framework.py 84.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
S
rename  
sneaxiy 已提交
19
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24

Y
Yu Yang 已提交
25
import numpy as np
26
import subprocess
Q
qiaolongfei 已提交
27

M
minqiyang 已提交
28
from .. import compat as cpt
29
from .proto import framework_pb2
30
try:
P
peizhilin 已提交
31
    if os.name == 'nt':
P
peizhilin 已提交
32
        import sys
P
peizhilin 已提交
33 34 35 36 37
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

38
    from . import core
39
except ImportError as e:
P
peizhilin 已提交
40
    if os.name == 'nt':
41
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
42
        raise ImportError(
43 44 45 46 47
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
48 49 50 51 52 53
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
54
except Exception as e:
55
    raise e
56
from . import unique_name
Y
Yu Yang 已提交
57

58
__all__ = [
59 60 61 62
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
63
    'name_scope',
64
]
Y
Yu Yang 已提交
65

Q
qiaolongfei 已提交
66 67 68 69
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
70 71
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

72
_imperative_tracer_ = None
M
minqiyang 已提交
73
_imperative_current_expected_place_ = None
74 75 76 77 78 79 80 81 82


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
83

M
minqiyang 已提交
84
def _current_expected_place():
M
minqiyang 已提交
85
    return _imperative_current_expected_place_
M
minqiyang 已提交
86 87


88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
114
@signature_safe_contextmanager
115 116 117 118 119 120 121 122 123 124 125 126
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
127

128 129 130 131
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
132 133
          with name_scope("attention"):
             ...
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
153 154 155
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
156 157 158 159


def grad_var_name(var_name):
    """
160 161
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
162 163 164
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
165

166
def convert_np_dtype_to_dtype_(np_dtype):
167 168
    """
    Convert the data type in numpy to the data type in Paddle
169

170
    Args:
171
        np_dtype(np.dtype): the data type in numpy.
172

173 174
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
175 176

    """
177 178
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
179
        return core.VarDesc.VarType.FP32
180
    elif dtype == np.float64:
181
        return core.VarDesc.VarType.FP64
182
    elif dtype == np.float16:
183
        return core.VarDesc.VarType.FP16
184
    elif dtype == np.int32:
185
        return core.VarDesc.VarType.INT32
186
    elif dtype == np.int16:
187
        return core.VarDesc.VarType.INT16
188
    elif dtype == np.int64:
189
        return core.VarDesc.VarType.INT64
190
    elif dtype == np.bool:
191
        return core.VarDesc.VarType.BOOL
192 193
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
194 195
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
196 197
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
198
    else:
M
minqiyang 已提交
199
        raise ValueError("Not supported numpy dtype %s" % dtype)
200 201 202


def dtype_is_floating(dtype):
203 204 205
    """
    Check the data type is floating or not.
    Args:
206
        dtype(np.dtype|core.VarDesc.VarType): data type.
207 208 209 210 211
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
212
    if not isinstance(dtype, core.VarDesc.VarType):
213 214
        dtype = convert_np_dtype_to_dtype_(dtype)

215 216 217 218
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
219 220


Y
Yang Yang(Tony) 已提交
221
def _debug_string_(proto, throw_on_error=True):
222 223 224 225 226 227 228 229 230 231 232
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
233
    error_fields = list()
Y
Yang Yang(Tony) 已提交
234
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
235 236
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
237 238 239
    return proto.__str__()


X
Xin Pan 已提交
240
class Variable(object):
241
    """
242 243 244
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
245
    two variables in different blocks could have the same name.
246

247 248
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
249

250
    Most of a Variable's member variables can be setted to be None. It mean
251
    it is not available or will be specified later.
252 253

    Args:
254
        block(Block): The block that the variable belongs to.
255 256
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
257 258
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
259
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
260
            Some kinds of variable do not contain shape, just set it to None.
261 262 263
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
264
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
265
            series data.
266
            Default: None
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
289 290
    """

Y
Yu Yang 已提交
291 292
    def __init__(self,
                 block,
Y
Yu Yang 已提交
293
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
294 295 296 297
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
298
                 capacity=None,
Q
QI JUN 已提交
299
                 persistable=None,
F
fengjiayi 已提交
300
                 error_clip=None,
Y
Yu Yang 已提交
301
                 stop_gradient=False,
F
fengjiayi 已提交
302
                 is_data=False,
Y
Yu Yang 已提交
303
                 **kwargs):
Y
Yu Yang 已提交
304
        self.block = block
F
fengjiayi 已提交
305
        self.error_clip = error_clip
Y
Yu Yang 已提交
306 307

        if name is None:
Y
Yu Yang 已提交
308
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
309
        is_new_var = False
M
minqiyang 已提交
310
        name = cpt.to_text(name)
M
minqiyang 已提交
311
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
312 313

        if self.desc is None:
M
minqiyang 已提交
314
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
315
            is_new_var = True
Y
Yu Yang 已提交
316

Y
Yu Yang 已提交
317 318 319 320 321 322 323 324
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
325
        if shape is not None:
Y
Yu Yang 已提交
326
            if is_new_var:
327
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
328 329 330 331 332 333 334 335
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
336
        if dtype is not None:
337
            if not isinstance(dtype, core.VarDesc.VarType):
338
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
339
            if is_new_var:
F
fengjiayi 已提交
340
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
341
            else:
F
fengjiayi 已提交
342
                old_dtype = self.dtype
Q
QI JUN 已提交
343
                if dtype != old_dtype:
Y
Yu Yang 已提交
344 345 346 347 348
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
349 350

        if lod_level is not None:
Y
Yu Yang 已提交
351
            if is_new_var:
352
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
353 354 355 356 357 358 359
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
360 361 362 363 364 365 366 367 368 369 370
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

371 372 373 374 375 376 377 378
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
379
        self.block.vars[name] = self
Y
Yu Yang 已提交
380
        self.op = None
M
minqiyang 已提交
381
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
382
        self.is_data = is_data
X
Xin Pan 已提交
383
        if _in_imperative_mode():
M
minqiyang 已提交
384 385
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
386
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
387
            self._ivar.desc = self.desc
Y
Yu Yang 已提交
388

389
    def _numpy(self):
M
minqiyang 已提交
390
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
391
        return np.array(new_ivar.value().get_tensor())
392 393

    def _backward(self):
X
Xin Pan 已提交
394
        self._ivar._run_backward()
395 396

    def _gradient(self):
M
minqiyang 已提交
397
        return np.array(self._ivar._grad_value())
398

X
Xin Pan 已提交
399 400
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
401

402
    def __str__(self):
Y
Yang Yang(Tony) 已提交
403 404
        return self.to_string(True)

F
update  
fengjiayi 已提交
405
    def to_string(self, throw_on_error, with_details=False):
406 407 408 409
        """
        Get debug string.

        Args:
410 411
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
412
            with_details(bool): more details about variables and parameters
413 414
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
415

416 417
        Returns:
            str: The debug string.
418
        """
F
update  
fengjiayi 已提交
419 420
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
421
        protostr = self.desc.serialize_to_string()
422
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
423 424 425 426
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
427 428
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
429
        return res_str
430 431 432

    __repr__ = __str__

W
Wu Yi 已提交
433
    def _set_desc(self, input):
434 435 436 437 438 439 440 441 442
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
443 444
        self.desc = input

445 446
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
447 448 449 450
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
451 452 453

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
454 455 456
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
457

458 459 460 461
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
462 463 464 465
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
466 467
    @property
    def name(self):
M
minqiyang 已提交
468
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
469

T
typhoonzero 已提交
470 471 472 473
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
474 475 476
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
477
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
478 479

    @property
F
fengjiayi 已提交
480 481
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
482 483 484

    @property
    def lod_level(self):
485
        return self.desc.lod_level()
Y
Yu Yang 已提交
486

Y
Yu Yang 已提交
487 488 489 490
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
491
    def _set_error_clip(self, error_clip):
492 493 494 495 496 497 498 499 500
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
501 502
        self.error_clip = error_clip

Y
Yu Yang 已提交
503

F
fengjiayi 已提交
504 505 506
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
507

508 509
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
510 511 512 513
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
514
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
515 516 517 518 519
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
520 521 522 523
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
524 525 526 527 528 529 530 531 532
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
533
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
534 535 536 537 538 539
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
540 541 542 543 544 545 546 547
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
548 549
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
550 551
        return self.op_proto_map[type]

552 553 554 555
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
556
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
557
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
558 559
        }

F
fengjiayi 已提交
560

X
Xin Pan 已提交
561
class Operator(object):
562
    """
563 564 565 566 567 568 569
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
570
        type(str): The type of operator. Default None.
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
591
        Block.append_op or Block._prepend_op instead.
592 593 594 595 596 597 598 599 600 601

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
602
    """
603 604 605
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
606 607
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
608
    }
609

Y
Yu Yang 已提交
610 611
    def __init__(self,
                 block,
Y
Yu Yang 已提交
612
                 desc,
Y
Yu Yang 已提交
613 614 615
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
616
                 attrs=None):
Y
Yu Yang 已提交
617
        self.block = block
Y
Yu Yang 已提交
618
        self.desc = desc
G
gongweibao 已提交
619 620 621 622 623
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
624 625 626 627
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
628 629
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
630 631 632

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
633 634
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
635

G
gongweibao 已提交
636 637
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
638

F
fengjiayi 已提交
639 640 641 642 643
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
644 645 646 647 648
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
649
        self.desc.set_type(type)
F
fengjiayi 已提交
650
        proto = OpProtoHolder.instance().get_op_proto(type)
651

652 653 654
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
655 656
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
657
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
658 659
                    return True
            return False
Q
QI JUN 已提交
660

Y
Yang Yang(Tony) 已提交
661 662 663 664 665 666 667
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
668 669 670 671
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
672 673
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
674 675 676
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
677
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
678
                            in_arg_names.append(arg)
679 680
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
681
                        else:
M
minqiyang 已提交
682
                            in_arg_names.append(cpt.to_text(arg.name))
683
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
684 685
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
686

Y
Yu Yang 已提交
687
        if outputs is not None:
688
            for m in proto.outputs:
Q
qingqing01 已提交
689 690 691 692 693 694
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
695
            for out_proto in proto.outputs:
Q
qingqing01 已提交
696 697
                if out_proto.name not in outputs:
                    continue
698 699 700 701
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
702 703
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
704 705 706
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
707
                    out_arg_names.append(cpt.to_text(arg.name))
708 709
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
710

G
gongweibao 已提交
711 712
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
713
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
714
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
715
                attr_name = attr.name
G
gongweibao 已提交
716
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
717
                    continue
G
gongweibao 已提交
718
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
719 720
                self._update_desc_attr(attr_name, attr_val)

721
        self.desc.check_attrs()
M
minqiyang 已提交
722

W
Wu Yi 已提交
723
        if self._has_kernel(type):
Q
QI JUN 已提交
724
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
725
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
726

X
Xin Pan 已提交
727 728 729
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
730
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
731
            if inputs is not None:
X
Xin Pan 已提交
732 733 734 735 736 737
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
738
            if outputs is not None:
X
Xin Pan 已提交
739 740 741 742 743
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
744

W
Wu Yi 已提交
745
    def _has_kernel(self, op_type):
746 747
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
748
    def to_string(self, throw_on_error):
749
        """
750 751
        Get debug string.

752
        Args:
753 754
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
755

756 757
        Returns:
            str: The debug string.
758 759

        """
760
        protostr = self.desc.serialize_to_string()
761
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
762 763 764 765
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
766 767 768

    __repr__ = __str__

F
fengjiayi 已提交
769 770 771 772 773
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
774
        """
775
        Get the input arguments according to the input parameter name.
776

777 778
        Args:
            name(str): The input parameter name.
779

780 781 782
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
783
        """
F
fengjiayi 已提交
784 785
        return self.desc.input(name)

W
Wu Yi 已提交
786
    def _rename_input(self, old_name, new_name):
787 788 789 790 791 792 793 794 795 796
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
797
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
798

W
Wu Yi 已提交
799
    def _rename_output(self, old_name, new_name):
800 801 802 803 804 805 806 807 808 809
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
810
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
811

F
fengjiayi 已提交
812 813 814 815
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
816 817 818 819 820 821 822 823
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
824
    def output(self, name):
825
        """
826
        Get output arguments by the output parameter name.
827

828 829
        Args:
            name(str): The output parameter name.
830

831 832 833
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
834
        """
F
fengjiayi 已提交
835 836 837 838 839 840
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

841 842 843 844 845 846 847 848
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
849
    def has_attr(self, name):
850
        """
851 852
        Whether this Operator has the attribute with name or not.

853
        Args:
854
            name(str): the attribute name.
855

856 857
        Returns:
            bool: True if has this attribute.
858 859

        """
F
fengjiayi 已提交
860 861 862
        return self.desc.has_attr(name)

    def attr_type(self, name):
863
        """
864
        Get the type of attribute by attribute's name.
865

866 867
        Args:
            name(str): the attribute name.
868

869 870
        Returns:
            core.AttrType: the attribute type.
871
        """
F
fengjiayi 已提交
872 873
        return self.desc.attr_type(name)

W
Wu Yi 已提交
874
    def _set_attr(self, name, val):
875 876 877 878 879 880 881 882 883 884
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
898 899
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
900 901
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
902
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
903 904 905 906
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
907
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
908

F
fengjiayi 已提交
909 910 911 912 913
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
914
        """
915 916
        Get the attribute by name.

917
        Args:
918
            name(str): the attribute name.
919

920 921
        Returns:
            bool|int|str|float|list: The attribute value. The return value
922 923
            can be any valid attribute type.
        """
F
fengjiayi 已提交
924
        return self.desc.attr(name)
Y
Yu Yang 已提交
925

W
Wu Yi 已提交
926
    def _block_attr_id(self, name):
927
        """
G
gongweibao 已提交
928
        Get the block attribute's id by name.
929

930 931
        Args:
            name(str): the attribute name.
932

933 934
        Returns:
            int: the block index.
935
        """
W
Wu Yi 已提交
936
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
937

W
Wu Yi 已提交
938
    def _block_attr(self, name):
G
gongweibao 已提交
939 940 941 942 943 944 945 946 947 948
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
949
        id = self._block_attr_id(name)
G
gongweibao 已提交
950 951 952
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
953
    def _blocks_attr(self, name):
G
gongweibao 已提交
954 955 956 957 958 959 960 961 962 963
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
964
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
965 966 967 968 969
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
970
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
971 972 973 974 975 976 977 978 979 980
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
981
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
982

J
JiayiFeng 已提交
983
    def all_attrs(self):
F
fengjiayi 已提交
984
        """
985 986 987
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
988
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
989 990 991 992
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
993 994
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
995
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
996 997 998
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
999
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1000 1001 1002 1003
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1004 1005
        return attr_map

Y
Yu Yang 已提交
1006

Y
Yu Yang 已提交
1007
class Block(object):
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1022
        use `Program._create_block()` to create a block.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1037
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1038
        self.desc = program.desc.block(idx)
1039
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1040
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1041
        self.program = program
1042
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1043

1044
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1045 1046
        return self.to_string(True)

F
fengjiayi 已提交
1047 1048
    def to_string(self, throw_on_error, with_details=False):
        """
1049 1050
        Get debug string.

F
fengjiayi 已提交
1051 1052
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1053
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1054
            with_details(bool): more details about variables and parameters
1055 1056
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1057

1058 1059
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1060 1061 1062 1063
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1064
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1065 1066
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1067
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1068
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1069
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1070
            for op in self.ops:
F
fengjiayi 已提交
1071 1072
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1073 1074 1075
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1076 1077
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1078 1079
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1080 1081 1082

    __repr__ = __str__

Y
Yu Yang 已提交
1083 1084
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1085
        return self.desc.parent
Y
Yu Yang 已提交
1086

Y
Yu Yang 已提交
1087 1088 1089 1090
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1091
    def _set_forward_block_idx(self, idx):
1092 1093 1094 1095 1096 1097 1098 1099 1100
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1101
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1102

Y
Yu Yang 已提交
1103 1104
    @property
    def idx(self):
Y
Yu Yang 已提交
1105
        return self.desc.id
Y
Yu Yang 已提交
1106

Q
Qiao Longfei 已提交
1107
    def var(self, name):
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1121
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1122 1123 1124
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1125 1126
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1127
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1128
        return v
Q
Qiao Longfei 已提交
1129

X
Xin Pan 已提交
1130
    def _find_var_recursive(self, name):
1131 1132 1133 1134 1135 1136 1137
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1138
            Variable: the Variable with the giving name. Or None if not found.
1139
        """
Y
Yu Yang 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1164
        return None
Y
Yu Yang 已提交
1165

X
Xin Pan 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1185

M
minqiyang 已提交
1186 1187 1188 1189 1190 1191 1192
    def _clear_block(self):
        self.desc._clear_block()

        for name, var in self.vars.items():
            if not var.persistable:
                del self.vars[name]

M
minqiyang 已提交
1193
        del self.ops[:]
M
minqiyang 已提交
1194

Q
Qiao Longfei 已提交
1195
    def all_parameters(self):
1196
        return list(self.iter_parameters())
1197

1198
    def iter_parameters(self):
M
minqiyang 已提交
1199
        return (item[1] for item in six.iteritems(self.vars)
1200
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1201

Y
Yu Yang 已提交
1202
    def create_var(self, *args, **kwargs):
1203
        var = Variable(block=self, *args, **kwargs)
1204 1205
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1206
        return var
Y
Yu Yang 已提交
1207

Q
Qiao Longfei 已提交
1208 1209 1210
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1211
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1212 1213
        """
        Rename variable in vars and ops' inputs and outputs
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1226
        """
M
minqiyang 已提交
1227 1228
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1229

T
typhoonzero 已提交
1230
        if not self.has_var(name):
1231
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1232 1233
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1234
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1235 1236 1237 1238 1239 1240 1241
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1242
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1243 1244 1245 1246
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1247
        orig_var_type = v.type
M
minqiyang 已提交
1248
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1249
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1250
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1251
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1252 1253 1254 1255
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1256
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1257 1258 1259 1260 1261 1262 1263
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1264
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1265 1266
            var = Variable(
                self,
T
typhoonzero 已提交
1267
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1268 1269 1270 1271
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1272
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1273 1274 1275
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1276
        self._sync_with_cpp()
1277
        return var
T
typhoonzero 已提交
1278

W
Wu Yi 已提交
1279
    def _remove_var(self, name):
M
minqiyang 已提交
1280
        self._sync_with_cpp()
M
minqiyang 已提交
1281
        self.desc._remove_var(cpt.to_bytes(name))
1282 1283
        del self.vars[name]

Y
Yu Yang 已提交
1284 1285
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1286
        param = Parameter(global_block, *args, **kwargs)
1287
        if 'initializer' in kwargs:
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1308
        return param
Y
Yu Yang 已提交
1309

Y
Yu Yang 已提交
1310
    def append_op(self, *args, **kwargs):
1311 1312 1313 1314 1315 1316
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1317
        op_desc = self.desc.append_op()
1318 1319 1320 1321 1322 1323 1324 1325
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1326

M
minqiyang 已提交
1327 1328
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1329 1330 1331 1332
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1333
        if _in_imperative_mode():
1334
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1335 1336
                                       _imperative_current_expected_place_,
                                       stop_gradient)
Y
Yu Yang 已提交
1337

W
Wu Yi 已提交
1338
    def _insert_op(self, index, *args, **kwargs):
1339 1340 1341 1342 1343 1344 1345 1346 1347
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1348 1349
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1350 1351 1352 1353
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1354
    def _remove_op(self, index):
1355 1356 1357 1358 1359 1360 1361 1362 1363
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
M
minqiyang 已提交
1364
        self._sync_with_cpp()
W
Wu Yi 已提交
1365
        self.desc._remove_op(index, index + 1)
1366 1367
        del self.ops[index]

W
Wu Yi 已提交
1368
    def _slice_ops(self, start, end):
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1379
        return self.ops[start:end]
Y
Yancey1989 已提交
1380

W
Wu Yi 已提交
1381 1382
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1383 1384 1385 1386 1387 1388 1389
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1390
        self.ops.insert(0, op)
1391
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1392 1393
        return op

W
Wu Yi 已提交
1394
    def _sync_with_cpp(self):
1395
        """
1396 1397
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1398
        """
Q
Qiao Longfei 已提交
1399 1400 1401 1402 1403
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1404
        # sync variables removed from c++ end
1405
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1406
            if not self.desc.find_var(cpt.to_bytes(var)):
1407 1408
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1409
        # sync operators from cpp
1410 1411 1412 1413
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1430 1431 1432 1433 1434

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1435
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1436 1437 1438 1439 1440 1441 1442

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1456 1457 1458 1459
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1460
    def _copy_param_info_from(self, other):
1461
        """
1462 1463
        Copy the information of parameters from the other block.

1464
        Args:
1465 1466 1467 1468 1469
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1470 1471 1472 1473 1474

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1475 1476
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1477
        for p in other.iter_parameters():
1478 1479 1480
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1481
                raise ValueError("_copy_param_info_from should be invoked with "
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1494
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1495
                error_clip=p.error_clip,
1496 1497 1498
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1499
    def _clone_variable(self, var):
1500 1501
        """
        Clone a variable into current block.
1502

1503 1504 1505 1506
        Args:
            var: the variable to be cloned.

        Returns:
1507
            Variable: the new  variable cloned from 'var' in current block.
1508 1509
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1510 1511 1512 1513 1514
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1515 1516
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1517
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1518 1519 1520 1521 1522 1523
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1524 1525
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1526 1527 1528 1529 1530 1531 1532
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1533 1534
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1535
        return ret_var
1536

Y
Yu Yang 已提交
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
class IrGraph(object):
    """
    IrGraph uses core.Graph as the delegation to accomplish the manipulation.
    """

    def __init__(self, graph, for_test=False):
        """
        Construct the IrGraph using core.Graph.
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
        return self._for_test

    def all_parameters(self):
        param_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                param_nodes.add(node)
        return param_nodes

    def all_vars(self):
        return {node for node in self.graph.nodes() if node.is_var()}

    def all_ops(self):
        return {node for node in self.graph.nodes() if node.is_op()}

    def create_param_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
        for attr, value in attrs.iteritems():
            self._update_desc_attr(op_desc, attr, value)
        for input_name, var_nodes in inputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
        for output_name, var_nodes in outputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
        assert old_input_node in self.graph.nodes() and new_input_node in self.graph.nodes() and \
            op_node in self.graph.nodes(), 'Th three arguments must be in the graph nodes.'
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
            'Th two arguments must be in the graph nodes.'
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
        if not isinstance(remove_nodes, set):
            remove_nodes = set(remove_nodes)
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

    def draw(self, save_path, name, marked_nodes=None):
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

        remove_ctr_vars = set()
        ops_num = 0
        for node in self.graph.nodes():
            if node.is_ctrl_var():
                remove_ctr_vars.add(node)
            elif node.is_op():
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        self.safe_remove_nodes(remove_ctr_vars)
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
        convert_pass = core.get_pass('graph_to_program_pass')
        convert_pass.set('program', Program().desc)
        convert_pass.apply(self.graph)
        desc = convert_pass.get_program('program')
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1686
class Program(object):
D
dzhwinter 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1698
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1699 1700

    Returns:
Y
yuyang18 已提交
1701
        A empty program.
D
dzhwinter 已提交
1702 1703

    Examples:
Y
yuyang18 已提交
1704 1705 1706 1707 1708 1709
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1710 1711 1712

    """

1713 1714
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1715 1716
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1717
        self._seed = 0
Y
yuyang18 已提交
1718
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1719
        self._op_role_var = []
T
tangwei12 已提交
1720

1721 1722
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1723
        self._is_distributed = False
1724
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1725
        self._is_chief = False
1726 1727 1728
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1729
        self._endpoints = []
1730 1731 1732
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1733
        self._trainers_endpoints = []
1734
        # the distributed lookup table names
T
tangwei12 已提交
1735
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1736
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1737
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1738
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1739 1740

    @property
D
dzhwinter 已提交
1741
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1742 1743
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1744
        return self.__is_mem_optimized
D
dzhwinter 已提交
1745

D
dzhwinter 已提交
1746 1747 1748
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1749 1750 1751

    @property
    def op_role(self):
Y
yuyang18 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1765 1766 1767
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1768
    def op_role(self, role):
Y
yuyang18 已提交
1769 1770 1771 1772
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1773 1774 1775 1776 1777 1778 1779
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1780 1781 1782 1783
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1784
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1785

S
rename  
sneaxiy 已提交
1786
    @signature_safe_contextmanager
W
Wu Yi 已提交
1787
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1788 1789 1790 1791 1792 1793 1794
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1795
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1796 1797 1798 1799

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1800
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1801 1802
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1803 1804 1805
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1806 1807
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1808 1809 1810 1811
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1812
        yield
X
Xin Pan 已提交
1813 1814
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1815

S
rename  
sneaxiy 已提交
1816
    @signature_safe_contextmanager
X
Xin Pan 已提交
1817
    def _lr_schedule_guard(self, is_with_opt=False):
1818 1819 1820 1821 1822 1823 1824
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1825 1826 1827 1828
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1829 1830 1831 1832 1833 1834 1835

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1836 1837 1838 1839

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1840 1841
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1842 1843
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1844 1845 1846
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1847 1848
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1849

1850
    def __str__(self):
Y
yuyang18 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1860 1861
        return self.to_string(True)

F
fengjiayi 已提交
1862 1863 1864
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1865

F
fengjiayi 已提交
1866
        Args:
Y
yuyang18 已提交
1867 1868
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1869

Y
yuyang18 已提交
1870 1871 1872 1873
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1874 1875
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1876 1877 1878 1879

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1890 1891
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1892 1893
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1894

W
Wu Yi 已提交
1895
    def _get_desc(self):
Y
yuyang18 已提交
1896 1897 1898 1899 1900 1901 1902
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1903 1904
        return self.desc

X
version  
Xin Pan 已提交
1905 1906 1907
    def _version(self):
        return self.desc._version()

1908
    def clone(self, for_test=False):
Y
yuyang18 已提交
1909 1910 1911
        """
        Create a new, duplicated program.

1912

Y
yuyang18 已提交
1913 1914 1915 1916
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1917

Y
yuyang18 已提交
1918 1919 1920 1921
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1922 1923 1924 1925 1926
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1927 1928

        Args:
Y
yuyang18 已提交
1929 1930
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1931

D
dzhwinter 已提交
1932
        Returns:
Y
yuyang18 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1986 1987
        """
        if for_test:
X
Xin Pan 已提交
1988
            p = self._inference_optimize(prune_read_op=False)
1989
        else:
1990
            p = Program()
G
gongweibao 已提交
1991 1992
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1993
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1994 1995 1996
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1997 1998 1999 2000

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2001
            p._sync_with_cpp()
2002

W
Wu Yi 已提交
2003
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2004
        p._copy_data_info_from(self)
2005
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2006
        return p
2007

W
Wu Yi 已提交
2008
    def _prune(self, targets):
Y
yuyang18 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2024 2025 2026 2027 2028 2029
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2030 2031
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2032
                    # and we need to find the current op that generate this
2033 2034 2035 2036 2037 2038 2039 2040
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2041
                    t = t.op
2042 2043 2044 2045
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2046
                else:
2047 2048
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2049 2050 2051 2052

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2053 2054 2055
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2056
        res._sync_with_cpp()
2057 2058
        return res

X
Xin Pan 已提交
2059
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2060
        """
F
fengjiayi 已提交
2061 2062 2063 2064 2065
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2066
        3. change the :code:`is_test`
Y
yuyang18 已提交
2067 2068 2069
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2070
        Args:
X
Xin Pan 已提交
2071 2072
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2073

Y
yuyang18 已提交
2074 2075 2076 2077 2078 2079
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2080
        res = Program()
2081
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2082 2083 2084 2085

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2086
        if prune_read_op:
2087 2088 2089 2090 2091 2092 2093 2094 2095
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2096
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2097 2098

        # change all `is_test` attributes to True
M
minqiyang 已提交
2099
        for i in six.moves.range(res.desc.num_blocks()):
2100
            block = res.desc.block(i)
M
minqiyang 已提交
2101
            for j in six.moves.range(block.op_size()):
2102 2103
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2104
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2105 2106 2107
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2108
        res._sync_with_cpp()
2109 2110
        return res

2111 2112
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2113 2114 2115 2116 2117 2118 2119
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2120
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2121 2122 2123 2124

        Returns:
            Program: A deserialized program desc.
        """
2125 2126
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2127
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2128
        p._sync_with_cpp()
2129
        return p
Y
Yu Yang 已提交
2130

2131
    @staticmethod
2132
    def _construct_from_desc(desc):
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2148 2149
    @property
    def random_seed(self):
Y
yuyang18 已提交
2150 2151 2152 2153 2154 2155
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2156 2157
        return self._seed

Q
qiaolongfei 已提交
2158 2159
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2160 2161 2162
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2163 2164
        return self.desc.num_blocks()

D
dzhwinter 已提交
2165 2166 2167 2168 2169 2170
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2171
    def __repr__(self):
2172
        return self.__str__()
2173

Y
Yu Yang 已提交
2174
    def global_block(self):
Y
yuyang18 已提交
2175 2176 2177
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2178 2179
        return self.blocks[0]

Q
Qiao Longfei 已提交
2180
    def block(self, index):
Y
yuyang18 已提交
2181 2182 2183 2184 2185 2186 2187 2188
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2189 2190
        return self.blocks[index]

Y
Yu Yang 已提交
2191
    def current_block(self):
Y
yuyang18 已提交
2192 2193 2194 2195
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2196 2197
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2198
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2209
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2210 2211 2212
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2213 2214 2215 2216
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2217
    def _rollback(self):
Y
yuyang18 已提交
2218 2219 2220 2221 2222
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2223 2224
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2225
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2236 2237 2238
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2239
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2240

W
Wu Yi 已提交
2241
    def _copy_param_info_from(self, other):
2242
        """
2243
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2244

Y
yuyang18 已提交
2245 2246 2247
        Notes: This is a very low level API. Users should not invoke it
        directly.

2248 2249 2250 2251 2252 2253 2254
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2255
            raise TypeError("_copy_param_info_from should be invoked with "
2256 2257 2258
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2259
            raise ValueError("_copy_param_info_from should be invoked with two "
2260
                             "program, with represent the same topology")
W
Wu Yi 已提交
2261
        self.global_block()._copy_param_info_from(other.global_block())
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2278
        self._parameters_on_pservers = other._parameters_on_pservers
2279
        self._endpoints = other._endpoints
2280
        self._ps_endpoint = other._ps_endpoint
2281 2282
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2283
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2284 2285
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2286

Y
yuyang18 已提交
2287 2288 2289
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2290 2291 2292 2293 2294 2295 2296
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2297
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2298 2299 2300
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2301
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2302
                             "program, with represent the same topology")
2303
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2304 2305 2306
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2307
    def list_vars(self):
Y
yuyang18 已提交
2308 2309 2310 2311 2312 2313
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2314
        for each_block in self.blocks:
2315
            for each_var in list(each_block.vars.values()):
2316 2317
                yield each_var

Y
Yu Yang 已提交
2318

Y
Yu Yang 已提交
2319
class Parameter(Variable):
2320
    """
2321
    Parameter is derived from Variable. A parameter is a persistable
2322
    Variable, and will be updated by optimizers after each iteration.
2323
    The training of a neural network is essentially the updating of
2324 2325
    its parameters.

2326
    Relative to a general Variable, a Parameter has several its own
2327 2328
    member variables:

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2341 2342
    """

Y
Yu Yang 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2353 2354 2355

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2356 2357 2358 2359
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2360 2361
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2362
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2363

W
wanghaoshuang 已提交
2364
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2365

F
fengjiayi 已提交
2366 2367 2368
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2369 2370 2371
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2372

F
update  
fengjiayi 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2387
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2388
            for attr_name in additional_attr:
2389 2390
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2391 2392
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2393 2394 2395 2396
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2397

Y
Yu Yang 已提交
2398
# program is a global instance.
Y
Yu Yang 已提交
2399 2400
_main_program_ = Program()
_startup_program_ = Program()
2401

2402

2403
def default_startup_program():
Y
Yu Yang 已提交
2404
    """
Y
yuyang18 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2414

Y
Yu Yang 已提交
2415 2416 2417
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2418
    return _startup_program_
2419

2420

2421
def default_main_program():
Y
Yu Yang 已提交
2422
    """
Y
yuyang18 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2432

Y
Yu Yang 已提交
2433 2434 2435
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2436
    return _main_program_
Y
Yu Yang 已提交
2437 2438 2439 2440 2441


def switch_main_program(program):
    """
    Switch the main program to a new program.
2442

Y
Yu Yang 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2457
    Switch the startup program to a new program
Y
Yu Yang 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2470
@signature_safe_contextmanager
Y
Yu Yang 已提交
2471 2472
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2473 2474 2475
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2476

Y
Yu Yang 已提交
2477
    Examples:
Y
yuyang18 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2488

Y
Yu Yang 已提交
2489
    Examples:
Y
yuyang18 已提交
2490 2491 2492 2493 2494 2495

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2496

Y
Yu Yang 已提交
2497
    Args:
Y
yuyang18 已提交
2498
        main_program(Program): New main program inside `with` statement.
2499
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2513 2514


W
Wu Yi 已提交
2515
def _get_var(name, program=None):
X
xuwei06 已提交
2516
    """
Y
yuyang18 已提交
2517
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2518

X
xuwei06 已提交
2519 2520 2521
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2522
        If None, default_global_program() will be used.
X
xuwei06 已提交
2523 2524 2525 2526 2527 2528 2529

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2530
    assert isinstance(program, Program)
X
xuwei06 已提交
2531 2532

    return program.global_block().var(name)
2533 2534


S
rename  
sneaxiy 已提交
2535
@signature_safe_contextmanager
P
Paddle CI 已提交
2536
def _imperative_guard(tracer):
2537 2538 2539
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2540

P
Paddle CI 已提交
2541 2542 2543 2544 2545
    yield

    _imperative_tracer_ = tmp_trace


S
rename  
sneaxiy 已提交
2546
@signature_safe_contextmanager
P
Paddle CI 已提交
2547
def _imperative_place_guard(place):
M
minqiyang 已提交
2548 2549 2550
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2551

2552
    yield
M
minqiyang 已提交
2553

M
minqiyang 已提交
2554
    _imperative_current_expected_place_ = tmp_place