framework.py 63.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18

Y
Yu Yang 已提交
19
import numpy as np
Q
qiaolongfei 已提交
20

21
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
22
from . import core
Y
Yu Yang 已提交
23
import unique_name
Y
Yu Yang 已提交
24

25
__all__ = [
26 27 28 29
    'Block',
    'Variable',
    'Program',
    'Operator',
F
fengjiayi 已提交
30
    'Parameter',
31 32 33
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
34
    'get_var',
35
]
Y
Yu Yang 已提交
36

Q
qiaolongfei 已提交
37 38 39 40 41 42 43 44
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
45 46
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
47 48 49
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
50

51
def convert_np_dtype_to_dtype_(np_dtype):
52 53
    """
    Convert the data type in numpy to the data type in Paddle
54

55
    Args:
56
        np_dtype(np.dtype): the data type in numpy.
57

58 59
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
60 61

    """
62 63
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
64
        return core.VarDesc.VarType.FP32
65
    elif dtype == np.float64:
66
        return core.VarDesc.VarType.FP64
67
    elif dtype == np.float16:
68
        return core.VarDesc.VarType.FP16
69
    elif dtype == np.int32:
70
        return core.VarDesc.VarType.INT32
71
    elif dtype == np.int16:
72
        return core.VarDesc.VarType.INT16
73
    elif dtype == np.int64:
74
        return core.VarDesc.VarType.INT64
75
    elif dtype == np.bool:
76
        return core.VarDesc.VarType.BOOL
77 78
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
79 80
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
81 82 83 84 85
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
86 87 88
    """
    Check the data type is floating or not.
    Args:
89
        dtype(np.dtype|core.VarDesc.VarType): data type.
90 91 92 93 94
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
95
    if not isinstance(dtype, core.VarDesc.VarType):
96 97
        dtype = convert_np_dtype_to_dtype_(dtype)

98 99 100 101
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
102 103


Y
Yang Yang(Tony) 已提交
104
def _debug_string_(proto, throw_on_error=True):
105 106 107 108 109 110 111 112 113 114 115
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
116
    error_fields = list()
Y
Yang Yang(Tony) 已提交
117
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
118 119
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
120 121 122
    return proto.__str__()


Y
Yu Yang 已提交
123
class Variable(object):
124
    """
125 126 127 128
    In Fluid, every input and output of an operator is a variable. In most 
    cases, variables are used for holding different kinds of data or training 
    labels. A variable belongs to a block. All variable has its own name and 
    two variables in different blocks could have the same name.
129

130 131
    There are many kinds of variables. Each kind of them has its own attributes 
    and usages. Please reference the framework.proto for details. 
132

133
    Most of a Variable's member variables can be setted to be None. It mean 
134
    it is not available or will be specified later.
135 136

    Args:
137
        block(Block): The block that the variable belongs to.
138 139
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
140 141
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
142
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
143
            Some kinds of variable do not contain shape, just set it to None.
144 145 146
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
147
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
148
            series data.
149
            Default: None
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
172 173
    """

Y
Yu Yang 已提交
174 175
    def __init__(self,
                 block,
Y
Yu Yang 已提交
176
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
177 178 179 180
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
181
                 capacity=None,
Q
QI JUN 已提交
182
                 persistable=None,
F
fengjiayi 已提交
183
                 error_clip=None,
Y
Yu Yang 已提交
184
                 stop_gradient=False,
F
fengjiayi 已提交
185
                 is_data=False,
Y
Yu Yang 已提交
186
                 **kwargs):
Y
Yu Yang 已提交
187
        self.block = block
F
fengjiayi 已提交
188
        self.error_clip = error_clip
Y
Yu Yang 已提交
189 190

        if name is None:
Y
Yu Yang 已提交
191
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
192 193 194 195
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
196
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
197
            is_new_var = True
Y
Yu Yang 已提交
198

Y
Yu Yang 已提交
199 200 201 202 203 204 205 206
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
207
        if shape is not None:
Y
Yu Yang 已提交
208
            if is_new_var:
209
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
218
        if dtype is not None:
219
            if not isinstance(dtype, core.VarDesc.VarType):
220
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
221
            if is_new_var:
F
fengjiayi 已提交
222
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
223
            else:
F
fengjiayi 已提交
224
                old_dtype = self.dtype
Q
QI JUN 已提交
225
                if dtype != old_dtype:
Y
Yu Yang 已提交
226 227 228 229 230
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
231 232

        if lod_level is not None:
Y
Yu Yang 已提交
233
            if is_new_var:
234
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
235 236 237 238 239 240 241
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
242 243 244 245 246 247 248 249 250 251 252
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

253 254 255 256 257 258 259 260
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
261
        self.block.vars[name] = self
Y
Yu Yang 已提交
262
        self.op = None
Y
Yu Yang 已提交
263
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
264
        self.is_data = is_data
Y
Yu Yang 已提交
265

266
    def __str__(self):
Y
Yang Yang(Tony) 已提交
267 268
        return self.to_string(True)

F
update  
fengjiayi 已提交
269
    def to_string(self, throw_on_error, with_details=False):
270 271 272 273
        """
        Get debug string.

        Args:
274 275
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
276
            with_details(bool): more details about variables and parameters
277 278
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
279

280 281
        Returns:
            str: The debug string.
282
        """
F
update  
fengjiayi 已提交
283 284
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
285 286
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
F
update  
fengjiayi 已提交
287 288 289 290 291 292 293
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        return res_str
294 295 296

    __repr__ = __str__

297
    def set_desc(self, input):
298 299 300 301 302 303 304 305 306
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
307 308
        self.desc = input

309 310 311 312
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
313 314 315 316
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
317 318
    @property
    def name(self):
319
        return self.desc.name()
Y
Yu Yang 已提交
320

T
typhoonzero 已提交
321 322 323 324
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
325 326 327
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
328
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
329 330

    @property
F
fengjiayi 已提交
331 332
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
333 334 335

    @property
    def lod_level(self):
336
        return self.desc.lod_level()
Y
Yu Yang 已提交
337

Y
Yu Yang 已提交
338 339 340 341
    @property
    def type(self):
        return self.desc.type()

342
    def set_error_clip(self, error_clip):
343 344 345 346 347 348 349 350 351
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
352 353
        self.error_clip = error_clip

Y
Yu Yang 已提交
354

F
fengjiayi 已提交
355 356 357
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
358

359 360
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
361 362 363 364 365 366 367 368 369 370
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
371 372 373 374
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
375 376 377 378 379 380 381 382 383
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
384
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
385 386 387 388 389 390
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
391 392 393 394 395 396 397 398
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
399 400
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
401 402
        return self.op_proto_map[type]

403 404 405 406 407 408 409
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
410

Y
Yu Yang 已提交
411
class Operator(object):
412
    """
413 414 415 416 417 418 419
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
420
        type(str): The type of operator. Default None.
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
452
    """
453 454 455 456 457
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
458
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
459
    }
460

Y
Yu Yang 已提交
461 462
    def __init__(self,
                 block,
Y
Yu Yang 已提交
463
                 desc,
Y
Yu Yang 已提交
464 465 466 467
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
468

Y
Yu Yang 已提交
469
        self.block = block
Y
Yu Yang 已提交
470
        self.desc = desc
T
typhoonzero 已提交
471
        self.attrs = attrs
Y
yuyang18 已提交
472 473 474 475 476 477 478 479
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
480 481 482 483 484 485 486 487

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
488

F
fengjiayi 已提交
489 490 491 492 493
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
494
        self.desc.set_type(type)
F
fengjiayi 已提交
495
        proto = OpProtoHolder.instance().get_op_proto(type)
496

Y
Yang Yang(Tony) 已提交
497 498
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
499
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
500 501
                    return True
            return False
Q
QI JUN 已提交
502

Y
Yang Yang(Tony) 已提交
503 504 505 506 507 508 509
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
510 511 512 513
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
514 515
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
516 517 518
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
519 520 521 522
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
523
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
524 525
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
526

Y
Yu Yang 已提交
527
        if outputs is not None:
528 529 530 531 532 533 534
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
535 536
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
537 538
                                 (type, ", ".join(str(e) for e in need),
                                  ", ".join(str(e) for e in given)))
539

F
fengjiayi 已提交
540
            for out_proto in proto.outputs:
541 542 543 544
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
545 546
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
547 548 549 550 551 552
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
553

Y
yuyang18 已提交
554 555
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
556
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
557
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
558
                attr_name = attr.name
Y
yuyang18 已提交
559 560
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
561
                    continue
Y
Yancey1989 已提交
562
                attr_val = self.attrs[attr_name]
G
gongweibao 已提交
563 564
                self._update_desc_attr(attr_name, attr_val)

565
        self.desc.check_attrs()
566
        if self.has_kernel(type):
Q
QI JUN 已提交
567
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
568
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
569

570 571 572
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
573
    def to_string(self, throw_on_error):
574
        """
575 576
        Get debug string.

577
        Args:
578 579
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
580

581 582
        Returns:
            str: The debug string.
583 584

        """
585 586
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
587 588 589 590
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
591 592 593

    __repr__ = __str__

F
fengjiayi 已提交
594 595 596 597 598
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
599
        """
600
        Get the input arguments according to the input parameter name.
601

602 603
        Args:
            name(str): The input parameter name.
604

605 606 607
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
608
        """
F
fengjiayi 已提交
609 610
        return self.desc.input(name)

T
typhoonzero 已提交
611
    def rename_input(self, old_name, new_name):
612 613 614 615 616 617 618 619 620 621
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
622 623 624
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
625 626 627 628 629 630 631 632 633 634
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
635 636
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
637 638 639 640
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
641 642 643 644 645 646 647 648
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
649
    def output(self, name):
650
        """
651
        Get output arguments by the output parameter name.
652

653 654
        Args:
            name(str): The output parameter name.
655

656 657 658
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
659
        """
F
fengjiayi 已提交
660 661 662 663 664 665
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

666 667 668 669 670 671 672 673
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
674
    def has_attr(self, name):
675
        """
676 677
        Whether this Operator has the attribute with name or not.

678
        Args:
679
            name(str): the attribute name.
680

681 682
        Returns:
            bool: True if has this attribute.
683 684

        """
F
fengjiayi 已提交
685 686 687
        return self.desc.has_attr(name)

    def attr_type(self, name):
688
        """
689
        Get the type of attribute by attribute's name.
690

691 692
        Args:
            name(str): the attribute name.
693

694 695
        Returns:
            core.AttrType: the attribute type.
696
        """
F
fengjiayi 已提交
697 698
        return self.desc.attr_type(name)

Y
yuyang18 已提交
699
    def set_attr(self, name, val):
700 701 702 703 704 705 706 707 708 709
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Y
yuyang18 已提交
710
        self.attrs[name] = val
G
gongweibao 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
724 725
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
726 727
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
728
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
729 730 731 732 733
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
734

F
fengjiayi 已提交
735 736 737 738 739
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
740
        """
741 742
        Get the attribute by name.

743
        Args:
744
            name(str): the attribute name.
745

746 747
        Returns:
            bool|int|str|float|list: The attribute value. The return value
748 749
            can be any valid attribute type.
        """
F
fengjiayi 已提交
750
        return self.desc.attr(name)
Y
Yu Yang 已提交
751

F
fengjiayi 已提交
752
    def block_attr(self, name):
753
        """
754
        Get the block attribute by name.
755

756 757
        Args:
            name(str): the attribute name.
758

759 760
        Returns:
            int: the block index.
761
        """
F
fengjiayi 已提交
762
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
763

J
JiayiFeng 已提交
764
    def all_attrs(self):
F
fengjiayi 已提交
765
        """
766 767 768 769
        Get the attribute dict.

        Returns:
            dict: The Operator's attribute dict.
F
fengjiayi 已提交
770 771 772 773 774 775 776 777 778 779
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
780

Y
Yu Yang 已提交
781
class Block(object):
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
811
    def __init__(self, program, idx):
Y
Yu Yang 已提交
812
        self.desc = program.desc.block(idx)
813
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
814
        self.ops = list()  # operator list
Y
Yu Yang 已提交
815
        self.program = program
816
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
817

818
    def __str__(self):
Y
Yang Yang(Tony) 已提交
819 820
        return self.to_string(True)

F
fengjiayi 已提交
821 822
    def to_string(self, throw_on_error, with_details=False):
        """
823 824
        Get debug string.

F
fengjiayi 已提交
825 826
        Args:
            throw_on_error(bool): raise exception when self is not initialized
827
                when throw_on_error is True.
F
update  
fengjiayi 已提交
828
            with_details(bool): more details about variables and parameters
829 830
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
831

832 833
        Returns:
            str: The debug string.
F
fengjiayi 已提交
834 835 836 837
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
838
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
839 840 841
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
            for var in self.vars.itervalues():
F
fengjiayi 已提交
842
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
843
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
844
            for op in self.ops:
F
fengjiayi 已提交
845 846
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
847 848 849 850 851 852
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.BlockDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
853 854 855

    __repr__ = __str__

Y
Yu Yang 已提交
856 857
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
858
        return self.desc.parent
Y
Yu Yang 已提交
859

Y
Yu Yang 已提交
860 861 862 863 864
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

    def set_forward_block_idx(self, idx):
865 866 867 868 869 870 871 872 873
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
Y
Yu Yang 已提交
874 875
        self.desc.set_forward_block_idx(idx)

Y
Yu Yang 已提交
876 877
    @property
    def idx(self):
Y
Yu Yang 已提交
878
        return self.desc.id
Y
Yu Yang 已提交
879

Q
Qiao Longfei 已提交
880
    def var(self, name):
881 882 883 884 885 886 887 888 889 890 891 892 893
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
894
        if not isinstance(name, basestring):
895 896 897
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
898 899
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
900
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
901
        return v
Q
Qiao Longfei 已提交
902

F
fengjiayi 已提交
903
    def var_recursive(self, name):
904 905 906 907 908 909 910 911 912 913 914 915 916
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
943

Q
Qiao Longfei 已提交
944
    def all_parameters(self):
945 946 947 948 949
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
950

Y
Yu Yang 已提交
951
    def create_var(self, *args, **kwargs):
952
        var = Variable(block=self, *args, **kwargs)
953 954
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
955
        return var
Y
Yu Yang 已提交
956

Q
Qiao Longfei 已提交
957 958 959
    def has_var(self, name):
        return name in self.vars

T
typhoonzero 已提交
960 961 962
    def rename_var(self, name, new_name):
        """
        Rename variable in vars and ops' inputs and outputs
963 964 965 966 967 968 969 970 971 972 973 974

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
975 976
        """
        if not self.has_var(name):
977
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
978 979
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
980
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
981 982 983 984 985 986 987
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
988
            var_type = "Variable"
T
wip  
typhoonzero 已提交
989 990 991 992
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
993
        orig_var_type = v.type
T
typhoonzero 已提交
994
        self.desc.rename_var(name, new_name)
T
typhoonzero 已提交
995
        # NOTE: v is destroyed by C++ after calling rename_var.
T
wip  
typhoonzero 已提交
996
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
997
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
998 999 1000 1001
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1002
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1003 1004 1005 1006 1007 1008 1009
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1010
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1011 1012
            var = Variable(
                self,
T
typhoonzero 已提交
1013
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1014 1015 1016 1017 1018 1019 1020 1021
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

        # rename the python side, sync_with_cpp will only add
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
T
typhoonzero 已提交
1022
        self.sync_with_cpp()
1023
        return var
T
typhoonzero 已提交
1024

1025 1026 1027 1028 1029
    def remove_var(self, name):
        self.sync_with_cpp()
        self.desc.remove_var(name)
        del self.vars[name]

Y
Yu Yang 已提交
1030 1031
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1032
        param = Parameter(global_block, *args, **kwargs)
1033 1034
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
1035
        return param
Y
Yu Yang 已提交
1036

Y
Yu Yang 已提交
1037
    def append_op(self, *args, **kwargs):
1038 1039 1040 1041 1042 1043
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1044
        op_desc = self.desc.append_op()
1045
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1046 1047 1048
        self.ops.append(op)
        return op

Q
qiaolongfei 已提交
1049
    def insert_op(self, index, *args, **kwargs):
1050 1051 1052 1053 1054 1055 1056 1057 1058
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
Q
qiaolongfei 已提交
1059 1060 1061 1062 1063 1064
        self.sync_with_cpp()
        op_desc = self.desc.insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

1065
    def remove_op(self, index):
1066 1067 1068 1069 1070 1071 1072 1073 1074
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
1075 1076 1077 1078
        self.sync_with_cpp()
        self.desc.remove_op(index, index + 1)
        del self.ops[index]

Y
Yancey1989 已提交
1079
    def slice_ops(self, start, end):
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1090
        return self.ops[start:end]
Y
Yancey1989 已提交
1091

Y
Yu Yang 已提交
1092
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
1093 1094
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1095
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1096 1097
        return op

Q
Qiao Longfei 已提交
1098
    def sync_with_cpp(self):
1099
        """
1100 1101
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1102
        """
Q
Qiao Longfei 已提交
1103 1104 1105 1106 1107
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1108 1109 1110 1111 1112
        # sync variables removed from c++ end
        for var in self.vars.keys():
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1113
        # sync operators from cpp
1114 1115 1116 1117
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1134 1135 1136 1137 1138

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1139
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1140 1141 1142 1143 1144 1145 1146

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1160 1161 1162 1163
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

1164 1165
    def copy_param_info_from(self, other):
        """
1166 1167
        Copy the information of parameters from the other block.

1168
        Args:
1169 1170 1171 1172 1173
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1197
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1198
                error_clip=p.error_clip,
1199 1200 1201
                name=v.name)
            self.vars[new_p.name] = new_p

1202 1203 1204
    def clone_variable(self, var):
        """
        Clone a variable into current block.
1205

1206 1207 1208 1209
        Args:
            var: the variable to be cloned.

        Returns:
1210
            Variable: the new  variable cloned from 'var' in current block.
1211 1212
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1213 1214 1215 1216 1217
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1218 1219
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1220
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1221 1222 1223 1224 1225 1226
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1227 1228
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1229 1230 1231 1232 1233 1234 1235
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1236 1237
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1238
        return ret_var
1239

Y
Yu Yang 已提交
1240 1241

class Program(object):
D
dzhwinter 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1253
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1254 1255

    Returns:
Y
yuyang18 已提交
1256
        A empty program.
D
dzhwinter 已提交
1257 1258

    Examples:
Y
yuyang18 已提交
1259 1260 1261 1262 1263 1264
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1265 1266 1267

    """

1268 1269
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1270 1271
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1272
        self._seed = 0
Y
yuyang18 已提交
1273
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1274
        self._op_role_var = []
Y
yuyang18 已提交
1275 1276 1277

    @property
    def op_role(self):
Y
yuyang18 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1291 1292 1293 1294 1295 1296 1297 1298
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1299 1300 1301 1302 1303 1304 1305
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1306 1307 1308 1309
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1310
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1311 1312 1313

    @contextlib.contextmanager
    def optimized_guard(self, var):
Y
yuyang18 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
            var(Variable|str): The variable (name) to be optimized.

        Examples:

            >>> p, g = backward(...)
Y
yuyang18 已提交
1326
            >>> with program.optimized_guard(p):
Y
yuyang18 已提交
1327 1328
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1329 1330
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
Y
yuyang18 已提交
1331
        self._op_role_var = [var.name if isinstance(var, Variable) else var]
Y
yuyang18 已提交
1332
        yield
Y
yuyang18 已提交
1333
        self._op_role_var = []
Y
yuyang18 已提交
1334
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1335

1336
    def __str__(self):
Y
yuyang18 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1346 1347
        return self.to_string(True)

F
fengjiayi 已提交
1348 1349 1350
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1351

F
fengjiayi 已提交
1352
        Args:
Y
yuyang18 已提交
1353 1354
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1355

Y
yuyang18 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1379

1380
    def get_desc(self):
Y
yuyang18 已提交
1381 1382 1383 1384 1385 1386 1387
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1388 1389
        return self.desc

1390
    def clone(self, for_test=False):
Y
yuyang18 已提交
1391 1392 1393
        """
        Create a new, duplicated program.

1394

Y
yuyang18 已提交
1395 1396 1397 1398
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1399

Y
yuyang18 已提交
1400 1401 1402 1403
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1404 1405 1406 1407 1408
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1409 1410

        Args:
Y
yuyang18 已提交
1411 1412
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1413

D
dzhwinter 已提交
1414
        Returns:
Y
yuyang18 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1468 1469
        """
        if for_test:
1470
            p = self.inference_optimize()
1471
        else:
1472
            p = Program()
1473
            p.desc = core.ProgramDesc(self.desc)
1474 1475 1476
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
            p.sync_with_cpp()

1477
        p.copy_param_info_from(self)
F
fengjiayi 已提交
1478
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1479
        return p
1480

1481
    def prune(self, targets):
Y
yuyang18 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1497 1498 1499 1500 1501 1502
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1503 1504
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1505
                    # and we need to find the current op that generate this
1506 1507 1508 1509 1510 1511 1512 1513
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1514
                    t = t.op
1515 1516 1517 1518
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1519
                else:
1520 1521
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1522 1523 1524 1525 1526 1527 1528 1529

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1530
    def inference_optimize(self):
Y
yuyang18 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        """
        This method will create a new program and change the :code:`is_test`
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1542 1543
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1544
        res = Program()
1545 1546 1547 1548 1549 1550 1551
        res.desc = core.ProgramDesc(self.desc)
        for i in xrange(res.desc.num_blocks()):
            block = res.desc.block(i)
            for j in xrange(block.op_size()):
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1552 1553 1554 1555
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1556 1557
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
            binary_str(str): The binary prootbuf string.

        Returns:
            Program: A deserialized program desc.
        """
1570 1571
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1572
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
1573 1574
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
1575

D
dzhwinter 已提交
1576 1577
    @property
    def random_seed(self):
Y
yuyang18 已提交
1578 1579 1580 1581 1582 1583
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1584 1585
        return self._seed

Q
qiaolongfei 已提交
1586 1587
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1588 1589 1590
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1591 1592
        return self.desc.num_blocks()

D
dzhwinter 已提交
1593 1594 1595 1596 1597 1598
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1599 1600
    def __repr__(self):
        return str(self)
1601

Y
Yu Yang 已提交
1602
    def global_block(self):
Y
yuyang18 已提交
1603 1604 1605
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1606 1607
        return self.blocks[0]

Q
Qiao Longfei 已提交
1608
    def block(self, index):
Y
yuyang18 已提交
1609 1610 1611 1612 1613 1614 1615 1616
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1617 1618
        return self.blocks[index]

Y
Yu Yang 已提交
1619
    def current_block(self):
Y
yuyang18 已提交
1620 1621 1622 1623
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1624 1625
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1626
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1637
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1638 1639 1640
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1641 1642 1643 1644 1645
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1646 1647 1648 1649 1650
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1651 1652
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
1653
    def sync_with_cpp(self):
Y
yuyang18 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1664 1665 1666 1667 1668
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

1669 1670
    def copy_param_info_from(self, other):
        """
1671
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1672

Y
yuyang18 已提交
1673 1674 1675
        Notes: This is a very low level API. Users should not invoke it
        directly.

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

F
fengjiayi 已提交
1691 1692 1693
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1694

Y
yuyang18 已提交
1695 1696 1697
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        for var in other.global_block().vars.itervalues():
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1715
    def list_vars(self):
Y
yuyang18 已提交
1716 1717 1718 1719 1720 1721
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1722 1723 1724 1725
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
1726

Y
Yu Yang 已提交
1727
class Parameter(Variable):
1728 1729 1730 1731 1732 1733
    """
    Parameter is derived from Variable. A parameter is a persistable 
    Variable, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of 
    its parameters.

1734
    Relative to a general Variable, a Parameter has several its own
1735 1736
    member variables:

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1749 1750
    """

Y
Yu Yang 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1761 1762 1763

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1764 1765 1766 1767
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1768 1769
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1770
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1771

W
wanghaoshuang 已提交
1772
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1773

F
fengjiayi 已提交
1774 1775 1776
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1777 1778 1779
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1780

F
update  
fengjiayi 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1795
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1796 1797 1798 1799 1800
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1801 1802 1803 1804
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1805

Y
Yu Yang 已提交
1806
# program is a global instance.
Y
Yu Yang 已提交
1807 1808
_main_program_ = Program()
_startup_program_ = Program()
1809

1810

1811
def default_startup_program():
Y
Yu Yang 已提交
1812
    """
Y
yuyang18 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1822

Y
Yu Yang 已提交
1823 1824 1825
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1826
    return _startup_program_
1827

1828

1829
def default_main_program():
Y
Yu Yang 已提交
1830
    """
Y
yuyang18 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1840

Y
Yu Yang 已提交
1841 1842 1843
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1844
    return _main_program_
Y
Yu Yang 已提交
1845 1846 1847 1848 1849


def switch_main_program(program):
    """
    Switch the main program to a new program.
1850

Y
Yu Yang 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1865
    Switch the startup program to a new program
Y
Yu Yang 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
1881 1882 1883
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
1884

Y
Yu Yang 已提交
1885
    Examples:
Y
yuyang18 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
1896

Y
Yu Yang 已提交
1897
    Examples:
Y
yuyang18 已提交
1898 1899 1900 1901 1902 1903

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
1904

Y
Yu Yang 已提交
1905
    Args:
Y
yuyang18 已提交
1906
        main_program(Program): New main program inside `with` statement.
1907
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1921 1922 1923 1924


def get_var(name, program=None):
    """
Y
yuyang18 已提交
1925
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
1926

X
xuwei06 已提交
1927 1928 1929
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
1930
        If None, default_global_program() will be used.
X
xuwei06 已提交
1931 1932 1933 1934 1935 1936 1937

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1938
    assert isinstance(program, Program)
X
xuwei06 已提交
1939 1940

    return program.global_block().var(name)