vmscan.c 108.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86
	/* Scan (total_size >> priority) pages at once */
	int priority;

87 88 89
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

90 91 92 93 94 95 96 97
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

98 99 100
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

101 102 103 104 105 106 107 108 109 110
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
145 146 147 148 149
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
150 151 152 153

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
154
#ifdef CONFIG_MEMCG
155 156
static bool global_reclaim(struct scan_control *sc)
{
157
	return !sc->target_mem_cgroup;
158
}
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
180
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 182 183 184
		return true;
#endif
	return false;
}
185
#else
186 187 188 189
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
190 191 192 193 194

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
195 196
#endif

M
Mel Gorman 已提交
197 198 199 200 201
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
M
Michal Hocko 已提交
202
unsigned long zone_reclaimable_pages(struct zone *zone)
203
{
204
	unsigned long nr;
205

M
Mel Gorman 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219
	nr = zone_page_state_snapshot(zone, NR_ZONE_LRU_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_LRU_ANON);

	return nr;
}

unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
220 221

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
222 223 224
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
225 226 227 228

	return nr;
}

M
Mel Gorman 已提交
229
bool pgdat_reclaimable(struct pglist_data *pgdat)
230
{
M
Mel Gorman 已提交
231 232
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
233 234
}

235
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
236
{
237
	if (!mem_cgroup_disabled())
238
		return mem_cgroup_get_lru_size(lruvec, lru);
239

M
Mel Gorman 已提交
240
	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
241 242
}

L
Linus Torvalds 已提交
243
/*
G
Glauber Costa 已提交
244
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
245
 */
G
Glauber Costa 已提交
246
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
247
{
G
Glauber Costa 已提交
248 249 250 251 252 253 254 255 256
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

257 258 259
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
260
	return 0;
L
Linus Torvalds 已提交
261
}
262
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
263 264 265 266

/*
 * Remove one
 */
267
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
268 269 270 271
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
272
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
273
}
274
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
275 276

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
277

278 279 280 281
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
282 283 284 285
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
286
	long freeable;
G
Glauber Costa 已提交
287 288 289 290 291 292
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

293 294
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
295 296 297 298 299 300 301 302 303 304
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
305
	delta = (4 * nr_scanned) / shrinker->seeks;
306
	delta *= freeable;
307
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
308 309
	total_scan += delta;
	if (total_scan < 0) {
310
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
311
		       shrinker->scan_objects, total_scan);
312
		total_scan = freeable;
G
Glauber Costa 已提交
313 314 315 316 317 318 319 320
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
321
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
322 323 324 325 326
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
327 328
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
329 330 331 332 333 334

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
335 336
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
337 338

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
339 340
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
341

342 343 344 345 346 347 348 349 350 351 352
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
353
	 * than the total number of objects on slab (freeable), we must be
354 355 356 357
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
358
	       total_scan >= freeable) {
D
Dave Chinner 已提交
359
		unsigned long ret;
360
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
361

362
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
363 364 365 366
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
367

368 369
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

385
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
386
	return freed;
387 388
}

389
/**
390
 * shrink_slab - shrink slab caches
391 392
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
393
 * @memcg: memory cgroup whose slab caches to target
394 395
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
396
 *
397
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
398
 *
399 400
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
401
 *
402 403
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
404 405
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
406
 *
407 408 409 410 411 412 413
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
414
 *
415
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
416
 */
417 418 419 420
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
421 422
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
423
	unsigned long freed = 0;
L
Linus Torvalds 已提交
424

425
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
426 427
		return 0;

428 429
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
430

431
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
432 433 434 435 436 437 438
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
439 440
		goto out;
	}
L
Linus Torvalds 已提交
441 442

	list_for_each_entry(shrinker, &shrinker_list, list) {
443 444 445
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
446
			.memcg = memcg,
447
		};
448

449 450 451 452 453 454 455
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
456 457
			continue;

458 459
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
460

461
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
462
	}
463

L
Linus Torvalds 已提交
464
	up_read(&shrinker_rwsem);
465 466
out:
	cond_resched();
D
Dave Chinner 已提交
467
	return freed;
L
Linus Torvalds 已提交
468 469
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
493 494
static inline int is_page_cache_freeable(struct page *page)
{
495 496 497 498 499
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
500
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
501 502
}

503
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
504
{
505
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
506
		return 1;
507
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
508
		return 1;
509
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
529
	lock_page(page);
530 531
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
532 533 534
	unlock_page(page);
}

535 536 537 538 539 540 541 542 543 544 545 546
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
547
/*
A
Andrew Morton 已提交
548 549
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
550
 */
551
static pageout_t pageout(struct page *page, struct address_space *mapping,
552
			 struct scan_control *sc)
L
Linus Torvalds 已提交
553 554 555 556 557 558 559 560
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
561
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
577
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
578 579
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
580
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
581 582 583 584 585 586 587
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
588
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
589 590 591 592 593 594 595
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
596 597
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
598 599 600 601 602 603 604
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
605
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
606 607 608
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
609

L
Linus Torvalds 已提交
610 611 612 613
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
614
		trace_mm_vmscan_writepage(page);
615
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
616 617 618 619 620 621
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

622
/*
N
Nick Piggin 已提交
623 624
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
625
 */
626 627
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
628
{
629 630
	unsigned long flags;

631 632
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
633

634
	spin_lock_irqsave(&mapping->tree_lock, flags);
635
	/*
N
Nick Piggin 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
655
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
656 657 658
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
659
	 */
660
	if (!page_ref_freeze(page, 2))
661
		goto cannot_free;
N
Nick Piggin 已提交
662 663
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
664
		page_ref_unfreeze(page, 2);
665
		goto cannot_free;
N
Nick Piggin 已提交
666
	}
667 668 669

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
670
		mem_cgroup_swapout(page, swap);
671
		__delete_from_swap_cache(page);
672
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
673
		swapcache_free(swap);
N
Nick Piggin 已提交
674
	} else {
675
		void (*freepage)(struct page *);
676
		void *shadow = NULL;
677 678

		freepage = mapping->a_ops->freepage;
679 680 681 682 683 684 685 686 687
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
688 689 690 691 692 693
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
694 695
		 */
		if (reclaimed && page_is_file_cache(page) &&
696
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
697
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
698
		__delete_from_page_cache(page, shadow);
699
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
700 701 702

		if (freepage != NULL)
			freepage(page);
703 704 705 706 707
	}

	return 1;

cannot_free:
708
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
709 710 711
	return 0;
}

N
Nick Piggin 已提交
712 713 714 715 716 717 718 719
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
720
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
721 722 723 724 725
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
726
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
727 728 729 730 731
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
732 733 734 735 736 737 738 739 740 741 742
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
743
	bool is_unevictable;
744
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
745

746
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
747 748 749 750

redo:
	ClearPageUnevictable(page);

751
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
752 753 754 755 756 757
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
758
		is_unevictable = false;
759
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
760 761 762 763 764
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
765
		is_unevictable = true;
L
Lee Schermerhorn 已提交
766
		add_page_to_unevictable_list(page);
767
		/*
768 769 770
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
771
		 * isolation/check_move_unevictable_pages,
772
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
773 774
		 * the page back to the evictable list.
		 *
775
		 * The other side is TestClearPageMlocked() or shmem_lock().
776 777
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
778 779 780 781 782 783 784
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
785
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
786 787 788 789 790 791 792 793 794 795
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

796
	if (was_unevictable && !is_unevictable)
797
		count_vm_event(UNEVICTABLE_PGRESCUED);
798
	else if (!was_unevictable && is_unevictable)
799 800
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
801 802 803
	put_page(page);		/* drop ref from isolate */
}

804 805 806
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
807
	PAGEREF_KEEP,
808 809 810 811 812 813
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
814
	int referenced_ptes, referenced_page;
815 816
	unsigned long vm_flags;

817 818
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
819
	referenced_page = TestClearPageReferenced(page);
820 821 822 823 824 825 826 827

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

828
	if (referenced_ptes) {
829
		if (PageSwapBacked(page))
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

847
		if (referenced_page || referenced_ptes > 1)
848 849
			return PAGEREF_ACTIVATE;

850 851 852 853 854 855
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

856 857
		return PAGEREF_KEEP;
	}
858 859

	/* Reclaim if clean, defer dirty pages to writeback */
860
	if (referenced_page && !PageSwapBacked(page))
861 862 863
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
864 865
}

866 867 868 869
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
870 871
	struct address_space *mapping;

872 873 874 875 876 877 878 879 880 881 882 883 884
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
885 886 887 888 889 890 891 892

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
893 894
}

L
Linus Torvalds 已提交
895
/*
A
Andrew Morton 已提交
896
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
897
 */
A
Andrew Morton 已提交
898
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
899
				      struct pglist_data *pgdat,
900
				      struct scan_control *sc,
901
				      enum ttu_flags ttu_flags,
902
				      unsigned long *ret_nr_dirty,
903
				      unsigned long *ret_nr_unqueued_dirty,
904
				      unsigned long *ret_nr_congested,
905
				      unsigned long *ret_nr_writeback,
906
				      unsigned long *ret_nr_immediate,
907
				      bool force_reclaim)
L
Linus Torvalds 已提交
908 909
{
	LIST_HEAD(ret_pages);
910
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
911
	int pgactivate = 0;
912
	unsigned long nr_unqueued_dirty = 0;
913 914
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
915
	unsigned long nr_reclaimed = 0;
916
	unsigned long nr_writeback = 0;
917
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
918 919 920 921 922 923 924

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
925
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
926
		bool dirty, writeback;
M
Minchan Kim 已提交
927 928
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
929 930 931 932 933 934

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
935
		if (!trylock_page(page))
L
Linus Torvalds 已提交
936 937
			goto keep;

938
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
939 940

		sc->nr_scanned++;
941

942
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
943
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
944

945
		if (!sc->may_unmap && page_mapped(page))
946 947
			goto keep_locked;

L
Linus Torvalds 已提交
948 949 950 951
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

952 953 954
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

955 956 957 958 959 960 961 962 963 964 965 966 967
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

968 969 970 971 972 973
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
974
		mapping = page_mapping(page);
975
		if (((dirty || writeback) && mapping &&
976
		     inode_write_congested(mapping->host)) ||
977
		    (writeback && PageReclaim(page)))
978 979
			nr_congested++;

980 981 982 983 984 985 986 987 988 989 990
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
991 992
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
993
		 *
994
		 * 2) Global or new memcg reclaim encounters a page that is
995 996 997
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
998
		 *    reclaim and continue scanning.
999
		 *
1000 1001
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1002 1003 1004 1005 1006
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1007
		 * 3) Legacy memcg encounters a page that is already marked
1008 1009 1010 1011 1012
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
1013
		if (PageWriteback(page)) {
1014 1015 1016
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1017
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1018 1019
				nr_immediate++;
				goto keep_locked;
1020 1021

			/* Case 2 above */
1022
			} else if (sane_reclaim(sc) ||
1023
			    !PageReclaim(page) || !may_enter_fs) {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1036
				nr_writeback++;
1037
				goto keep_locked;
1038 1039 1040

			/* Case 3 above */
			} else {
1041
				unlock_page(page);
1042
				wait_on_page_writeback(page);
1043 1044 1045
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1046
			}
1047
		}
L
Linus Torvalds 已提交
1048

1049 1050 1051
		if (!force_reclaim)
			references = page_check_references(page, sc);

1052 1053
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1054
			goto activate_locked;
1055 1056
		case PAGEREF_KEEP:
			goto keep_locked;
1057 1058 1059 1060
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1061 1062 1063 1064 1065

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1066
		if (PageAnon(page) && !PageSwapCache(page)) {
1067 1068
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1069
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1070
				goto activate_locked;
M
Minchan Kim 已提交
1071
			lazyfree = true;
1072
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1073

1074 1075
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1076 1077 1078 1079
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1080
		}
L
Linus Torvalds 已提交
1081

1082 1083
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1084 1085 1086 1087 1088
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1089 1090 1091
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1092 1093 1094 1095
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1096 1097
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1098 1099
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1100 1101 1102 1103 1104 1105
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1106 1107
			/*
			 * Only kswapd can writeback filesystem pages to
1108 1109
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1110
			 */
1111
			if (page_is_file_cache(page) &&
1112
					(!current_is_kswapd() ||
M
Mel Gorman 已提交
1113
					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1114 1115 1116 1117 1118 1119
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1120
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1121 1122
				SetPageReclaim(page);

1123 1124 1125
				goto keep_locked;
			}

1126
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1127
				goto keep_locked;
1128
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1129
				goto keep_locked;
1130
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1131 1132
				goto keep_locked;

1133 1134 1135 1136 1137 1138
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1139
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1140 1141 1142 1143 1144
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1145
				if (PageWriteback(page))
1146
					goto keep;
1147
				if (PageDirty(page))
L
Linus Torvalds 已提交
1148
					goto keep;
1149

L
Linus Torvalds 已提交
1150 1151 1152 1153
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1154
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1174
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1185
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1186 1187
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1204 1205
		}

M
Minchan Kim 已提交
1206
lazyfree:
1207
		if (!mapping || !__remove_mapping(mapping, page, true))
1208
			goto keep_locked;
L
Linus Torvalds 已提交
1209

N
Nick Piggin 已提交
1210 1211 1212 1213 1214 1215 1216
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1217
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1218
free_it:
M
Minchan Kim 已提交
1219 1220 1221
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1222
		nr_reclaimed++;
1223 1224 1225 1226 1227 1228

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1229 1230
		continue;

N
Nick Piggin 已提交
1231
cull_mlocked:
1232 1233
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1234
		unlock_page(page);
1235
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1236 1237
		continue;

L
Linus Torvalds 已提交
1238
activate_locked:
1239
		/* Not a candidate for swapping, so reclaim swap space. */
1240
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1241
			try_to_free_swap(page);
1242
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1243 1244 1245 1246 1247 1248
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1249
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1250
	}
1251

1252
	mem_cgroup_uncharge_list(&free_pages);
1253
	try_to_unmap_flush();
1254
	free_hot_cold_page_list(&free_pages, true);
1255

L
Linus Torvalds 已提交
1256
	list_splice(&ret_pages, page_list);
1257
	count_vm_events(PGACTIVATE, pgactivate);
1258

1259 1260
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1261
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1262
	*ret_nr_writeback += nr_writeback;
1263
	*ret_nr_immediate += nr_immediate;
1264
	return nr_reclaimed;
L
Linus Torvalds 已提交
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1275
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1276 1277 1278 1279
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1280
		if (page_is_file_cache(page) && !PageDirty(page) &&
1281
		    !__PageMovable(page)) {
1282 1283 1284 1285 1286
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1287
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1288 1289
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1290
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1291
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1292 1293 1294
	return ret;
}

A
Andy Whitcroft 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1305
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1306 1307 1308 1309 1310 1311 1312
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1313 1314
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1315 1316
		return ret;

A
Andy Whitcroft 已提交
1317
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1352

1353 1354 1355
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1369
/*
1370
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1380
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1381
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1382
 * @nr_scanned:	The number of pages that were scanned.
1383
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1384
 * @mode:	One of the LRU isolation modes
1385
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1386 1387 1388
 *
 * returns how many pages were moved onto *@dst.
 */
1389
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1390
		struct lruvec *lruvec, struct list_head *dst,
1391
		unsigned long *nr_scanned, struct scan_control *sc,
1392
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1393
{
H
Hugh Dickins 已提交
1394
	struct list_head *src = &lruvec->lists[lru];
1395
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1396 1397
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
	unsigned long scan, nr_pages;
1398
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1399

1400 1401
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1402 1403
		struct page *page;

L
Linus Torvalds 已提交
1404 1405 1406
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1407
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1408

1409 1410 1411 1412 1413
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
			continue;
		}

1414
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1415
		case 0:
M
Mel Gorman 已提交
1416 1417 1418
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1419 1420 1421 1422 1423 1424 1425
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1426

A
Andy Whitcroft 已提交
1427 1428 1429
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1430 1431
	}

1432 1433 1434 1435 1436 1437 1438 1439 1440
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
	if (!list_empty(&pages_skipped))
		list_splice(&pages_skipped, src);
H
Hugh Dickins 已提交
1441
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1442 1443
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
M
Mel Gorman 已提交
1444 1445 1446 1447 1448 1449 1450
	for (scan = 0; scan < MAX_NR_ZONES; scan++) {
		nr_pages = nr_zone_taken[scan];
		if (!nr_pages)
			continue;

		update_lru_size(lruvec, lru, scan, -nr_pages);
	}
L
Linus Torvalds 已提交
1451 1452 1453
	return nr_taken;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1465 1466 1467
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1483
	VM_BUG_ON_PAGE(!page_count(page), page);
1484
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1485

1486 1487
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1488
		struct lruvec *lruvec;
1489

1490
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1491
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1492
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1493
			int lru = page_lru(page);
1494
			get_page(page);
1495
			ClearPageLRU(page);
1496 1497
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1498
		}
1499
		spin_unlock_irq(zone_lru_lock(zone));
1500 1501 1502 1503
	}
	return ret;
}

1504
/*
F
Fengguang Wu 已提交
1505 1506 1507 1508 1509
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1510
 */
M
Mel Gorman 已提交
1511
static int too_many_isolated(struct pglist_data *pgdat, int file,
1512 1513 1514 1515 1516 1517 1518
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1519
	if (!sane_reclaim(sc))
1520 1521 1522
		return 0;

	if (file) {
M
Mel Gorman 已提交
1523 1524
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1525
	} else {
M
Mel Gorman 已提交
1526 1527
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1528 1529
	}

1530 1531 1532 1533 1534
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1535
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1536 1537
		inactive >>= 3;

1538 1539 1540
	return isolated > inactive;
}

1541
static noinline_for_stack void
H
Hugh Dickins 已提交
1542
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1543
{
1544
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1545
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1546
	LIST_HEAD(pages_to_free);
1547 1548 1549 1550 1551

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1552
		struct page *page = lru_to_page(page_list);
1553
		int lru;
1554

1555
		VM_BUG_ON_PAGE(PageLRU(page), page);
1556
		list_del(&page->lru);
1557
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1558
			spin_unlock_irq(&pgdat->lru_lock);
1559
			putback_lru_page(page);
M
Mel Gorman 已提交
1560
			spin_lock_irq(&pgdat->lru_lock);
1561 1562
			continue;
		}
1563

M
Mel Gorman 已提交
1564
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1565

1566
		SetPageLRU(page);
1567
		lru = page_lru(page);
1568 1569
		add_page_to_lru_list(page, lruvec, lru);

1570 1571
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1572 1573
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1574
		}
1575 1576 1577
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1578
			del_page_from_lru_list(page, lruvec, lru);
1579 1580

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1581
				spin_unlock_irq(&pgdat->lru_lock);
1582
				mem_cgroup_uncharge(page);
1583
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1584
				spin_lock_irq(&pgdat->lru_lock);
1585 1586
			} else
				list_add(&page->lru, &pages_to_free);
1587 1588 1589
		}
	}

1590 1591 1592 1593
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1594 1595
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1609
/*
1610
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1611
 * of reclaimed pages
L
Linus Torvalds 已提交
1612
 */
1613
static noinline_for_stack unsigned long
1614
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1615
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1616 1617
{
	LIST_HEAD(page_list);
1618
	unsigned long nr_scanned;
1619
	unsigned long nr_reclaimed = 0;
1620
	unsigned long nr_taken;
1621 1622
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1623
	unsigned long nr_unqueued_dirty = 0;
1624
	unsigned long nr_writeback = 0;
1625
	unsigned long nr_immediate = 0;
1626
	isolate_mode_t isolate_mode = 0;
1627
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1628
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1629
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1630

M
Mel Gorman 已提交
1631
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1632
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1633 1634 1635 1636 1637 1638

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1639
	lru_add_drain();
1640 1641

	if (!sc->may_unmap)
1642
		isolate_mode |= ISOLATE_UNMAPPED;
1643
	if (!sc->may_writepage)
1644
		isolate_mode |= ISOLATE_CLEAN;
1645

M
Mel Gorman 已提交
1646
	spin_lock_irq(&pgdat->lru_lock);
1647

1648 1649
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1650

M
Mel Gorman 已提交
1651
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1652
	reclaim_stat->recent_scanned[file] += nr_taken;
1653

1654
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1655
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1656
		if (current_is_kswapd())
M
Mel Gorman 已提交
1657
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1658
		else
M
Mel Gorman 已提交
1659
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1660
	}
M
Mel Gorman 已提交
1661
	spin_unlock_irq(&pgdat->lru_lock);
1662

1663
	if (nr_taken == 0)
1664
		return 0;
A
Andy Whitcroft 已提交
1665

M
Mel Gorman 已提交
1666
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1667 1668 1669
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1670

M
Mel Gorman 已提交
1671
	spin_lock_irq(&pgdat->lru_lock);
1672

Y
Ying Han 已提交
1673 1674
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1675
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1676
		else
M
Mel Gorman 已提交
1677
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1678
	}
N
Nick Piggin 已提交
1679

1680
	putback_inactive_pages(lruvec, &page_list);
1681

M
Mel Gorman 已提交
1682
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1683

M
Mel Gorman 已提交
1684
	spin_unlock_irq(&pgdat->lru_lock);
1685

1686
	mem_cgroup_uncharge_list(&page_list);
1687
	free_hot_cold_page_list(&page_list, true);
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1699 1700 1701
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1702
	 */
1703
	if (nr_writeback && nr_writeback == nr_taken)
M
Mel Gorman 已提交
1704
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1705

1706
	/*
1707 1708
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1709
	 */
1710
	if (sane_reclaim(sc)) {
1711 1712 1713 1714 1715
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
M
Mel Gorman 已提交
1716
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1717

1718 1719 1720
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
M
Mel Gorman 已提交
1721
		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
J
Johannes Weiner 已提交
1722
		 * reclaim context.
1723 1724
		 */
		if (nr_unqueued_dirty == nr_taken)
M
Mel Gorman 已提交
1725
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1726 1727

		/*
1728 1729 1730
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1731 1732
		 * they are written so also forcibly stall.
		 */
1733
		if (nr_immediate && current_may_throttle())
1734
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1735
	}
1736

1737 1738 1739 1740 1741
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1742 1743
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1744
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1745

M
Mel Gorman 已提交
1746 1747
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1748
			sc->priority, file);
1749
	return nr_reclaimed;
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1759
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1760
 * the pages are mapped, the processing is slow (page_referenced()) so we
1761
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1762 1763 1764 1765
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1766
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1767 1768
 * But we had to alter page->flags anyway.
 */
1769

1770
static void move_active_pages_to_lru(struct lruvec *lruvec,
1771
				     struct list_head *list,
1772
				     struct list_head *pages_to_free,
1773 1774
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1775
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1776 1777
	unsigned long pgmoved = 0;
	struct page *page;
1778
	int nr_pages;
1779 1780 1781

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1782
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1783

1784
		VM_BUG_ON_PAGE(PageLRU(page), page);
1785 1786
		SetPageLRU(page);

1787
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1788
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1789
		list_move(&page->lru, &lruvec->lists[lru]);
1790
		pgmoved += nr_pages;
1791

1792 1793 1794
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1795
			del_page_from_lru_list(page, lruvec, lru);
1796 1797

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1798
				spin_unlock_irq(&pgdat->lru_lock);
1799
				mem_cgroup_uncharge(page);
1800
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1801
				spin_lock_irq(&pgdat->lru_lock);
1802 1803
			} else
				list_add(&page->lru, pages_to_free);
1804 1805
		}
	}
1806

1807 1808 1809
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1810

H
Hugh Dickins 已提交
1811
static void shrink_active_list(unsigned long nr_to_scan,
1812
			       struct lruvec *lruvec,
1813
			       struct scan_control *sc,
1814
			       enum lru_list lru)
L
Linus Torvalds 已提交
1815
{
1816
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1817
	unsigned long nr_scanned;
1818
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1819
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1820
	LIST_HEAD(l_active);
1821
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1822
	struct page *page;
1823
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1824
	unsigned long nr_rotated = 0;
1825
	isolate_mode_t isolate_mode = 0;
1826
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1827
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1828 1829

	lru_add_drain();
1830 1831

	if (!sc->may_unmap)
1832
		isolate_mode |= ISOLATE_UNMAPPED;
1833
	if (!sc->may_writepage)
1834
		isolate_mode |= ISOLATE_CLEAN;
1835

M
Mel Gorman 已提交
1836
	spin_lock_irq(&pgdat->lru_lock);
1837

1838 1839
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1840

M
Mel Gorman 已提交
1841
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1842
	reclaim_stat->recent_scanned[file] += nr_taken;
1843

1844
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1845 1846
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1847

M
Mel Gorman 已提交
1848
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1854

1855
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1856 1857 1858 1859
			putback_lru_page(page);
			continue;
		}

1860 1861 1862 1863 1864 1865 1866 1867
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1868 1869
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1870
			nr_rotated += hpage_nr_pages(page);
1871 1872 1873 1874 1875 1876 1877 1878 1879
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1880
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1881 1882 1883 1884
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1885

1886
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1887 1888 1889
		list_add(&page->lru, &l_inactive);
	}

1890
	/*
1891
	 * Move pages back to the lru list.
1892
	 */
M
Mel Gorman 已提交
1893
	spin_lock_irq(&pgdat->lru_lock);
1894
	/*
1895 1896 1897
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1898
	 * get_scan_count.
1899
	 */
1900
	reclaim_stat->recent_rotated[file] += nr_rotated;
1901

1902 1903
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
1904 1905
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
1906

1907
	mem_cgroup_uncharge_list(&l_hold);
1908
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1909 1910
}

1911 1912 1913
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
1914
 *
1915 1916 1917
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
1918
 *
1919 1920
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
1921
 *
1922 1923 1924
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1925
 *
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
1936
 */
1937
static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
1938
{
1939
	unsigned long inactive_ratio;
1940 1941
	unsigned long inactive;
	unsigned long active;
1942
	unsigned long gb;
1943

1944 1945 1946 1947 1948 1949
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
1950

1951 1952
	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1953

1954 1955 1956
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
1957
	else
1958 1959 1960
		inactive_ratio = 1;

	return inactive * inactive_ratio < active;
1961 1962
}

1963
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1964
				 struct lruvec *lruvec, struct scan_control *sc)
1965
{
1966
	if (is_active_lru(lru)) {
1967
		if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1968
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1969 1970 1971
		return 0;
	}

1972
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1973 1974
}

1975 1976 1977 1978 1979 1980 1981
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1982 1983 1984 1985 1986 1987
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1988 1989
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1990
 */
1991
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1992 1993
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
1994
{
1995
	int swappiness = mem_cgroup_swappiness(memcg);
1996 1997 1998
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
1999
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2000
	unsigned long anon_prio, file_prio;
2001
	enum scan_balance scan_balance;
2002
	unsigned long anon, file;
2003
	bool force_scan = false;
2004
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2005
	enum lru_list lru;
2006 2007
	bool some_scanned;
	int pass;
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2019
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2020
		if (!pgdat_reclaimable(pgdat))
2021
			force_scan = true;
2022
		if (!mem_cgroup_online(memcg))
2023 2024
			force_scan = true;
	}
2025
	if (!global_reclaim(sc))
2026
		force_scan = true;
2027 2028

	/* If we have no swap space, do not bother scanning anon pages. */
2029
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2030
		scan_balance = SCAN_FILE;
2031 2032
		goto out;
	}
2033

2034 2035 2036 2037 2038 2039 2040
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2041
	if (!global_reclaim(sc) && !swappiness) {
2042
		scan_balance = SCAN_FILE;
2043 2044 2045 2046 2047 2048 2049 2050
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2051
	if (!sc->priority && swappiness) {
2052
		scan_balance = SCAN_EQUAL;
2053 2054 2055
		goto out;
	}

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2066 2067 2068 2069
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2070

M
Mel Gorman 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
			if (!populated_zone(zone))
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2082

M
Mel Gorman 已提交
2083
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2084 2085 2086 2087 2088
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2089
	/*
2090 2091 2092 2093 2094 2095 2096
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2097
	 */
2098
	if (!inactive_list_is_low(lruvec, true) &&
2099
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2100
		scan_balance = SCAN_FILE;
2101 2102 2103
		goto out;
	}

2104 2105
	scan_balance = SCAN_FRACT;

2106 2107 2108 2109
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2110
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2111
	file_prio = 200 - anon_prio;
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2124

2125 2126 2127 2128
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2129

M
Mel Gorman 已提交
2130
	spin_lock_irq(&pgdat->lru_lock);
2131 2132 2133
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2134 2135
	}

2136 2137 2138
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2139 2140 2141
	}

	/*
2142 2143 2144
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2145
	 */
2146
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2147
	ap /= reclaim_stat->recent_rotated[0] + 1;
2148

2149
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2150
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2151
	spin_unlock_irq(&pgdat->lru_lock);
2152

2153 2154 2155 2156
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2157 2158 2159
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2160
		*lru_pages = 0;
2161 2162 2163 2164
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2165

2166
			size = lruvec_lru_size(lruvec, lru);
2167
			scan = size >> sc->priority;
2168

2169 2170
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2171

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2187 2188
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2189
					scan = 0;
2190
				}
2191 2192 2193 2194 2195
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2196 2197

			*lru_pages += size;
2198
			nr[lru] = scan;
2199

2200
			/*
2201 2202
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2203
			 */
2204
			some_scanned |= !!scan;
2205
		}
2206
	}
2207
}
2208

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
static void init_tlb_ubc(void)
{
	/*
	 * This deliberately does not clear the cpumask as it's expensive
	 * and unnecessary. If there happens to be data in there then the
	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
	 * then will be cleared.
	 */
	current->tlb_ubc.flush_required = false;
}
#else
static inline void init_tlb_ubc(void)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */

2226
/*
2227
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2228
 */
2229
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2230
			      struct scan_control *sc, unsigned long *lru_pages)
2231
{
2232
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2233
	unsigned long nr[NR_LRU_LISTS];
2234
	unsigned long targets[NR_LRU_LISTS];
2235 2236 2237 2238 2239
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2240
	bool scan_adjusted;
2241

2242
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2243

2244 2245 2246
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2261 2262
	init_tlb_ubc();

2263 2264 2265
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2266 2267 2268
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2269 2270 2271 2272 2273 2274 2275 2276 2277
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2278 2279 2280 2281 2282 2283

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2284
		 * requested. Ensure that the anon and file LRUs are scanned
2285 2286 2287 2288 2289 2290 2291
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2292 2293 2294 2295 2296 2297 2298 2299 2300
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2332 2333 2334 2335 2336 2337 2338 2339
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2340
	if (inactive_list_is_low(lruvec, false))
2341 2342 2343 2344 2345 2346
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2347
/* Use reclaim/compaction for costly allocs or under memory pressure */
2348
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2349
{
2350
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2351
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2352
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2353 2354 2355 2356 2357
		return true;

	return false;
}

2358
/*
M
Mel Gorman 已提交
2359 2360 2361 2362 2363
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2364
 */
2365
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2366 2367 2368 2369 2370 2371
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2372
	int z;
2373 2374

	/* If not in reclaim/compaction mode, stop */
2375
	if (!in_reclaim_compaction(sc))
2376 2377
		return false;

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2400 2401 2402 2403 2404 2405

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2406
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2407
	if (get_nr_swap_pages() > 0)
2408
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2409 2410 2411 2412 2413
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
		if (!populated_zone(zone))
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
		case COMPACT_PARTIAL:
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2427
	}
2428
	return true;
2429 2430
}

2431
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2432
{
2433
	struct reclaim_state *reclaim_state = current->reclaim_state;
2434
	unsigned long nr_reclaimed, nr_scanned;
2435
	bool reclaimable = false;
L
Linus Torvalds 已提交
2436

2437 2438 2439
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2440
			.pgdat = pgdat,
2441 2442
			.priority = sc->priority,
		};
2443
		unsigned long node_lru_pages = 0;
2444
		struct mem_cgroup *memcg;
2445

2446 2447
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2448

2449 2450
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2451
			unsigned long lru_pages;
2452
			unsigned long reclaimed;
2453
			unsigned long scanned;
2454

2455 2456 2457 2458 2459 2460
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2461
			reclaimed = sc->nr_reclaimed;
2462
			scanned = sc->nr_scanned;
2463

2464 2465
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2466

2467
			if (!global_reclaim(sc))
2468
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2469 2470 2471
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2472 2473 2474 2475 2476
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2477
			/*
2478 2479
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2480
			 * node.
2481 2482 2483 2484 2485
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2486
			 */
2487 2488
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2489 2490 2491
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2492
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2493

2494 2495 2496 2497
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2498
		if (global_reclaim(sc))
2499
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2500
				    sc->nr_scanned - nr_scanned,
2501
				    node_lru_pages);
2502 2503 2504 2505

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2506 2507
		}

2508 2509
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2510 2511 2512
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2513 2514 2515
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2516
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2517
					 sc->nr_scanned - nr_scanned, sc));
2518 2519

	return reclaimable;
2520 2521
}

2522 2523 2524 2525
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2526
static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
2527
{
M
Mel Gorman 已提交
2528
	unsigned long watermark;
2529 2530 2531 2532 2533 2534 2535 2536
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
M
Mel Gorman 已提交
2537
	watermark = high_wmark_pages(zone) + (2UL << order);
2538
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
2539 2540 2541 2542 2543

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2544
	if (compaction_deferred(zone, order))
2545 2546
		return watermark_ok;

2547 2548 2549 2550
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2551
	if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
2552 2553 2554 2555 2556
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2557 2558 2559 2560 2561 2562 2563 2564
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2565
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2566
{
2567
	struct zoneref *z;
2568
	struct zone *zone;
2569 2570
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2571
	gfp_t orig_mask;
2572
	enum zone_type classzone_idx;
2573
	pg_data_t *last_pgdat = NULL;
2574

2575 2576 2577 2578 2579
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2580
	orig_mask = sc->gfp_mask;
2581
	if (buffer_heads_over_limit) {
2582
		sc->gfp_mask |= __GFP_HIGHMEM;
2583 2584
		sc->reclaim_idx = classzone_idx = gfp_zone(sc->gfp_mask);
	}
2585

2586
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2587
					sc->reclaim_idx, sc->nodemask) {
2588
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2589
			continue;
2590

2591 2592 2593 2594 2595 2596 2597
		/*
		 * Note that reclaim_idx does not change as it is the highest
		 * zone reclaimed from which for empty zones is a no-op but
		 * classzone_idx is used by shrink_node to test if the slabs
		 * should be shrunk on a given node.
		 */
		classzone_idx = sc->reclaim_idx;
2598 2599 2600 2601
		while (!populated_zone(zone->zone_pgdat->node_zones +
							classzone_idx))
			classzone_idx--;

2602 2603 2604 2605
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2606
		if (global_reclaim(sc)) {
2607 2608
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2609
				continue;
2610

2611
			if (sc->priority != DEF_PRIORITY &&
M
Mel Gorman 已提交
2612
			    !pgdat_reclaimable(zone->zone_pgdat))
2613
				continue;	/* Let kswapd poll it */
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2626 2627
			    zonelist_zone_idx(z) <= classzone_idx &&
			    compaction_ready(zone, sc->order, classzone_idx)) {
2628 2629
				sc->compaction_ready = true;
				continue;
2630
			}
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2641 2642 2643 2644 2645 2646 2647
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2648
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2649 2650 2651 2652
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2653
			/* need some check for avoid more shrink_zone() */
2654
		}
2655

2656 2657 2658 2659
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2660
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2661
	}
2662

2663 2664 2665 2666 2667
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2668
}
2669

L
Linus Torvalds 已提交
2670 2671 2672 2673 2674 2675 2676 2677
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2678 2679 2680 2681
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2682 2683 2684
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2685
 */
2686
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2687
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2688
{
2689
	int initial_priority = sc->priority;
2690
	unsigned long total_scanned = 0;
2691
	unsigned long writeback_threshold;
2692
retry:
2693 2694
	delayacct_freepages_start();

2695
	if (global_reclaim(sc))
2696
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2697

2698
	do {
2699 2700
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2701
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2702
		shrink_zones(zonelist, sc);
2703

2704
		total_scanned += sc->nr_scanned;
2705
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2706 2707 2708 2709
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2710

2711 2712 2713 2714 2715 2716 2717
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2718 2719 2720 2721 2722 2723 2724
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2725 2726
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2727 2728
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2729
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2730
		}
2731
	} while (--sc->priority >= 0);
2732

2733 2734
	delayacct_freepages_end();

2735 2736 2737
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2738
	/* Aborted reclaim to try compaction? don't OOM, then */
2739
	if (sc->compaction_ready)
2740 2741
		return 1;

2742 2743 2744 2745 2746 2747 2748
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2749
	return 0;
L
Linus Torvalds 已提交
2750 2751
}

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2762
		if (!populated_zone(zone) ||
M
Mel Gorman 已提交
2763
		    pgdat_reclaimable_pages(pgdat) == 0)
2764 2765
			continue;

2766 2767 2768 2769
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2770 2771 2772 2773
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2774 2775 2776 2777
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2778
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2790 2791 2792 2793
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2794
 */
2795
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2796 2797
					nodemask_t *nodemask)
{
2798
	struct zoneref *z;
2799
	struct zone *zone;
2800
	pg_data_t *pgdat = NULL;
2801 2802 2803 2804 2805 2806 2807 2808 2809

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2810 2811 2812 2813 2814 2815 2816 2817
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2818

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2834
					gfp_zone(gfp_mask), nodemask) {
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2847
		goto out;
2848

2849 2850 2851
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2863 2864

		goto check_pending;
2865 2866 2867 2868 2869
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2870 2871 2872 2873 2874 2875 2876

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2877 2878
}

2879
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2880
				gfp_t gfp_mask, nodemask_t *nodemask)
2881
{
2882
	unsigned long nr_reclaimed;
2883
	struct scan_control sc = {
2884
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2885
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2886
		.reclaim_idx = gfp_zone(gfp_mask),
2887 2888 2889
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2890
		.may_writepage = !laptop_mode,
2891
		.may_unmap = 1,
2892
		.may_swap = 1,
2893 2894
	};

2895
	/*
2896 2897 2898
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2899
	 */
2900
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2901 2902
		return 1;

2903 2904 2905 2906
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2907
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2908 2909 2910 2911

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2912 2913
}

A
Andrew Morton 已提交
2914
#ifdef CONFIG_MEMCG
2915

2916
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2917
						gfp_t gfp_mask, bool noswap,
2918
						pg_data_t *pgdat,
2919
						unsigned long *nr_scanned)
2920 2921
{
	struct scan_control sc = {
2922
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2923
		.target_mem_cgroup = memcg,
2924 2925
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2926
		.reclaim_idx = MAX_NR_ZONES - 1,
2927 2928
		.may_swap = !noswap,
	};
2929
	unsigned long lru_pages;
2930

2931 2932
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2933

2934
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2935 2936 2937
						      sc.may_writepage,
						      sc.gfp_mask);

2938 2939 2940
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
2941
	 * if we don't reclaim here, the shrink_node from balance_pgdat
2942 2943 2944
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2945
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2946 2947 2948

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2949
	*nr_scanned = sc.nr_scanned;
2950 2951 2952
	return sc.nr_reclaimed;
}

2953
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2954
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2955
					   gfp_t gfp_mask,
2956
					   bool may_swap)
2957
{
2958
	struct zonelist *zonelist;
2959
	unsigned long nr_reclaimed;
2960
	int nid;
2961
	struct scan_control sc = {
2962
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2963 2964
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2965
		.reclaim_idx = MAX_NR_ZONES - 1,
2966 2967 2968 2969
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2970
		.may_swap = may_swap,
2971
	};
2972

2973 2974 2975 2976 2977
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2978
	nid = mem_cgroup_select_victim_node(memcg);
2979 2980

	zonelist = NODE_DATA(nid)->node_zonelists;
2981 2982 2983 2984 2985

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2986
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2987 2988 2989 2990

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2991 2992 2993
}
#endif

2994
static void age_active_anon(struct pglist_data *pgdat,
2995
				struct scan_control *sc)
2996
{
2997
	struct mem_cgroup *memcg;
2998

2999 3000 3001 3002 3003
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3004
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3005

3006
		if (inactive_list_is_low(lruvec, false))
3007
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3008
					   sc, LRU_ACTIVE_ANON);
3009 3010 3011

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3012 3013
}

M
Mel Gorman 已提交
3014
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3015
{
M
Mel Gorman 已提交
3016
	unsigned long mark = high_wmark_pages(zone);
3017

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);

	return true;
3029 3030
}

3031 3032 3033 3034 3035 3036 3037
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3038
					int classzone_idx)
3039
{
3040 3041
	int i;

3042 3043
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
3044 3045 3046
		return false;

	/*
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3058
	 */
3059 3060
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3061

3062 3063 3064 3065 3066 3067
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

3068 3069
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3070 3071
	}

3072
	return true;
3073 3074
}

3075
/*
3076 3077
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3078 3079
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3080 3081
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3082
 */
3083
static bool kswapd_shrink_node(pg_data_t *pgdat,
3084
			       struct scan_control *sc)
3085
{
3086 3087
	struct zone *zone;
	int z;
3088

3089 3090
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3091
	for (z = 0; z <= sc->reclaim_idx; z++) {
3092 3093 3094
		zone = pgdat->node_zones + z;
		if (!populated_zone(zone))
			continue;
3095

3096 3097
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3098 3099

	/*
3100 3101
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3102
	 */
3103
	shrink_node(pgdat, sc);
3104

3105
	/*
3106 3107 3108 3109 3110
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3111
	 */
3112 3113
	if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
		sc->order = 0;
3114

3115
	return sc->nr_scanned >= sc->nr_to_reclaim;
3116 3117
}

L
Linus Torvalds 已提交
3118
/*
3119 3120 3121
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3122
 *
3123
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3124 3125
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3126
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3127 3128 3129
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3130
 */
3131
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3132 3133
{
	int i;
3134 3135
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3136
	struct zone *zone;
3137 3138
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3139
		.order = order,
3140
		.priority = DEF_PRIORITY,
3141
		.may_writepage = !laptop_mode,
3142
		.may_unmap = 1,
3143
		.may_swap = 1,
3144
		.reclaim_idx = classzone_idx,
3145
	};
3146
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3147

3148
	do {
3149 3150 3151
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3152

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
		/*
		 * If the number of buffer_heads in the machine exceeds the
		 * maximum allowed level then reclaim from all zones. This is
		 * not specific to highmem as highmem may not exist but it is
		 * it is expected that buffer_heads are stripped in writeback.
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
				if (!populated_zone(zone))
					continue;
3164

3165
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3166
				break;
L
Linus Torvalds 已提交
3167 3168
			}
		}
3169

3170 3171 3172 3173 3174 3175 3176 3177
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
		 * overall node may be congested.
		 */
3178
		for (i = sc.reclaim_idx; i >= 0; i--) {
3179 3180 3181 3182
			zone = pgdat->node_zones + i;
			if (!populated_zone(zone))
				continue;

3183
			if (zone_balanced(zone, sc.order, sc.reclaim_idx))
3184 3185
				goto out;
		}
A
Andrew Morton 已提交
3186

3187 3188 3189 3190 3191 3192
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3193
		age_active_anon(pgdat, &sc);
3194

3195 3196 3197 3198
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3199
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3200 3201
			sc.may_writepage = 1;

3202 3203 3204
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3205
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3206 3207 3208
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3209
		/*
3210 3211 3212
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3213
		 */
3214
		if (kswapd_shrink_node(pgdat, &sc))
3215
			raise_priority = false;
3216 3217 3218 3219 3220 3221 3222 3223

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3224
			wake_up_all(&pgdat->pfmemalloc_wait);
3225

3226 3227 3228
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3229

3230
		/*
3231 3232
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3233
		 */
3234 3235
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3236
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3237

3238
out:
3239
	/*
3240 3241 3242 3243
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3244
	 */
3245
	return sc.order;
L
Linus Torvalds 已提交
3246 3247
}

3248 3249
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3260
	if (prepare_kswapd_sleep(pgdat, reclaim_order, remaining, classzone_idx)) {
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3273
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3274

3275
		remaining = schedule_timeout(HZ/10);
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3287 3288 3289 3290 3291 3292 3293 3294
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3295
	if (prepare_kswapd_sleep(pgdat, reclaim_order, remaining, classzone_idx)) {
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3307 3308 3309 3310

		if (!kthread_should_stop())
			schedule();

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3321 3322
/*
 * The background pageout daemon, started as a kernel thread
3323
 * from the init process.
L
Linus Torvalds 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3336
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3337 3338
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3339

L
Linus Torvalds 已提交
3340 3341 3342
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3343
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3344

3345 3346
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3347
	if (!cpumask_empty(cpumask))
3348
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3363
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3364
	set_freezable();
L
Linus Torvalds 已提交
3365

3366 3367
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3368
	for ( ; ; ) {
3369
		bool ret;
3370

3371 3372 3373
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3374

3375 3376 3377 3378 3379
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3380

3381 3382 3383 3384 3385 3386 3387 3388
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, alloc_order);
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3404

3405 3406
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3407
	}
3408

3409
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3410
	current->reclaim_state = NULL;
3411 3412
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3413 3414 3415 3416 3417 3418
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3419
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3420 3421
{
	pg_data_t *pgdat;
3422
	int z;
L
Linus Torvalds 已提交
3423

3424
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3425 3426
		return;

3427
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3428
		return;
3429
	pgdat = zone->zone_pgdat;
3430 3431
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3432
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3433
		return;
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
		if (!populated_zone(zone))
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3444 3445

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3446
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3447 3448
}

3449
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3450
/*
3451
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3452 3453 3454 3455 3456
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3457
 */
3458
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3459
{
3460 3461
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3462
		.nr_to_reclaim = nr_to_reclaim,
3463
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3464
		.reclaim_idx = MAX_NR_ZONES - 1,
3465
		.priority = DEF_PRIORITY,
3466
		.may_writepage = 1,
3467 3468
		.may_unmap = 1,
		.may_swap = 1,
3469
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3470
	};
3471
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3472 3473
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3474

3475 3476 3477 3478
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3479

3480
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3481

3482 3483 3484
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3485

3486
	return nr_reclaimed;
L
Linus Torvalds 已提交
3487
}
3488
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3489 3490 3491 3492 3493

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3494 3495
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3496
{
3497
	int nid;
L
Linus Torvalds 已提交
3498

3499
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3500
		for_each_node_state(nid, N_MEMORY) {
3501
			pg_data_t *pgdat = NODE_DATA(nid);
3502 3503 3504
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3505

3506
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3507
				/* One of our CPUs online: restore mask */
3508
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3509 3510 3511 3512 3513
		}
	}
	return NOTIFY_OK;
}

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3530 3531
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3532
		pgdat->kswapd = NULL;
3533 3534 3535 3536
	}
	return ret;
}

3537
/*
3538
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3539
 * hold mem_hotplug_begin/end().
3540 3541 3542 3543 3544
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3545
	if (kswapd) {
3546
		kthread_stop(kswapd);
3547 3548
		NODE_DATA(nid)->kswapd = NULL;
	}
3549 3550
}

L
Linus Torvalds 已提交
3551 3552
static int __init kswapd_init(void)
{
3553
	int nid;
3554

L
Linus Torvalds 已提交
3555
	swap_setup();
3556
	for_each_node_state(nid, N_MEMORY)
3557
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3558 3559 3560 3561 3562
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3563 3564 3565

#ifdef CONFIG_NUMA
/*
3566
 * Node reclaim mode
3567
 *
3568
 * If non-zero call node_reclaim when the number of free pages falls below
3569 3570
 * the watermarks.
 */
3571
int node_reclaim_mode __read_mostly;
3572

3573
#define RECLAIM_OFF 0
3574
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3575
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3576
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3577

3578
/*
3579
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3580 3581 3582
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3583
#define NODE_RECLAIM_PRIORITY 4
3584

3585
/*
3586
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3587 3588 3589 3590
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3591 3592 3593 3594 3595 3596
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3597
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3598
{
3599 3600 3601
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3612
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3613
{
3614 3615
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3616 3617

	/*
3618
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3619
	 * potentially reclaimable. Otherwise, we have to worry about
3620
	 * pages like swapcache and node_unmapped_file_pages() provides
3621 3622
	 * a better estimate
	 */
3623 3624
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3625
	else
3626
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3627 3628

	/* If we can't clean pages, remove dirty pages from consideration */
3629 3630
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3631 3632 3633 3634 3635 3636 3637 3638

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3639
/*
3640
 * Try to free up some pages from this node through reclaim.
3641
 */
3642
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3643
{
3644
	/* Minimum pages needed in order to stay on node */
3645
	const unsigned long nr_pages = 1 << order;
3646 3647
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3648
	int classzone_idx = gfp_zone(gfp_mask);
3649
	struct scan_control sc = {
3650
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3651
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3652
		.order = order,
3653 3654 3655
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3656
		.may_swap = 1,
3657
		.reclaim_idx = classzone_idx,
3658
	};
3659 3660

	cond_resched();
3661
	/*
3662
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3663
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3664
	 * and RECLAIM_UNMAP.
3665 3666
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3667
	lockdep_set_current_reclaim_state(gfp_mask);
3668 3669
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3670

3671
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3672 3673 3674 3675 3676
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3677
			shrink_node(pgdat, &sc);
3678
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3679
	}
3680

3681
	p->reclaim_state = NULL;
3682
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3683
	lockdep_clear_current_reclaim_state();
3684
	return sc.nr_reclaimed >= nr_pages;
3685
}
3686

3687
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3688
{
3689
	int ret;
3690 3691

	/*
3692
	 * Node reclaim reclaims unmapped file backed pages and
3693
	 * slab pages if we are over the defined limits.
3694
	 *
3695 3696
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3697 3698
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3699
	 * unmapped file backed pages.
3700
	 */
3701 3702 3703
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3704

3705 3706
	if (!pgdat_reclaimable(pgdat))
		return NODE_RECLAIM_FULL;
3707

3708
	/*
3709
	 * Do not scan if the allocation should not be delayed.
3710
	 */
3711
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3712
		return NODE_RECLAIM_NOSCAN;
3713 3714

	/*
3715
	 * Only run node reclaim on the local node or on nodes that do not
3716 3717 3718 3719
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3720 3721
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3722

3723 3724
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3725

3726 3727
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3728

3729 3730 3731
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3732
	return ret;
3733
}
3734
#endif
L
Lee Schermerhorn 已提交
3735 3736 3737 3738 3739 3740

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3741
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3742 3743
 *
 * Reasons page might not be evictable:
3744
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3745
 * (2) page is part of an mlocked VMA
3746
 *
L
Lee Schermerhorn 已提交
3747
 */
3748
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3749
{
3750
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3751
}
3752

3753
#ifdef CONFIG_SHMEM
3754
/**
3755 3756 3757
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3758
 *
3759
 * Checks pages for evictability and moves them to the appropriate lru list.
3760 3761
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3762
 */
3763
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3764
{
3765
	struct lruvec *lruvec;
3766 3767 3768 3769
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3770

3771 3772 3773
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3774

3775 3776 3777 3778
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
3779
				spin_unlock_irq(zone_lru_lock(zone));
3780
			zone = pagezone;
3781
			spin_lock_irq(zone_lru_lock(zone));
3782
		}
M
Mel Gorman 已提交
3783
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
3784

3785 3786
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3787

3788
		if (page_evictable(page)) {
3789 3790
			enum lru_list lru = page_lru_base_type(page);

3791
			VM_BUG_ON_PAGE(PageActive(page), page);
3792
			ClearPageUnevictable(page);
3793 3794
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3795
			pgrescued++;
3796
		}
3797
	}
3798

3799 3800 3801
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3802
		spin_unlock_irq(zone_lru_lock(zone));
3803 3804
	}
}
3805
#endif /* CONFIG_SHMEM */