdat->kswapd = NULL;
3489 3490 3491 3492
	}
	return ret;
}

3493
/*
3494
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3495
 * hold mem_hotplug_begin/end().
3496 3497 3498 3499 3500
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3501
	if (kswapd) {
3502
		kthread_stop(kswapd);
3503 3504
		NODE_DATA(nid)->kswapd = NULL;
	}
3505 3506
}

L
Linus Torvalds 已提交
3507 3508
static int __init kswapd_init(void)
{
3509
	int nid;
3510

L
Linus Torvalds 已提交
3511
	swap_setup();
3512
	for_each_node_state(nid, N_MEMORY)
3513
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3529
#define RECLAIM_OFF 0
3530
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3531 3532 3533
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3534 3535 3536 3537 3538 3539 3540
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3541 3542 3543 3544 3545 3546
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3547 3548 3549 3550 3551 3552
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3595 3596 3597
/*
 * Try to free up some pages from this zone through reclaim.
 */
3598
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3599
{
3600
	/* Minimum pages needed in order to stay on node */
3601
	const unsigned long nr_pages = 1 << order;
3602 3603
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3604
	struct scan_control sc = {
3605
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3606
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3607
		.order = order,
3608
		.priority = ZONE_RECLAIM_PRIORITY,
3609 3610 3611
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
		.may_swap = 1,
3612
	};
3613 3614 3615
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3616
	unsigned long nr_slab_pages0, nr_slab_pages1;
3617 3618

	cond_resched();
3619 3620 3621 3622 3623 3624
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3625
	lockdep_set_current_reclaim_state(gfp_mask);
3626 3627
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3628

3629
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3630 3631 3632 3633 3634
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3635 3636
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3637
	}
3638

3639 3640
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3641
		/*
3642
		 * shrink_slab() does not currently allow us to determine how
3643 3644 3645 3646
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3647
		 */
D
Dave Chinner 已提交
3648 3649
		nodes_clear(shrink.nodes_to_scan);
		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3650 3651 3652 3653
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3654
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3655 3656 3657 3658 3659 3660 3661 3662
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3663 3664 3665 3666 3667

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3668 3669 3670
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3671 3672
	}

3673
	p->reclaim_state = NULL;
3674
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3675
	lockdep_clear_current_reclaim_state();
3676
	return sc.nr_reclaimed >= nr_pages;
3677
}
3678 3679 3680 3681

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3682
	int ret;
3683 3684

	/*
3685 3686
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3687
	 *
3688 3689 3690 3691 3692
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3693
	 */
3694 3695
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3696
		return ZONE_RECLAIM_FULL;
3697

3698
	if (!zone_reclaimable(zone))
3699
		return ZONE_RECLAIM_FULL;
3700

3701
	/*
3702
	 * Do not scan if the allocation should not be delayed.
3703
	 */
3704
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3705
		return ZONE_RECLAIM_NOSCAN;
3706 3707 3708 3709 3710 3711 3712

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3713
	node_id = zone_to_nid(zone);
3714
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3715
		return ZONE_RECLAIM_NOSCAN;
3716

J
Johannes Weiner 已提交
3717
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3718 3719
		return ZONE_RECLAIM_NOSCAN;

3720
	ret = __zone_reclaim(zone, gfp_mask, order);
J
Johannes Weiner 已提交
3721
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3722

3723 3724 3725
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3726
	return ret;
3727
}
3728
#endif
L
Lee Schermerhorn 已提交
3729 3730 3731 3732 3733 3734

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3735
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3736 3737
 *
 * Reasons page might not be evictable:
3738
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3739
 * (2) page is part of an mlocked VMA
3740
 *
L
Lee Schermerhorn 已提交
3741
 */
3742
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3743
{
3744
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3745
}
3746

3747
#ifdef CONFIG_SHMEM
3748
/**
3749 3750 3751
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3752
 *
3753
 * Checks pages for evictability and moves them to the appropriate lru list.
3754 3755
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3756
 */
3757
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3758
{
3759
	struct lruvec *lruvec;
3760 3761 3762 3763
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3764

3765 3766 3767
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3768

3769 3770 3771 3772 3773 3774 3775 3776
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3777
		lruvec = mem_cgroup_page_lruvec(page, zone);
3778

3779 3780
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3781

3782
		if (page_evictable(page)) {
3783 3784
			enum lru_list lru = page_lru_base_type(page);

3785
			VM_BUG_ON_PAGE(PageActive(page), page);
3786
			ClearPageUnevictable(page);
3787 3788
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3789
			pgrescued++;
3790
		}
3791
	}
3792

3793 3794 3795 3796
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3797 3798
	}
}
3799
#endif /* CONFIG_SHMEM */