vmscan.c 106.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
51
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
52

53 54
#include "internal.h"

55 56 57
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
58 59 60 61
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

62 63 64
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

68 69
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
70
	/* This context's GFP mask */
A
Al Viro 已提交
71
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
72 73 74

	int may_writepage;

75 76
	/* Can mapped pages be reclaimed? */
	int may_unmap;
77

78 79 80
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
81
	int order;
82

83 84 85
	/* Scan (total_size >> priority) pages at once */
	int priority;

86 87 88 89 90
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
91

92 93 94 95 96
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
133
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
134 135 136 137

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
138
#ifdef CONFIG_MEMCG
139 140
static bool global_reclaim(struct scan_control *sc)
{
141
	return !sc->target_mem_cgroup;
142
}
143
#else
144 145 146 147
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
148 149
#endif

150
static unsigned long zone_reclaimable_pages(struct zone *zone)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

169
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170
{
171
	if (!mem_cgroup_disabled())
172
		return mem_cgroup_get_lru_size(lruvec, lru);
173

174
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 176
}

L
Linus Torvalds 已提交
177
/*
G
Glauber Costa 已提交
178
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
179
 */
G
Glauber Costa 已提交
180
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
181
{
G
Glauber Costa 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

199 200 201
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
202
	return 0;
L
Linus Torvalds 已提交
203
}
204
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
205 206 207 208

/*
 * Remove one
 */
209
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
210 211 212 213
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
214
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
215
}
216
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
217 218

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
219 220 221 222 223 224 225 226

static unsigned long
shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
		 unsigned long nr_pages_scanned, unsigned long lru_pages)
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
227
	long freeable;
G
Glauber Costa 已提交
228 229 230 231 232 233
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

234 235
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
236 237 238 239 240 241 242 243 244 245 246
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
	delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
	delta *= freeable;
G
Glauber Costa 已提交
248 249 250 251 252
	do_div(delta, lru_pages + 1);
	total_scan += delta;
	if (total_scan < 0) {
		printk(KERN_ERR
		"shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
253
		       shrinker->scan_objects, total_scan);
254
		total_scan = freeable;
G
Glauber Costa 已提交
255 256 257 258 259 260 261 262
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
263
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
264 265 266 267 268
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
269 270
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
271 272 273 274 275 276

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
277 278
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
279 280 281

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
				nr_pages_scanned, lru_pages,
282
				freeable, delta, total_scan);
G
Glauber Costa 已提交
283

284 285 286 287 288 289 290 291 292 293 294
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
295
	 * than the total number of objects on slab (freeable), we must be
296 297 298 299
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
300
	       total_scan >= freeable) {
D
Dave Chinner 已提交
301
		unsigned long ret;
302
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
303

304
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
305 306 307 308
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
309

310 311
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
	return freed;
329 330
}

L
Linus Torvalds 已提交
331 332 333 334 335 336 337 338
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
339
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
340 341 342 343 344 345 346
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
347 348
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
349
 */
D
Dave Chinner 已提交
350
unsigned long shrink_slab(struct shrink_control *shrinkctl,
351
			  unsigned long nr_pages_scanned,
352
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
353 354
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
355
	unsigned long freed = 0;
L
Linus Torvalds 已提交
356

357 358
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
359

360
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
361 362 363 364 365 366 367
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
368 369
		goto out;
	}
L
Linus Torvalds 已提交
370 371

	list_for_each_entry(shrinker, &shrinker_list, list) {
372 373
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
			shrinkctl->nid = 0;
G
Glauber Costa 已提交
374
			freed += shrink_slab_node(shrinkctl, shrinker,
375 376 377 378 379 380 381 382
					nr_pages_scanned, lru_pages);
			continue;
		}

		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
			if (node_online(shrinkctl->nid))
				freed += shrink_slab_node(shrinkctl, shrinker,
						nr_pages_scanned, lru_pages);
L
Linus Torvalds 已提交
383 384 385 386

		}
	}
	up_read(&shrinker_rwsem);
387 388
out:
	cond_resched();
D
Dave Chinner 已提交
389
	return freed;
L
Linus Torvalds 已提交
390 391 392 393
}

static inline int is_page_cache_freeable(struct page *page)
{
394 395 396 397 398
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
399
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
400 401
}

402 403
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
404
{
405
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
429
	lock_page(page);
430 431
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
432 433 434
	unlock_page(page);
}

435 436 437 438 439 440 441 442 443 444 445 446
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
447
/*
A
Andrew Morton 已提交
448 449
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
450
 */
451
static pageout_t pageout(struct page *page, struct address_space *mapping,
452
			 struct scan_control *sc)
L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
461
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
477
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
478 479
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
480
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
481 482 483 484 485 486 487
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
488
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
489 490 491 492 493 494 495
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
496 497
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
498 499 500 501 502 503 504
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
505
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
506 507 508
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
509

L
Linus Torvalds 已提交
510 511 512 513
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
514
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
516 517 518 519 520 521
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

522
/*
N
Nick Piggin 已提交
523 524
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
525
 */
N
Nick Piggin 已提交
526
static int __remove_mapping(struct address_space *mapping, struct page *page)
527
{
528 529
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
530

N
Nick Piggin 已提交
531
	spin_lock_irq(&mapping->tree_lock);
532
	/*
N
Nick Piggin 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
556
	 */
N
Nick Piggin 已提交
557
	if (!page_freeze_refs(page, 2))
558
		goto cannot_free;
N
Nick Piggin 已提交
559 560 561
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
562
		goto cannot_free;
N
Nick Piggin 已提交
563
	}
564 565 566 567

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
568
		spin_unlock_irq(&mapping->tree_lock);
569
		swapcache_free(swap, page);
N
Nick Piggin 已提交
570
	} else {
571 572 573 574
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

575
		__delete_from_page_cache(page, NULL);
N
Nick Piggin 已提交
576
		spin_unlock_irq(&mapping->tree_lock);
577
		mem_cgroup_uncharge_cache_page(page);
578 579 580

		if (freepage != NULL)
			freepage(page);
581 582 583 584 585
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
586
	spin_unlock_irq(&mapping->tree_lock);
587 588 589
	return 0;
}

N
Nick Piggin 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
610 611 612 613 614 615 616 617 618 619 620
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
621
	bool is_unevictable;
622
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
623

624
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
625 626 627 628

redo:
	ClearPageUnevictable(page);

629
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
630 631 632 633 634 635
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
636
		is_unevictable = false;
637
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
638 639 640 641 642
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
643
		is_unevictable = true;
L
Lee Schermerhorn 已提交
644
		add_page_to_unevictable_list(page);
645
		/*
646 647 648
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
649
		 * isolation/check_move_unevictable_pages,
650
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
651 652
		 * the page back to the evictable list.
		 *
653
		 * The other side is TestClearPageMlocked() or shmem_lock().
654 655
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
656 657 658 659 660 661 662
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
663
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
664 665 666 667 668 669 670 671 672 673
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

674
	if (was_unevictable && !is_unevictable)
675
		count_vm_event(UNEVICTABLE_PGRESCUED);
676
	else if (!was_unevictable && is_unevictable)
677 678
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
679 680 681
	put_page(page);		/* drop ref from isolate */
}

682 683 684
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
685
	PAGEREF_KEEP,
686 687 688 689 690 691
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
692
	int referenced_ptes, referenced_page;
693 694
	unsigned long vm_flags;

695 696
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
697
	referenced_page = TestClearPageReferenced(page);
698 699 700 701 702 703 704 705

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

706
	if (referenced_ptes) {
707
		if (PageSwapBacked(page))
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

725
		if (referenced_page || referenced_ptes > 1)
726 727
			return PAGEREF_ACTIVATE;

728 729 730 731 732 733
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

734 735
		return PAGEREF_KEEP;
	}
736 737

	/* Reclaim if clean, defer dirty pages to writeback */
738
	if (referenced_page && !PageSwapBacked(page))
739 740 741
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
742 743
}

744 745 746 747
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
748 749
	struct address_space *mapping;

750 751 752 753 754 755 756 757 758 759 760 761 762
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
763 764 765 766 767 768 769 770

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
771 772
}

L
Linus Torvalds 已提交
773
/*
A
Andrew Morton 已提交
774
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
775
 */
A
Andrew Morton 已提交
776
static unsigned long shrink_page_list(struct list_head *page_list,
777
				      struct zone *zone,
778
				      struct scan_control *sc,
779
				      enum ttu_flags ttu_flags,
780
				      unsigned long *ret_nr_dirty,
781
				      unsigned long *ret_nr_unqueued_dirty,
782
				      unsigned long *ret_nr_congested,
783
				      unsigned long *ret_nr_writeback,
784
				      unsigned long *ret_nr_immediate,
785
				      bool force_reclaim)
L
Linus Torvalds 已提交
786 787
{
	LIST_HEAD(ret_pages);
788
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
789
	int pgactivate = 0;
790
	unsigned long nr_unqueued_dirty = 0;
791 792
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
793
	unsigned long nr_reclaimed = 0;
794
	unsigned long nr_writeback = 0;
795
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
796 797 798

	cond_resched();

799
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
800 801 802 803
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
804
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
805
		bool dirty, writeback;
L
Linus Torvalds 已提交
806 807 808 809 810 811

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
812
		if (!trylock_page(page))
L
Linus Torvalds 已提交
813 814
			goto keep;

815 816
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
817 818

		sc->nr_scanned++;
819

820
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
821
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
822

823
		if (!sc->may_unmap && page_mapped(page))
824 825
			goto keep_locked;

L
Linus Torvalds 已提交
826 827 828 829
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

830 831 832
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

833 834 835 836 837 838 839 840 841 842 843 844 845
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

846 847 848 849 850 851
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
852
		mapping = page_mapping(page);
853 854
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
855 856
			nr_congested++;

857 858 859 860 861 862 863 864 865 866 867
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
868 869
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
894
		if (PageWriteback(page)) {
895 896 897 898
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
899 900
				nr_immediate++;
				goto keep_locked;
901 902 903

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
904 905 906 907 908 909 910 911 912 913 914 915 916
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
917
				nr_writeback++;
918

919
				goto keep_locked;
920 921 922 923

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
924
			}
925
		}
L
Linus Torvalds 已提交
926

927 928 929
		if (!force_reclaim)
			references = page_check_references(page, sc);

930 931
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
932
			goto activate_locked;
933 934
		case PAGEREF_KEEP:
			goto keep_locked;
935 936 937 938
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
939 940 941 942 943

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
944
		if (PageAnon(page) && !PageSwapCache(page)) {
945 946
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
947
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
948
				goto activate_locked;
949
			may_enter_fs = 1;
L
Linus Torvalds 已提交
950

951 952 953
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
954 955 956 957 958 959

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
960
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
961 962 963 964
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
965 966
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
967 968 969 970 971 972
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
973 974
			/*
			 * Only kswapd can writeback filesystem pages to
975 976
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
977
			 */
978
			if (page_is_file_cache(page) &&
979
					(!current_is_kswapd() ||
980
					 !zone_is_reclaim_dirty(zone))) {
981 982 983 984 985 986 987 988 989
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

990 991 992
				goto keep_locked;
			}

993
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
994
				goto keep_locked;
995
			if (!may_enter_fs)
L
Linus Torvalds 已提交
996
				goto keep_locked;
997
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
998 999 1000
				goto keep_locked;

			/* Page is dirty, try to write it out here */
1001
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1002 1003 1004 1005 1006
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1007
				if (PageWriteback(page))
1008
					goto keep;
1009
				if (PageDirty(page))
L
Linus Torvalds 已提交
1010
					goto keep;
1011

L
Linus Torvalds 已提交
1012 1013 1014 1015
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1016
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1036
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1047
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1048 1049
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1066 1067
		}

N
Nick Piggin 已提交
1068
		if (!mapping || !__remove_mapping(mapping, page))
1069
			goto keep_locked;
L
Linus Torvalds 已提交
1070

N
Nick Piggin 已提交
1071 1072 1073 1074 1075 1076 1077 1078
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1079
free_it:
1080
		nr_reclaimed++;
1081 1082 1083 1084 1085 1086

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1087 1088
		continue;

N
Nick Piggin 已提交
1089
cull_mlocked:
1090 1091
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1092 1093 1094 1095
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1096
activate_locked:
1097 1098
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1099
			try_to_free_swap(page);
1100
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1107
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1108
	}
1109

1110
	free_hot_cold_page_list(&free_pages, 1);
1111

L
Linus Torvalds 已提交
1112
	list_splice(&ret_pages, page_list);
1113
	count_vm_events(PGACTIVATE, pgactivate);
1114
	mem_cgroup_uncharge_end();
1115 1116
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1117
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1118
	*ret_nr_writeback += nr_writeback;
1119
	*ret_nr_immediate += nr_immediate;
1120
	return nr_reclaimed;
L
Linus Torvalds 已提交
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1131
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1132 1133 1134 1135
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1136 1137
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1138 1139 1140 1141 1142 1143
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1144 1145
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1146 1147 1148 1149 1150
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1161
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1162 1163 1164 1165 1166 1167 1168
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1169 1170
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1171 1172
		return ret;

A
Andy Whitcroft 已提交
1173
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1208

1209 1210 1211
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1236
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1237
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1238
 * @nr_scanned:	The number of pages that were scanned.
1239
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1240
 * @mode:	One of the LRU isolation modes
1241
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1242 1243 1244
 *
 * returns how many pages were moved onto *@dst.
 */
1245
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1246
		struct lruvec *lruvec, struct list_head *dst,
1247
		unsigned long *nr_scanned, struct scan_control *sc,
1248
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1249
{
H
Hugh Dickins 已提交
1250
	struct list_head *src = &lruvec->lists[lru];
1251
	unsigned long nr_taken = 0;
1252
	unsigned long scan;
L
Linus Torvalds 已提交
1253

1254
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1255
		struct page *page;
1256
		int nr_pages;
A
Andy Whitcroft 已提交
1257

L
Linus Torvalds 已提交
1258 1259 1260
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1261
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1262

1263
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1264
		case 0:
1265 1266
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1267
			list_move(&page->lru, dst);
1268
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1269 1270 1271 1272 1273 1274
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1275

A
Andy Whitcroft 已提交
1276 1277 1278
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1279 1280
	}

H
Hugh Dickins 已提交
1281
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1282 1283
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1284 1285 1286
	return nr_taken;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1298 1299 1300
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1316
	VM_BUG_ON_PAGE(!page_count(page), page);
1317

1318 1319
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1320
		struct lruvec *lruvec;
1321 1322

		spin_lock_irq(&zone->lru_lock);
1323
		lruvec = mem_cgroup_page_lruvec(page, zone);
1324
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1325
			int lru = page_lru(page);
1326
			get_page(page);
1327
			ClearPageLRU(page);
1328 1329
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1330 1331 1332 1333 1334 1335
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1336
/*
F
Fengguang Wu 已提交
1337 1338 1339 1340 1341
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1342 1343 1344 1345 1346 1347 1348 1349 1350
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1351
	if (!global_reclaim(sc))
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1362 1363 1364 1365 1366 1367 1368 1369
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1370 1371 1372
	return isolated > inactive;
}

1373
static noinline_for_stack void
H
Hugh Dickins 已提交
1374
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1375
{
1376 1377
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1378
	LIST_HEAD(pages_to_free);
1379 1380 1381 1382 1383

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1384
		struct page *page = lru_to_page(page_list);
1385
		int lru;
1386

1387
		VM_BUG_ON_PAGE(PageLRU(page), page);
1388
		list_del(&page->lru);
1389
		if (unlikely(!page_evictable(page))) {
1390 1391 1392 1393 1394
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1395 1396 1397

		lruvec = mem_cgroup_page_lruvec(page, zone);

1398
		SetPageLRU(page);
1399
		lru = page_lru(page);
1400 1401
		add_page_to_lru_list(page, lruvec, lru);

1402 1403
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1404 1405
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1406
		}
1407 1408 1409
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1410
			del_page_from_lru_list(page, lruvec, lru);
1411 1412 1413 1414 1415 1416 1417

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1418 1419 1420
		}
	}

1421 1422 1423 1424
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1425 1426
}

L
Linus Torvalds 已提交
1427
/*
A
Andrew Morton 已提交
1428 1429
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1430
 */
1431
static noinline_for_stack unsigned long
1432
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1433
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1434 1435
{
	LIST_HEAD(page_list);
1436
	unsigned long nr_scanned;
1437
	unsigned long nr_reclaimed = 0;
1438
	unsigned long nr_taken;
1439 1440
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1441
	unsigned long nr_unqueued_dirty = 0;
1442
	unsigned long nr_writeback = 0;
1443
	unsigned long nr_immediate = 0;
1444
	isolate_mode_t isolate_mode = 0;
1445
	int file = is_file_lru(lru);
1446 1447
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1448

1449
	while (unlikely(too_many_isolated(zone, file, sc))) {
1450
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1451 1452 1453 1454 1455 1456

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1457
	lru_add_drain();
1458 1459

	if (!sc->may_unmap)
1460
		isolate_mode |= ISOLATE_UNMAPPED;
1461
	if (!sc->may_writepage)
1462
		isolate_mode |= ISOLATE_CLEAN;
1463

L
Linus Torvalds 已提交
1464
	spin_lock_irq(&zone->lru_lock);
1465

1466 1467
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1468 1469 1470 1471

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1472
	if (global_reclaim(sc)) {
1473 1474
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1475
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1476
		else
H
Hugh Dickins 已提交
1477
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1478
	}
1479
	spin_unlock_irq(&zone->lru_lock);
1480

1481
	if (nr_taken == 0)
1482
		return 0;
A
Andy Whitcroft 已提交
1483

1484
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1485 1486 1487
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1488

1489 1490
	spin_lock_irq(&zone->lru_lock);

1491
	reclaim_stat->recent_scanned[file] += nr_taken;
1492

Y
Ying Han 已提交
1493 1494 1495 1496 1497 1498 1499 1500
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1501

1502
	putback_inactive_pages(lruvec, &page_list);
1503

1504
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1505 1506 1507 1508

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1520 1521 1522
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1523
	 */
1524
	if (nr_writeback && nr_writeback == nr_taken)
1525
		zone_set_flag(zone, ZONE_WRITEBACK);
1526

1527
	/*
1528 1529
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1530
	 */
1531
	if (global_reclaim(sc)) {
1532 1533 1534 1535 1536 1537 1538
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1557
	}
1558

1559 1560 1561 1562 1563 1564 1565 1566
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1567 1568 1569
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1570
		sc->priority,
M
Mel Gorman 已提交
1571
		trace_shrink_flags(file));
1572
	return nr_reclaimed;
L
Linus Torvalds 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1592

1593
static void move_active_pages_to_lru(struct lruvec *lruvec,
1594
				     struct list_head *list,
1595
				     struct list_head *pages_to_free,
1596 1597
				     enum lru_list lru)
{
1598
	struct zone *zone = lruvec_zone(lruvec);
1599 1600
	unsigned long pgmoved = 0;
	struct page *page;
1601
	int nr_pages;
1602 1603 1604

	while (!list_empty(list)) {
		page = lru_to_page(list);
1605
		lruvec = mem_cgroup_page_lruvec(page, zone);
1606

1607
		VM_BUG_ON_PAGE(PageLRU(page), page);
1608 1609
		SetPageLRU(page);

1610 1611
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1612
		list_move(&page->lru, &lruvec->lists[lru]);
1613
		pgmoved += nr_pages;
1614

1615 1616 1617
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1618
			del_page_from_lru_list(page, lruvec, lru);
1619 1620 1621 1622 1623 1624 1625

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1626 1627 1628 1629 1630 1631
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1632

H
Hugh Dickins 已提交
1633
static void shrink_active_list(unsigned long nr_to_scan,
1634
			       struct lruvec *lruvec,
1635
			       struct scan_control *sc,
1636
			       enum lru_list lru)
L
Linus Torvalds 已提交
1637
{
1638
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1639
	unsigned long nr_scanned;
1640
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1641
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1642
	LIST_HEAD(l_active);
1643
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1644
	struct page *page;
1645
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1646
	unsigned long nr_rotated = 0;
1647
	isolate_mode_t isolate_mode = 0;
1648
	int file = is_file_lru(lru);
1649
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1650 1651

	lru_add_drain();
1652 1653

	if (!sc->may_unmap)
1654
		isolate_mode |= ISOLATE_UNMAPPED;
1655
	if (!sc->may_writepage)
1656
		isolate_mode |= ISOLATE_CLEAN;
1657

L
Linus Torvalds 已提交
1658
	spin_lock_irq(&zone->lru_lock);
1659

1660 1661
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1662
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1663
		zone->pages_scanned += nr_scanned;
1664

1665
	reclaim_stat->recent_scanned[file] += nr_taken;
1666

H
Hugh Dickins 已提交
1667
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1668
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1669
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1670 1671 1672 1673 1674 1675
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1676

1677
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1678 1679 1680 1681
			putback_lru_page(page);
			continue;
		}

1682 1683 1684 1685 1686 1687 1688 1689
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1690 1691
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1692
			nr_rotated += hpage_nr_pages(page);
1693 1694 1695 1696 1697 1698 1699 1700 1701
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1702
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1703 1704 1705 1706
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1707

1708
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1709 1710 1711
		list_add(&page->lru, &l_inactive);
	}

1712
	/*
1713
	 * Move pages back to the lru list.
1714
	 */
1715
	spin_lock_irq(&zone->lru_lock);
1716
	/*
1717 1718 1719 1720
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1721
	 */
1722
	reclaim_stat->recent_rotated[file] += nr_rotated;
1723

1724 1725
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1726
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1727
	spin_unlock_irq(&zone->lru_lock);
1728 1729

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1730 1731
}

1732
#ifdef CONFIG_SWAP
1733
static int inactive_anon_is_low_global(struct zone *zone)
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1746 1747
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1748
 * @lruvec: LRU vector to check
1749 1750 1751 1752
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1753
static int inactive_anon_is_low(struct lruvec *lruvec)
1754
{
1755 1756 1757 1758 1759 1760 1761
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1762
	if (!mem_cgroup_disabled())
1763
		return mem_cgroup_inactive_anon_is_low(lruvec);
1764

1765
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1766
}
1767
#else
1768
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1769 1770 1771 1772
{
	return 0;
}
#endif
1773

1774 1775
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1776
 * @lruvec: LRU vector to check
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1788
static int inactive_file_is_low(struct lruvec *lruvec)
1789
{
1790 1791 1792 1793 1794
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1795

1796
	return active > inactive;
1797 1798
}

H
Hugh Dickins 已提交
1799
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1800
{
H
Hugh Dickins 已提交
1801
	if (is_file_lru(lru))
1802
		return inactive_file_is_low(lruvec);
1803
	else
1804
		return inactive_anon_is_low(lruvec);
1805 1806
}

1807
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1808
				 struct lruvec *lruvec, struct scan_control *sc)
1809
{
1810
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1811
		if (inactive_list_is_low(lruvec, lru))
1812
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1813 1814 1815
		return 0;
	}

1816
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1817 1818
}

1819
static int vmscan_swappiness(struct scan_control *sc)
1820
{
1821
	if (global_reclaim(sc))
1822
		return vm_swappiness;
1823
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1824 1825
}

1826 1827 1828 1829 1830 1831 1832
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1833 1834 1835 1836 1837 1838
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1839 1840
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1841
 */
1842
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1843
			   unsigned long *nr)
1844
{
1845 1846 1847 1848
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1849
	unsigned long anon_prio, file_prio;
1850 1851 1852
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1853
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1854
	enum lru_list lru;
1855

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1866
	if (current_is_kswapd() && !zone_reclaimable(zone))
1867
		force_scan = true;
1868
	if (!global_reclaim(sc))
1869
		force_scan = true;
1870 1871

	/* If we have no swap space, do not bother scanning anon pages. */
1872
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1873
		scan_balance = SCAN_FILE;
1874 1875
		goto out;
	}
1876

1877 1878 1879 1880 1881 1882 1883 1884
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1885
		scan_balance = SCAN_FILE;
1886 1887 1888 1889 1890 1891 1892 1893 1894
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1895
		scan_balance = SCAN_EQUAL;
1896 1897 1898
		goto out;
	}

1899 1900 1901 1902
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1903

1904 1905 1906 1907 1908 1909
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1910
	if (global_reclaim(sc)) {
1911
		free = zone_page_state(zone, NR_FREE_PAGES);
1912
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1913
			scan_balance = SCAN_ANON;
1914
			goto out;
1915
		}
1916 1917
	}

1918 1919 1920 1921 1922
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1923
		scan_balance = SCAN_FILE;
1924 1925 1926
		goto out;
	}

1927 1928
	scan_balance = SCAN_FRACT;

1929 1930 1931 1932
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1933
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1934
	file_prio = 200 - anon_prio;
1935

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1947
	spin_lock_irq(&zone->lru_lock);
1948 1949 1950
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1951 1952
	}

1953 1954 1955
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1956 1957 1958
	}

	/*
1959 1960 1961
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1962
	 */
1963
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1964
	ap /= reclaim_stat->recent_rotated[0] + 1;
1965

1966
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1967
	fp /= reclaim_stat->recent_rotated[1] + 1;
1968
	spin_unlock_irq(&zone->lru_lock);
1969

1970 1971 1972 1973
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1974 1975
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1976
		unsigned long size;
1977
		unsigned long scan;
1978

1979
		size = get_lru_size(lruvec, lru);
1980
		scan = size >> sc->priority;
1981

1982 1983
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
2006
		nr[lru] = scan;
2007
	}
2008
}
2009

2010 2011 2012 2013 2014 2015
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
2016
	unsigned long targets[NR_LRU_LISTS];
2017 2018 2019 2020 2021
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2022
	bool scan_adjusted = false;
2023 2024 2025

	get_scan_count(lruvec, sc, nr);

2026 2027 2028
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2029 2030 2031
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2032 2033 2034
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2035 2036 2037 2038 2039 2040 2041 2042 2043
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2044 2045 2046 2047

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

2048
		/*
2049 2050 2051 2052
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
2053
		 */
2054
		if (global_reclaim(sc) && !current_is_kswapd())
2055
			break;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2113
/* Use reclaim/compaction for costly allocs or under memory pressure */
2114
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2115
{
2116
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2117
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2118
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2119 2120 2121 2122 2123
		return true;

	return false;
}

2124
/*
M
Mel Gorman 已提交
2125 2126 2127 2128 2129
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2130
 */
2131
static inline bool should_continue_reclaim(struct zone *zone,
2132 2133 2134 2135 2136 2137 2138 2139
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2140
	if (!in_reclaim_compaction(sc))
2141 2142
		return false;

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2165 2166 2167 2168 2169 2170

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2171
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2172
	if (get_nr_swap_pages() > 0)
2173
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2174 2175 2176 2177 2178
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2179
	switch (compaction_suitable(zone, sc->order)) {
2180 2181 2182 2183 2184 2185 2186 2187
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2188
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2189
{
2190
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2191

2192 2193 2194 2195 2196 2197
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2198
		struct mem_cgroup *memcg;
2199

2200 2201
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2202

2203 2204
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2205
			struct lruvec *lruvec;
2206

2207
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2208

2209
			shrink_lruvec(lruvec, sc);
2210

2211
			/*
2212 2213
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2214
			 * zone.
2215 2216 2217 2218 2219
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2220
			 */
2221 2222
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2223 2224 2225
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2226 2227
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2228 2229 2230 2231 2232

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2233 2234
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2254
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2255 2256 2257 2258 2259 2260 2261 2262
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2263
	if (compaction_deferred(zone, sc->order))
2264 2265 2266 2267 2268 2269 2270 2271 2272
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2273 2274 2275 2276 2277
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2278 2279
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2280 2281
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2282 2283 2284
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2285 2286 2287
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2288 2289
 *
 * This function returns true if a zone is being reclaimed for a costly
2290
 * high-order allocation and compaction is ready to begin. This indicates to
2291 2292
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2293
 */
2294
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2295
{
2296
	struct zoneref *z;
2297
	struct zone *zone;
2298 2299
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2300
	unsigned long lru_pages = 0;
2301
	bool aborted_reclaim = false;
2302
	struct reclaim_state *reclaim_state = current->reclaim_state;
2303 2304 2305
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2306

2307 2308 2309 2310 2311 2312 2313 2314
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2315
	nodes_clear(shrink.nodes_to_scan);
2316

2317 2318
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2319
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2320
			continue;
2321 2322 2323 2324
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2325
		if (global_reclaim(sc)) {
2326 2327
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2328 2329

			lru_pages += zone_reclaimable_pages(zone);
2330
			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2331

2332 2333
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2334
				continue;	/* Let kswapd poll it */
2335
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2336
				/*
2337 2338 2339 2340 2341
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2342 2343
				 * noticeable problem, like transparent huge
				 * page allocations.
2344
				 */
2345
				if (compaction_ready(zone, sc)) {
2346
					aborted_reclaim = true;
2347
					continue;
2348
				}
2349
			}
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2362
			/* need some check for avoid more shrink_zone() */
2363
		}
2364

2365
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2366
	}
2367

2368 2369 2370 2371 2372 2373 2374
	/*
	 * Don't shrink slabs when reclaiming memory from over limit cgroups
	 * but do shrink slab at least once when aborting reclaim for
	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
	 * pages.
	 */
	if (global_reclaim(sc)) {
2375
		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2376 2377 2378 2379 2380 2381
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
		}
	}

2382
	return aborted_reclaim;
2383 2384
}

2385
/* All zones in zonelist are unreclaimable? */
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2398
		if (zone_reclaimable(zone))
2399
			return false;
2400 2401
	}

2402
	return true;
L
Linus Torvalds 已提交
2403
}
2404

L
Linus Torvalds 已提交
2405 2406 2407 2408 2409 2410 2411 2412
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2413 2414 2415 2416
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2417 2418 2419
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2420
 */
2421
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2422
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2423
{
2424
	unsigned long total_scanned = 0;
2425
	unsigned long writeback_threshold;
2426
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2427

2428 2429
	delayacct_freepages_start();

2430
	if (global_reclaim(sc))
2431
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2432

2433
	do {
2434 2435
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2436
		sc->nr_scanned = 0;
2437
		aborted_reclaim = shrink_zones(zonelist, sc);
2438

2439
		total_scanned += sc->nr_scanned;
2440
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2441 2442
			goto out;

2443 2444 2445 2446 2447 2448 2449
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2450 2451 2452 2453 2454 2455 2456
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2457 2458
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2459 2460
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2461
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2462
		}
2463
	} while (--sc->priority >= 0 && !aborted_reclaim);
2464

L
Linus Torvalds 已提交
2465
out:
2466 2467
	delayacct_freepages_end();

2468 2469 2470
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2471 2472 2473 2474 2475 2476 2477 2478
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2479 2480
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2481 2482
		return 1;

2483
	/* top priority shrink_zones still had more to do? don't OOM, then */
2484
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2485 2486 2487
		return 1;

	return 0;
L
Linus Torvalds 已提交
2488 2489
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2520 2521 2522 2523
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2524
 */
2525
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2540 2541 2542 2543 2544 2545 2546 2547
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2548 2549 2550 2551 2552

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2553
		goto out;
2554

2555 2556 2557
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2569 2570

		goto check_pending;
2571 2572 2573 2574 2575
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2576 2577 2578 2579 2580 2581 2582

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2583 2584
}

2585
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2586
				gfp_t gfp_mask, nodemask_t *nodemask)
2587
{
2588
	unsigned long nr_reclaimed;
2589
	struct scan_control sc = {
2590
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2591
		.may_writepage = !laptop_mode,
2592
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2593
		.may_unmap = 1,
2594
		.may_swap = 1,
2595
		.order = order,
2596
		.priority = DEF_PRIORITY,
2597
		.target_mem_cgroup = NULL,
2598
		.nodemask = nodemask,
2599 2600
	};

2601
	/*
2602 2603 2604
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2605
	 */
2606
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2607 2608
		return 1;

2609 2610 2611 2612
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2613
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2614 2615 2616 2617

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2618 2619
}

A
Andrew Morton 已提交
2620
#ifdef CONFIG_MEMCG
2621

2622
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2623
						gfp_t gfp_mask, bool noswap,
2624 2625
						struct zone *zone,
						unsigned long *nr_scanned)
2626 2627
{
	struct scan_control sc = {
2628
		.nr_scanned = 0,
2629
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2630 2631 2632 2633
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2634
		.priority = 0,
2635
		.target_mem_cgroup = memcg,
2636
	};
2637
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2638

2639 2640
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2641

2642
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2643 2644 2645
						      sc.may_writepage,
						      sc.gfp_mask);

2646 2647 2648 2649 2650 2651 2652
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2653
	shrink_lruvec(lruvec, &sc);
2654 2655 2656

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2657
	*nr_scanned = sc.nr_scanned;
2658 2659 2660
	return sc.nr_reclaimed;
}

2661
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2662
					   gfp_t gfp_mask,
2663
					   bool noswap)
2664
{
2665
	struct zonelist *zonelist;
2666
	unsigned long nr_reclaimed;
2667
	int nid;
2668 2669
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2670
		.may_unmap = 1,
2671
		.may_swap = !noswap,
2672
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2673
		.order = 0,
2674
		.priority = DEF_PRIORITY,
2675
		.target_mem_cgroup = memcg,
2676
		.nodemask = NULL, /* we don't care the placement */
2677 2678 2679
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
2680

2681 2682 2683 2684 2685
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2686
	nid = mem_cgroup_select_victim_node(memcg);
2687 2688

	zonelist = NODE_DATA(nid)->node_zonelists;
2689 2690 2691 2692 2693

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2694
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2695 2696 2697 2698

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2699 2700 2701
}
#endif

2702
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2703
{
2704
	struct mem_cgroup *memcg;
2705

2706 2707 2708 2709 2710
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2711
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2712

2713
		if (inactive_anon_is_low(lruvec))
2714
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2715
					   sc, LRU_ACTIVE_ANON);
2716 2717 2718

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2719 2720
}

2721 2722 2723 2724 2725 2726 2727
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2728 2729
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2730 2731 2732 2733 2734
		return false;

	return true;
}

2735
/*
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2746 2747 2748 2749
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2750
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2751 2752 2753 2754
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2755
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2756
{
2757
	unsigned long managed_pages = 0;
2758
	unsigned long balanced_pages = 0;
2759 2760
	int i;

2761 2762 2763
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2764

2765 2766 2767
		if (!populated_zone(zone))
			continue;

2768
		managed_pages += zone->managed_pages;
2769 2770 2771 2772 2773 2774 2775 2776

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2777
		if (!zone_reclaimable(zone)) {
2778
			balanced_pages += zone->managed_pages;
2779 2780 2781 2782
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2783
			balanced_pages += zone->managed_pages;
2784 2785 2786 2787 2788
		else if (!order)
			return false;
	}

	if (order)
2789
		return balanced_pages >= (managed_pages >> 2);
2790 2791
	else
		return true;
2792 2793
}

2794 2795 2796 2797 2798 2799 2800
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2801
					int classzone_idx)
2802 2803 2804
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2820

2821
	return pgdat_balanced(pgdat, order, classzone_idx);
2822 2823
}

2824 2825 2826
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2827 2828
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2829 2830
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2831
 */
2832
static bool kswapd_shrink_zone(struct zone *zone,
2833
			       int classzone_idx,
2834
			       struct scan_control *sc,
2835 2836
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2837
{
2838 2839
	int testorder = sc->order;
	unsigned long balance_gap;
2840 2841 2842 2843
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2844
	bool lowmem_pressure;
2845 2846 2847

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2879
	shrink_zone(zone, sc);
D
Dave Chinner 已提交
2880 2881
	nodes_clear(shrink.nodes_to_scan);
	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2882 2883

	reclaim_state->reclaimed_slab = 0;
2884
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2885 2886
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2887 2888 2889
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2890 2891
	zone_clear_flag(zone, ZONE_WRITEBACK);

2892 2893 2894 2895 2896 2897
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2898
	if (zone_reclaimable(zone) &&
2899 2900 2901 2902 2903
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2904
	return sc->nr_scanned >= sc->nr_to_reclaim;
2905 2906
}

L
Linus Torvalds 已提交
2907 2908
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2909
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2910
 *
2911
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2922 2923 2924 2925 2926
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2927
 */
2928
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2929
							int *classzone_idx)
L
Linus Torvalds 已提交
2930 2931
{
	int i;
2932
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2933 2934
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2935 2936
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2937
		.priority = DEF_PRIORITY,
2938
		.may_unmap = 1,
2939
		.may_swap = 1,
2940
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2941
		.order = order,
2942
		.target_mem_cgroup = NULL,
2943
	};
2944
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2945

2946
	do {
L
Linus Torvalds 已提交
2947
		unsigned long lru_pages = 0;
2948
		unsigned long nr_attempted = 0;
2949
		bool raise_priority = true;
2950
		bool pgdat_needs_compaction = (order > 0);
2951 2952

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2953

2954 2955 2956 2957 2958 2959
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2960

2961 2962
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2963

2964 2965
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2966
				continue;
L
Linus Torvalds 已提交
2967

2968 2969 2970 2971
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2972
			age_active_anon(zone, &sc);
2973

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2985
			if (!zone_balanced(zone, order, 0, 0)) {
2986
				end_zone = i;
A
Andrew Morton 已提交
2987
				break;
2988
			} else {
2989 2990 2991 2992
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2993
				zone_clear_flag(zone, ZONE_CONGESTED);
2994
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2995 2996
			}
		}
2997

2998
		if (i < 0)
A
Andrew Morton 已提交
2999 3000
			goto out;

L
Linus Torvalds 已提交
3001 3002 3003
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3004 3005 3006
			if (!populated_zone(zone))
				continue;

3007
			lru_pages += zone_reclaimable_pages(zone);
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3019 3020
		}

3021 3022 3023 3024 3025 3026 3027
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3040
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3041 3042
				continue;

3043 3044
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3045 3046 3047
				continue;

			sc.nr_scanned = 0;
3048

3049 3050 3051 3052 3053 3054 3055 3056 3057
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3058
			/*
3059 3060 3061 3062
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3063
			 */
3064 3065 3066
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3067
		}
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3078
		/*
3079 3080 3081 3082 3083 3084
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3085
		 */
3086 3087
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3088

3089 3090 3091
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3092

3093 3094 3095 3096 3097 3098 3099
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3100
		/*
3101 3102
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3103
		 */
3104 3105
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3106
	} while (sc.priority >= 1 &&
3107
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3108

3109
out:
3110
	/*
3111
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3112 3113 3114 3115
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3116
	*classzone_idx = end_zone;
3117
	return order;
L
Linus Torvalds 已提交
3118 3119
}

3120
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3131
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3132 3133 3134 3135 3136 3137 3138 3139 3140
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3141
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3153

3154 3155 3156 3157 3158 3159 3160 3161
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3162 3163 3164
		if (!kthread_should_stop())
			schedule();

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3175 3176
/*
 * The background pageout daemon, started as a kernel thread
3177
 * from the init process.
L
Linus Torvalds 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3190
	unsigned long order, new_order;
3191
	unsigned balanced_order;
3192
	int classzone_idx, new_classzone_idx;
3193
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3194 3195
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3196

L
Linus Torvalds 已提交
3197 3198 3199
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3200
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3201

3202 3203
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3204
	if (!cpumask_empty(cpumask))
3205
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3220
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3221
	set_freezable();
L
Linus Torvalds 已提交
3222

3223
	order = new_order = 0;
3224
	balanced_order = 0;
3225
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3226
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3227
	for ( ; ; ) {
3228
		bool ret;
3229

3230 3231 3232 3233 3234
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3235 3236
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3237 3238 3239 3240 3241 3242
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3243
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3244 3245
			/*
			 * Don't sleep if someone wants a larger 'order'
3246
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3247 3248
			 */
			order = new_order;
3249
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3250
		} else {
3251 3252
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3253
			order = pgdat->kswapd_max_order;
3254
			classzone_idx = pgdat->classzone_idx;
3255 3256
			new_order = order;
			new_classzone_idx = classzone_idx;
3257
			pgdat->kswapd_max_order = 0;
3258
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3259 3260
		}

3261 3262 3263 3264 3265 3266 3267 3268
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3269 3270
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3271 3272 3273
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3274
		}
L
Linus Torvalds 已提交
3275
	}
3276 3277

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3278 3279 3280 3281 3282 3283
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3284
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3285 3286 3287
{
	pg_data_t *pgdat;

3288
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3289 3290
		return;

3291
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3292
		return;
3293
	pgdat = zone->zone_pgdat;
3294
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3295
		pgdat->kswapd_max_order = order;
3296 3297
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3298
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3299
		return;
3300
	if (zone_balanced(zone, order, 0, 0))
3301 3302 3303
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3304
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3305 3306
}

3307
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3308
/*
3309
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3310 3311 3312 3313 3314
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3315
 */
3316
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3317
{
3318 3319
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3320 3321 3322
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3323
		.may_writepage = 1,
3324 3325 3326
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3327
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3328
	};
3329
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3330 3331
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3332

3333 3334 3335 3336
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3337

3338
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3339

3340 3341 3342
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3343

3344
	return nr_reclaimed;
L
Linus Torvalds 已提交
3345
}
3346
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3347 3348 3349 3350 3351

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3352 3353
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3354
{
3355
	int nid;
L
Linus Torvalds 已提交
3356

3357
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3358
		for_each_node_state(nid, N_MEMORY) {
3359
			pg_data_t *pgdat = NODE_DATA(nid);
3360 3361 3362
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3363

3364
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3365
				/* One of our CPUs online: restore mask */
3366
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3367 3368 3369 3370 3371
		}
	}
	return NOTIFY_OK;
}

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3388 3389
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3390
		pgdat->kswapd = NULL;
3391 3392 3393 3394
	}
	return ret;
}

3395
/*
3396 3397
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3398 3399 3400 3401 3402
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3403
	if (kswapd) {
3404
		kthread_stop(kswapd);
3405 3406
		NODE_DATA(nid)->kswapd = NULL;
	}
3407 3408
}

L
Linus Torvalds 已提交
3409 3410
static int __init kswapd_init(void)
{
3411
	int nid;
3412

L
Linus Torvalds 已提交
3413
	swap_setup();
3414
	for_each_node_state(nid, N_MEMORY)
3415
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3416 3417 3418 3419 3420
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3431
#define RECLAIM_OFF 0
3432
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3433 3434 3435
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3436 3437 3438 3439 3440 3441 3442
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3443 3444 3445 3446 3447 3448
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3449 3450 3451 3452 3453 3454
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3497 3498 3499
/*
 * Try to free up some pages from this zone through reclaim.
 */
3500
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3501
{
3502
	/* Minimum pages needed in order to stay on node */
3503
	const unsigned long nr_pages = 1 << order;
3504 3505
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3506 3507
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3508
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3509
		.may_swap = 1,
3510
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3511
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3512
		.order = order,
3513
		.priority = ZONE_RECLAIM_PRIORITY,
3514
	};
3515 3516 3517
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3518
	unsigned long nr_slab_pages0, nr_slab_pages1;
3519 3520

	cond_resched();
3521 3522 3523 3524 3525 3526
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3527
	lockdep_set_current_reclaim_state(gfp_mask);
3528 3529
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3530

3531
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3532 3533 3534 3535 3536
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3537 3538
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3539
	}
3540

3541 3542
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3543
		/*
3544
		 * shrink_slab() does not currently allow us to determine how
3545 3546 3547 3548
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3549
		 */
D
Dave Chinner 已提交
3550 3551
		nodes_clear(shrink.nodes_to_scan);
		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3552 3553 3554 3555
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3556
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3557 3558 3559 3560 3561 3562 3563 3564
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3565 3566 3567 3568 3569

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3570 3571 3572
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3573 3574
	}

3575
	p->reclaim_state = NULL;
3576
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3577
	lockdep_clear_current_reclaim_state();
3578
	return sc.nr_reclaimed >= nr_pages;
3579
}
3580 3581 3582 3583

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3584
	int ret;
3585 3586

	/*
3587 3588
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3589
	 *
3590 3591 3592 3593 3594
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3595
	 */
3596 3597
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3598
		return ZONE_RECLAIM_FULL;
3599

3600
	if (!zone_reclaimable(zone))
3601
		return ZONE_RECLAIM_FULL;
3602

3603
	/*
3604
	 * Do not scan if the allocation should not be delayed.
3605
	 */
3606
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3607
		return ZONE_RECLAIM_NOSCAN;
3608 3609 3610 3611 3612 3613 3614

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3615
	node_id = zone_to_nid(zone);
3616
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3617
		return ZONE_RECLAIM_NOSCAN;
3618 3619

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3620 3621
		return ZONE_RECLAIM_NOSCAN;

3622 3623 3624
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3625 3626 3627
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3628
	return ret;
3629
}
3630
#endif
L
Lee Schermerhorn 已提交
3631 3632 3633 3634 3635 3636

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3637
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3638 3639
 *
 * Reasons page might not be evictable:
3640
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3641
 * (2) page is part of an mlocked VMA
3642
 *
L
Lee Schermerhorn 已提交
3643
 */
3644
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3645
{
3646
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3647
}
3648

3649
#ifdef CONFIG_SHMEM
3650
/**
3651 3652 3653
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3654
 *
3655
 * Checks pages for evictability and moves them to the appropriate lru list.
3656 3657
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3658
 */
3659
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3660
{
3661
	struct lruvec *lruvec;
3662 3663 3664 3665
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3666

3667 3668 3669
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3670

3671 3672 3673 3674 3675 3676 3677 3678
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3679
		lruvec = mem_cgroup_page_lruvec(page, zone);
3680

3681 3682
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3683

3684
		if (page_evictable(page)) {
3685 3686
			enum lru_list lru = page_lru_base_type(page);

3687
			VM_BUG_ON_PAGE(PageActive(page), page);
3688
			ClearPageUnevictable(page);
3689 3690
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3691
			pgrescued++;
3692
		}
3693
	}
3694

3695 3696 3697 3698
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3699 3700
	}
}
3701
#endif /* CONFIG_SHMEM */
3702

3703
static void warn_scan_unevictable_pages(void)
3704
{
3705
	printk_once(KERN_WARNING
3706
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3707
		    "disabled for lack of a legitimate use case.  If you have "
3708 3709
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3710 3711 3712 3713 3714 3715 3716 3717 3718
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3719
			   void __user *buffer,
3720 3721
			   size_t *length, loff_t *ppos)
{
3722
	warn_scan_unevictable_pages();
3723
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3724 3725 3726 3727
	scan_unevictable_pages = 0;
	return 0;
}

3728
#ifdef CONFIG_NUMA
3729 3730 3731 3732 3733
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3734 3735
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3736 3737
					  char *buf)
{
3738
	warn_scan_unevictable_pages();
3739 3740 3741
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3742 3743
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3744 3745
					const char *buf, size_t count)
{
3746
	warn_scan_unevictable_pages();
3747 3748 3749 3750
	return 1;
}


3751
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3752 3753 3754 3755 3756
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3757
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3758 3759 3760 3761
}

void scan_unevictable_unregister_node(struct node *node)
{
3762
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3763
}
3764
#endif