framework.py 77.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24

Y
Yu Yang 已提交
25
import numpy as np
Q
qiaolongfei 已提交
26

M
minqiyang 已提交
27
from .. import compat as cpt
28
from .proto import framework_pb2
29
try:
P
peizhilin 已提交
30
    if os.name == 'nt':
P
peizhilin 已提交
31
        import sys
P
peizhilin 已提交
32 33 34 35 36
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

37
    from . import core
38
except ImportError as e:
P
peizhilin 已提交
39
    if os.name == 'nt':
40
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
41
        raise ImportError(
42 43 44 45 46
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
47 48 49 50 51 52
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
53
except Exception as e:
54
    raise e
55
from . import unique_name
Y
Yu Yang 已提交
56

57
__all__ = [
58 59 60 61
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
62
    'name_scope',
63
]
Y
Yu Yang 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
69 70
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

71 72 73 74 75 76 77 78 79 80
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
121

122 123 124 125
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
126 127
          with name_scope("attention"):
             ...
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
147 148 149
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
150 151 152 153


def grad_var_name(var_name):
    """
154 155
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
156 157 158
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
159

160
def convert_np_dtype_to_dtype_(np_dtype):
161 162
    """
    Convert the data type in numpy to the data type in Paddle
163

164
    Args:
165
        np_dtype(np.dtype): the data type in numpy.
166

167 168
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
169 170

    """
171 172
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
173
        return core.VarDesc.VarType.FP32
174
    elif dtype == np.float64:
175
        return core.VarDesc.VarType.FP64
176
    elif dtype == np.float16:
177
        return core.VarDesc.VarType.FP16
178
    elif dtype == np.int32:
179
        return core.VarDesc.VarType.INT32
180
    elif dtype == np.int16:
181
        return core.VarDesc.VarType.INT16
182
    elif dtype == np.int64:
183
        return core.VarDesc.VarType.INT64
184
    elif dtype == np.bool:
185
        return core.VarDesc.VarType.BOOL
186 187
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
188 189
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
190 191
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
192
    else:
M
minqiyang 已提交
193
        raise ValueError("Not supported numpy dtype %s" % dtype)
194 195 196


def dtype_is_floating(dtype):
197 198 199
    """
    Check the data type is floating or not.
    Args:
200
        dtype(np.dtype|core.VarDesc.VarType): data type.
201 202 203 204 205
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
206
    if not isinstance(dtype, core.VarDesc.VarType):
207 208
        dtype = convert_np_dtype_to_dtype_(dtype)

209 210 211 212
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
213 214


Y
Yang Yang(Tony) 已提交
215
def _debug_string_(proto, throw_on_error=True):
216 217 218 219 220 221 222 223 224 225 226
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
227
    error_fields = list()
Y
Yang Yang(Tony) 已提交
228
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
229 230
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
231 232 233
    return proto.__str__()


X
Xin Pan 已提交
234
class Variable(object):
235
    """
236 237 238
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
239
    two variables in different blocks could have the same name.
240

241 242
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
243

244
    Most of a Variable's member variables can be setted to be None. It mean
245
    it is not available or will be specified later.
246 247

    Args:
248
        block(Block): The block that the variable belongs to.
249 250
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
251 252
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
253
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
254
            Some kinds of variable do not contain shape, just set it to None.
255 256 257
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
258
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
259
            series data.
260
            Default: None
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
283 284
    """

Y
Yu Yang 已提交
285 286
    def __init__(self,
                 block,
Y
Yu Yang 已提交
287
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
288 289 290 291
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
292
                 capacity=None,
Q
QI JUN 已提交
293
                 persistable=None,
F
fengjiayi 已提交
294
                 error_clip=None,
Y
Yu Yang 已提交
295
                 stop_gradient=False,
F
fengjiayi 已提交
296
                 is_data=False,
Y
Yu Yang 已提交
297
                 **kwargs):
Y
Yu Yang 已提交
298
        self.block = block
F
fengjiayi 已提交
299
        self.error_clip = error_clip
Y
Yu Yang 已提交
300 301

        if name is None:
Y
Yu Yang 已提交
302
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
303
        is_new_var = False
M
minqiyang 已提交
304
        name = cpt.to_text(name)
M
minqiyang 已提交
305
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
306 307

        if self.desc is None:
M
minqiyang 已提交
308
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
309
            is_new_var = True
Y
Yu Yang 已提交
310

Y
Yu Yang 已提交
311 312 313 314 315 316 317 318
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
319
        if shape is not None:
Y
Yu Yang 已提交
320
            if is_new_var:
321
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
322 323 324 325 326 327 328 329
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
330
        if dtype is not None:
331
            if not isinstance(dtype, core.VarDesc.VarType):
332
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
333
            if is_new_var:
F
fengjiayi 已提交
334
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
335
            else:
F
fengjiayi 已提交
336
                old_dtype = self.dtype
Q
QI JUN 已提交
337
                if dtype != old_dtype:
Y
Yu Yang 已提交
338 339 340 341 342
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
343 344

        if lod_level is not None:
Y
Yu Yang 已提交
345
            if is_new_var:
346
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
347 348 349 350 351 352 353
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
354 355 356 357 358 359 360 361 362 363 364
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

365 366 367 368 369 370 371 372
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
373
        self.block.vars[name] = self
Y
Yu Yang 已提交
374
        self.op = None
M
minqiyang 已提交
375
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
376
        self.is_data = is_data
X
Xin Pan 已提交
377
        if _in_imperative_mode():
M
minqiyang 已提交
378 379 380
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
381
            self._ivar.desc = self.desc
382
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
383

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    @staticmethod
    def construct_from_desc(block, desc):
        """
        Construct a Variable from variable desc.
        Args:
            desc(core.VarDesc): The  variable desc for constructing.

        Returns:
            Variable: A variable.
        """
        v = Variable(
            block=block,
            type=desc.type(),
            name=desc.name(),
            shape=desc.shape(),
            dtype=desc.dtype(),
            lod_level=desc.lod_level(),
            persistable=desc.persistable())
        v.desc = desc
        return v

405
    def _numpy(self):
M
minqiyang 已提交
406
        tensor = self._ivar.value().get_tensor()
407 408 409
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
410
        self._ivar._run_backward()
411 412

    def _gradient(self):
M
minqiyang 已提交
413
        return np.array(self._ivar._grad_value())
414

X
Xin Pan 已提交
415 416
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
417

418
    def __str__(self):
Y
Yang Yang(Tony) 已提交
419 420
        return self.to_string(True)

F
update  
fengjiayi 已提交
421
    def to_string(self, throw_on_error, with_details=False):
422 423 424 425
        """
        Get debug string.

        Args:
426 427
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
428
            with_details(bool): more details about variables and parameters
429 430
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
431

432 433
        Returns:
            str: The debug string.
434
        """
F
update  
fengjiayi 已提交
435 436
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
437
        protostr = self.desc.serialize_to_string()
438
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
439 440 441 442
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
443 444
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
445
        return res_str
446 447 448

    __repr__ = __str__

W
Wu Yi 已提交
449
    def _set_desc(self, input):
450 451 452 453 454 455 456 457 458
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
459 460
        self.desc = input

461 462 463 464 465 466 467 468
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

469 470 471 472
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
473 474 475 476
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
477 478
    @property
    def name(self):
M
minqiyang 已提交
479
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
480

T
typhoonzero 已提交
481 482 483 484
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
485 486 487
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
488
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
489 490

    @property
F
fengjiayi 已提交
491 492
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
493 494 495

    @property
    def lod_level(self):
496
        return self.desc.lod_level()
Y
Yu Yang 已提交
497

Y
Yu Yang 已提交
498 499 500 501
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
502
    def _set_error_clip(self, error_clip):
503 504 505 506 507 508 509 510 511
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
512 513
        self.error_clip = error_clip

Y
Yu Yang 已提交
514

F
fengjiayi 已提交
515 516 517
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
518

519 520
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
521 522 523 524
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
525
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
526 527 528 529 530
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
531 532 533 534
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
535 536 537 538 539 540 541 542 543
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
544
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
545 546 547 548 549 550
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
551 552 553 554 555 556 557 558
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
559 560
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
561 562
        return self.op_proto_map[type]

563 564 565 566
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
567
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
568
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
569 570
        }

F
fengjiayi 已提交
571

X
Xin Pan 已提交
572
class Operator(object):
573
    """
574 575 576 577 578 579 580
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
581
        type(str): The type of operator. Default None.
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
602
        Block.append_op or Block._prepend_op instead.
603 604 605 606 607 608 609 610 611 612

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
613
    """
614 615 616
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
617 618
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
619
    }
620

Y
Yu Yang 已提交
621 622
    def __init__(self,
                 block,
Y
Yu Yang 已提交
623
                 desc,
Y
Yu Yang 已提交
624 625 626
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
627
                 attrs=None):
Y
Yu Yang 已提交
628
        self.block = block
Y
Yu Yang 已提交
629
        self.desc = desc
G
gongweibao 已提交
630 631 632 633 634
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
635 636 637 638
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
639 640
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
641 642 643

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
644 645
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
646

G
gongweibao 已提交
647 648
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
649

F
fengjiayi 已提交
650 651 652 653 654
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
655 656 657 658 659
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
660
        self.desc.set_type(type)
F
fengjiayi 已提交
661
        proto = OpProtoHolder.instance().get_op_proto(type)
662

663 664 665
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
666 667
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
668
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
669 670
                    return True
            return False
Q
QI JUN 已提交
671

Y
Yang Yang(Tony) 已提交
672 673 674 675 676 677 678
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
679 680 681 682
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
683 684
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
685 686 687
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
688
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
689
                            in_arg_names.append(arg)
690 691
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
692
                        else:
M
minqiyang 已提交
693
                            in_arg_names.append(cpt.to_text(arg.name))
694
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
695 696
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
697

Y
Yu Yang 已提交
698
        if outputs is not None:
699
            for m in proto.outputs:
Q
qingqing01 已提交
700 701 702 703 704 705
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
706
            for out_proto in proto.outputs:
Q
qingqing01 已提交
707 708
                if out_proto.name not in outputs:
                    continue
709 710 711 712
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
713 714
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
715 716 717
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
718
                    out_arg_names.append(cpt.to_text(arg.name))
719 720
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
721

G
gongweibao 已提交
722 723
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
724
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
725
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
726
                attr_name = attr.name
G
gongweibao 已提交
727
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
728
                    continue
G
gongweibao 已提交
729
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
730 731
                self._update_desc_attr(attr_name, attr_val)

732
        self.desc.check_attrs()
M
minqiyang 已提交
733

W
Wu Yi 已提交
734
        if self._has_kernel(type):
Q
QI JUN 已提交
735
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
736
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
737

X
Xin Pan 已提交
738 739 740
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
741
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
742
            if inputs is not None:
X
Xin Pan 已提交
743 744 745 746 747 748
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
749
            if outputs is not None:
X
Xin Pan 已提交
750 751 752 753 754
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
755

W
Wu Yi 已提交
756
    def _has_kernel(self, op_type):
757 758
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
759
    def to_string(self, throw_on_error):
760
        """
761 762
        Get debug string.

763
        Args:
764 765
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
766

767 768
        Returns:
            str: The debug string.
769 770

        """
771
        protostr = self.desc.serialize_to_string()
772
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
773 774 775 776
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
777 778 779

    __repr__ = __str__

F
fengjiayi 已提交
780 781 782 783 784
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
785
        """
786
        Get the input arguments according to the input parameter name.
787

788 789
        Args:
            name(str): The input parameter name.
790

791 792 793
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
794
        """
F
fengjiayi 已提交
795 796
        return self.desc.input(name)

W
Wu Yi 已提交
797
    def _rename_input(self, old_name, new_name):
798 799 800 801 802 803 804 805 806 807
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
808
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
809

W
Wu Yi 已提交
810
    def _rename_output(self, old_name, new_name):
811 812 813 814 815 816 817 818 819 820
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
821
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
822

F
fengjiayi 已提交
823 824 825 826
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
827 828 829 830 831 832 833 834
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
835
    def output(self, name):
836
        """
837
        Get output arguments by the output parameter name.
838

839 840
        Args:
            name(str): The output parameter name.
841

842 843 844
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
845
        """
F
fengjiayi 已提交
846 847 848 849 850 851
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

852 853 854 855 856 857 858 859
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
860
    def has_attr(self, name):
861
        """
862 863
        Whether this Operator has the attribute with name or not.

864
        Args:
865
            name(str): the attribute name.
866

867 868
        Returns:
            bool: True if has this attribute.
869 870

        """
F
fengjiayi 已提交
871 872 873
        return self.desc.has_attr(name)

    def attr_type(self, name):
874
        """
875
        Get the type of attribute by attribute's name.
876

877 878
        Args:
            name(str): the attribute name.
879

880 881
        Returns:
            core.AttrType: the attribute type.
882
        """
F
fengjiayi 已提交
883 884
        return self.desc.attr_type(name)

W
Wu Yi 已提交
885
    def _set_attr(self, name, val):
886 887 888 889 890 891 892 893 894 895
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
909 910
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
911 912
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
913
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
914 915 916 917
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
918
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
919

F
fengjiayi 已提交
920 921 922 923 924
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
925
        """
926 927
        Get the attribute by name.

928
        Args:
929
            name(str): the attribute name.
930

931 932
        Returns:
            bool|int|str|float|list: The attribute value. The return value
933 934
            can be any valid attribute type.
        """
F
fengjiayi 已提交
935
        return self.desc.attr(name)
Y
Yu Yang 已提交
936

W
Wu Yi 已提交
937
    def _block_attr_id(self, name):
938
        """
G
gongweibao 已提交
939
        Get the block attribute's id by name.
940

941 942
        Args:
            name(str): the attribute name.
943

944 945
        Returns:
            int: the block index.
946
        """
W
Wu Yi 已提交
947
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
948

W
Wu Yi 已提交
949
    def _block_attr(self, name):
G
gongweibao 已提交
950 951 952 953 954 955 956 957 958 959
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
960
        id = self._block_attr_id(name)
G
gongweibao 已提交
961 962 963
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
964
    def _blocks_attr(self, name):
G
gongweibao 已提交
965 966 967 968 969 970 971 972 973 974
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
975
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
976 977 978 979 980
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
981
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
982 983 984 985 986 987 988 989 990 991
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
992
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
993

J
JiayiFeng 已提交
994
    def all_attrs(self):
F
fengjiayi 已提交
995
        """
996 997 998
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
999
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1000 1001 1002 1003
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1004 1005
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1006
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1007 1008 1009
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1010
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1011 1012 1013 1014
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1015 1016
        return attr_map

Y
Yu Yang 已提交
1017

Y
Yu Yang 已提交
1018
class Block(object):
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1033
        use `Program._create_block()` to create a block.
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1048
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1049
        self.desc = program.desc.block(idx)
1050
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1051
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1052
        self.program = program
1053
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1054

1055
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1056 1057
        return self.to_string(True)

F
fengjiayi 已提交
1058 1059
    def to_string(self, throw_on_error, with_details=False):
        """
1060 1061
        Get debug string.

F
fengjiayi 已提交
1062 1063
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1064
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1065
            with_details(bool): more details about variables and parameters
1066 1067
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1068

1069 1070
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1071 1072 1073 1074
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1075
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1076 1077
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1078
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1079
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1080
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1081
            for op in self.ops:
F
fengjiayi 已提交
1082 1083
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1084 1085 1086
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1087 1088
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1089 1090
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1091 1092 1093

    __repr__ = __str__

Y
Yu Yang 已提交
1094 1095
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1096
        return self.desc.parent
Y
Yu Yang 已提交
1097

Y
Yu Yang 已提交
1098 1099 1100 1101
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1102
    def _set_forward_block_idx(self, idx):
1103 1104 1105 1106 1107 1108 1109 1110 1111
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1112
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1113

Y
Yu Yang 已提交
1114 1115
    @property
    def idx(self):
Y
Yu Yang 已提交
1116
        return self.desc.id
Y
Yu Yang 已提交
1117

Q
Qiao Longfei 已提交
1118
    def var(self, name):
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1132
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1133 1134 1135
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1136 1137
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1138
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1139
        return v
Q
Qiao Longfei 已提交
1140

X
Xin Pan 已提交
1141
    def _find_var_recursive(self, name):
1142 1143 1144 1145 1146 1147 1148
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1149
            Variable: the Variable with the giving name. Or None if not found.
1150
        """
Y
Yu Yang 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1175
        return None
Y
Yu Yang 已提交
1176

X
Xin Pan 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1196

Q
Qiao Longfei 已提交
1197
    def all_parameters(self):
1198
        return list(self.iter_parameters())
1199

1200
    def iter_parameters(self):
M
minqiyang 已提交
1201
        return (item[1] for item in six.iteritems(self.vars)
1202
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1203

Y
Yu Yang 已提交
1204
    def create_var(self, *args, **kwargs):
1205
        var = Variable(block=self, *args, **kwargs)
1206 1207
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1208
        return var
Y
Yu Yang 已提交
1209

Q
Qiao Longfei 已提交
1210 1211 1212
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1213
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1214 1215
        """
        Rename variable in vars and ops' inputs and outputs
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1228
        """
M
minqiyang 已提交
1229 1230
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1231

T
typhoonzero 已提交
1232
        if not self.has_var(name):
1233
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1234 1235
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1236
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1237 1238 1239 1240 1241 1242 1243
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1244
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1245 1246 1247 1248
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1249
        orig_var_type = v.type
M
minqiyang 已提交
1250
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1251
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1252
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1253
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1254 1255 1256 1257
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1258
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1259 1260 1261 1262 1263 1264 1265
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1266
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1267 1268
            var = Variable(
                self,
T
typhoonzero 已提交
1269
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1270 1271 1272 1273
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1274
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1275 1276 1277
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1278
        self._sync_with_cpp()
1279
        return var
T
typhoonzero 已提交
1280

W
Wu Yi 已提交
1281 1282
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1283
        self.desc._remove_var(cpt.to_bytes(name))
1284 1285
        del self.vars[name]

Y
Yu Yang 已提交
1286 1287
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1288
        param = Parameter(global_block, *args, **kwargs)
1289
        if 'initializer' in kwargs:
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1310
        return param
Y
Yu Yang 已提交
1311

Y
Yu Yang 已提交
1312
    def append_op(self, *args, **kwargs):
1313 1314 1315 1316 1317 1318
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1319
        op_desc = self.desc.append_op()
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1332
        if _in_imperative_mode():
1333
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
1334
                                       stop_gradient)
Y
Yu Yang 已提交
1335

W
Wu Yi 已提交
1336
    def _insert_op(self, index, *args, **kwargs):
1337 1338 1339 1340 1341 1342 1343 1344 1345
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1346 1347
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1348 1349 1350 1351
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1352
    def _remove_op(self, index):
1353 1354 1355 1356 1357 1358 1359 1360 1361
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1362 1363
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1364 1365
        del self.ops[index]

W
Wu Yi 已提交
1366
    def _slice_ops(self, start, end):
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1377
        return self.ops[start:end]
Y
Yancey1989 已提交
1378

W
Wu Yi 已提交
1379 1380
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1381 1382 1383 1384 1385 1386 1387
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1388
        self.ops.insert(0, op)
1389
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1390 1391
        return op

W
Wu Yi 已提交
1392
    def _sync_with_cpp(self):
1393
        """
1394 1395
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1396
        """
Q
Qiao Longfei 已提交
1397 1398 1399 1400 1401
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1402
        # sync variables removed from c++ end
1403
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1404
            if not self.desc.find_var(cpt.to_bytes(var)):
1405 1406
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1407
        # sync operators from cpp
1408 1409 1410 1411
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1428 1429 1430 1431 1432

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1433
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1434 1435 1436 1437 1438 1439 1440

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1454 1455 1456 1457
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1458
    def _copy_param_info_from(self, other):
1459
        """
1460 1461
        Copy the information of parameters from the other block.

1462
        Args:
1463 1464 1465 1466 1467
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1468 1469 1470 1471 1472

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1473 1474
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1475
        for p in other.iter_parameters():
1476 1477 1478
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1479
                raise ValueError("_copy_param_info_from should be invoked with "
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1492
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1493
                error_clip=p.error_clip,
1494 1495 1496
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1497
    def _clone_variable(self, var):
1498 1499
        """
        Clone a variable into current block.
1500

1501 1502 1503 1504
        Args:
            var: the variable to be cloned.

        Returns:
1505
            Variable: the new  variable cloned from 'var' in current block.
1506 1507
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1508 1509 1510 1511 1512
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1513 1514
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1515
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1516 1517 1518 1519 1520 1521
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1522 1523
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1524 1525 1526 1527 1528 1529 1530
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1531 1532
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1533
        return ret_var
1534

Y
Yu Yang 已提交
1535 1536

class Program(object):
D
dzhwinter 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1548
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1549 1550

    Returns:
Y
yuyang18 已提交
1551
        A empty program.
D
dzhwinter 已提交
1552 1553

    Examples:
Y
yuyang18 已提交
1554 1555 1556 1557 1558 1559
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1560 1561 1562

    """

1563 1564
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1565 1566
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1567
        self._seed = 0
Y
yuyang18 已提交
1568
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1569
        self._op_role_var = []
T
tangwei12 已提交
1570 1571 1572 1573

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1574
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1575
        self._endpoints = []
1576
        self._trainers_endpoints = []
T
tangwei12 已提交
1577
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1578 1579 1580

    @property
    def op_role(self):
Y
yuyang18 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1594 1595 1596 1597 1598 1599 1600 1601
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1602 1603 1604 1605 1606 1607 1608
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1609 1610 1611 1612
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1613
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1614 1615

    @contextlib.contextmanager
W
Wu Yi 已提交
1616
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1617 1618 1619 1620 1621 1622 1623
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1624
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1625 1626 1627 1628

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1629
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1630 1631
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1632 1633 1634
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1635 1636
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1637 1638 1639 1640
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1641
        yield
X
Xin Pan 已提交
1642 1643
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1644

1645
    @contextlib.contextmanager
X
Xin Pan 已提交
1646
    def _lr_schedule_guard(self, is_with_opt=False):
1647 1648 1649 1650 1651 1652 1653
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1654 1655 1656 1657
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1658 1659 1660 1661 1662 1663 1664

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1665 1666 1667 1668

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1669 1670
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1671 1672
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1673 1674 1675
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1676 1677
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1678

1679
    def __str__(self):
Y
yuyang18 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1689 1690
        return self.to_string(True)

F
fengjiayi 已提交
1691 1692 1693
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1694

F
fengjiayi 已提交
1695
        Args:
Y
yuyang18 已提交
1696 1697
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1698

Y
yuyang18 已提交
1699 1700 1701 1702
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1703 1704
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1705 1706 1707 1708

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1719 1720
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1721 1722
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1723

W
Wu Yi 已提交
1724
    def _get_desc(self):
Y
yuyang18 已提交
1725 1726 1727 1728 1729 1730 1731
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1732 1733
        return self.desc

X
version  
Xin Pan 已提交
1734 1735 1736
    def _version(self):
        return self.desc._version()

1737
    def clone(self, for_test=False):
Y
yuyang18 已提交
1738 1739 1740
        """
        Create a new, duplicated program.

1741

Y
yuyang18 已提交
1742 1743 1744 1745
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1746

Y
yuyang18 已提交
1747 1748 1749 1750
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1751 1752 1753 1754 1755
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1756 1757

        Args:
Y
yuyang18 已提交
1758 1759
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1760

D
dzhwinter 已提交
1761
        Returns:
Y
yuyang18 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1815 1816
        """
        if for_test:
X
Xin Pan 已提交
1817
            p = self._inference_optimize(prune_read_op=False)
1818
        else:
1819
            p = Program()
G
gongweibao 已提交
1820 1821
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1822
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1823 1824 1825
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1826 1827 1828 1829

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1830
            p._sync_with_cpp()
1831

W
Wu Yi 已提交
1832
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1833
        p._copy_data_info_from(self)
1834
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1835
        return p
1836

W
Wu Yi 已提交
1837
    def _prune(self, targets):
Y
yuyang18 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1853 1854 1855 1856 1857 1858
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1859 1860
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1861
                    # and we need to find the current op that generate this
1862 1863 1864 1865 1866 1867 1868 1869
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1870
                    t = t.op
1871 1872 1873 1874
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1875
                else:
1876 1877
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1878 1879 1880 1881

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1882 1883 1884
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1885
        res._sync_with_cpp()
1886 1887
        return res

X
Xin Pan 已提交
1888
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1889
        """
F
fengjiayi 已提交
1890 1891 1892 1893 1894
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1895
        3. change the :code:`is_test`
Y
yuyang18 已提交
1896 1897 1898
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1899
        Args:
X
Xin Pan 已提交
1900 1901
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1902

Y
yuyang18 已提交
1903 1904 1905 1906 1907 1908
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1909
        res = Program()
1910
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1911 1912 1913 1914

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1915
        if prune_read_op:
1916 1917 1918 1919 1920 1921 1922 1923 1924
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1925
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1926 1927

        # change all `is_test` attributes to True
M
minqiyang 已提交
1928
        for i in six.moves.range(res.desc.num_blocks()):
1929
            block = res.desc.block(i)
M
minqiyang 已提交
1930
            for j in six.moves.range(block.op_size()):
1931 1932
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1933
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1934 1935 1936
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1937
        res._sync_with_cpp()
1938 1939
        return res

1940 1941
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1942 1943 1944 1945 1946 1947 1948
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1949
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1950 1951 1952 1953

        Returns:
            Program: A deserialized program desc.
        """
1954 1955
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1956
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1957
        p._sync_with_cpp()
1958
        return p
Y
Yu Yang 已提交
1959

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
    @staticmethod
    def construct_from_desc(desc):
        """
        Construct a program from program desc.

        Notes: All information about parameters will be lost.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
1979 1980
    @property
    def random_seed(self):
Y
yuyang18 已提交
1981 1982 1983 1984 1985 1986
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1987 1988
        return self._seed

Q
qiaolongfei 已提交
1989 1990
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1991 1992 1993
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1994 1995
        return self.desc.num_blocks()

D
dzhwinter 已提交
1996 1997 1998 1999 2000 2001
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2002
    def __repr__(self):
2003
        return self.__str__()
2004

Y
Yu Yang 已提交
2005
    def global_block(self):
Y
yuyang18 已提交
2006 2007 2008
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2009 2010
        return self.blocks[0]

Q
Qiao Longfei 已提交
2011
    def block(self, index):
Y
yuyang18 已提交
2012 2013 2014 2015 2016 2017 2018 2019
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2020 2021
        return self.blocks[index]

Y
Yu Yang 已提交
2022
    def current_block(self):
Y
yuyang18 已提交
2023 2024 2025 2026
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2027 2028
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2029
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2040
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2041 2042 2043
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2044 2045 2046 2047
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2048
    def _rollback(self):
Y
yuyang18 已提交
2049 2050 2051 2052 2053
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2054 2055
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2056
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2067 2068 2069
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2070
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2071

W
Wu Yi 已提交
2072
    def _copy_param_info_from(self, other):
2073
        """
2074
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2075

Y
yuyang18 已提交
2076 2077 2078
        Notes: This is a very low level API. Users should not invoke it
        directly.

2079 2080 2081 2082 2083 2084 2085
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2086
            raise TypeError("_copy_param_info_from should be invoked with "
2087 2088 2089
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2090
            raise ValueError("_copy_param_info_from should be invoked with two "
2091
                             "program, with represent the same topology")
W
Wu Yi 已提交
2092
        self.global_block()._copy_param_info_from(other.global_block())
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2113
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2114 2115
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2116

Y
yuyang18 已提交
2117 2118 2119
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2120 2121 2122 2123 2124 2125 2126
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2127
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2128 2129 2130
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2131
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2132
                             "program, with represent the same topology")
2133
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2134 2135 2136
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2137
    def list_vars(self):
Y
yuyang18 已提交
2138 2139 2140 2141 2142 2143
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2144
        for each_block in self.blocks:
2145
            for each_var in list(each_block.vars.values()):
2146 2147
                yield each_var

Y
Yu Yang 已提交
2148

Y
Yu Yang 已提交
2149
class Parameter(Variable):
2150
    """
2151
    Parameter is derived from Variable. A parameter is a persistable
2152
    Variable, and will be updated by optimizers after each iteration.
2153
    The training of a neural network is essentially the updating of
2154 2155
    its parameters.

2156
    Relative to a general Variable, a Parameter has several its own
2157 2158
    member variables:

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2171 2172
    """

Y
Yu Yang 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2183 2184 2185

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2186 2187 2188 2189
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2190 2191
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2192
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2193

W
wanghaoshuang 已提交
2194
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2195

F
fengjiayi 已提交
2196 2197 2198
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2199 2200 2201
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2202

F
update  
fengjiayi 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2217
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2218
            for attr_name in additional_attr:
2219 2220
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2221 2222
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2223 2224 2225 2226
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2227

Y
Yu Yang 已提交
2228
# program is a global instance.
Y
Yu Yang 已提交
2229 2230
_main_program_ = Program()
_startup_program_ = Program()
2231

2232

2233
def default_startup_program():
Y
Yu Yang 已提交
2234
    """
Y
yuyang18 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2244

Y
Yu Yang 已提交
2245 2246 2247
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2248
    return _startup_program_
2249

2250

2251
def default_main_program():
Y
Yu Yang 已提交
2252
    """
Y
yuyang18 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2262

Y
Yu Yang 已提交
2263 2264 2265
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2266
    return _main_program_
Y
Yu Yang 已提交
2267 2268 2269 2270 2271


def switch_main_program(program):
    """
    Switch the main program to a new program.
2272

Y
Yu Yang 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2287
    Switch the startup program to a new program
Y
Yu Yang 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2303 2304 2305
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2306

Y
Yu Yang 已提交
2307
    Examples:
Y
yuyang18 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2318

Y
Yu Yang 已提交
2319
    Examples:
Y
yuyang18 已提交
2320 2321 2322 2323 2324 2325

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2326

Y
Yu Yang 已提交
2327
    Args:
Y
yuyang18 已提交
2328
        main_program(Program): New main program inside `with` statement.
2329
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2343 2344


W
Wu Yi 已提交
2345
def _get_var(name, program=None):
X
xuwei06 已提交
2346
    """
Y
yuyang18 已提交
2347
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2348

X
xuwei06 已提交
2349 2350 2351
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2352
        If None, default_global_program() will be used.
X
xuwei06 已提交
2353 2354 2355 2356 2357 2358 2359

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2360
    assert isinstance(program, Program)
X
xuwei06 已提交
2361 2362

    return program.global_block().var(name)
2363 2364 2365 2366 2367 2368 2369 2370 2371


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace