Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
c8965dc1
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c8965dc1
编写于
1月 23, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish code
test=develop
上级
289aba75
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
57 addition
and
208 deletion
+57
-208
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+5
-6
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+3
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+12
-4
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+9
-8
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+3
-5
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+2
-2
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+0
-1
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+11
-8
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+5
-3
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+3
-2
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+4
-167
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
c8965dc1
...
...
@@ -168,12 +168,12 @@ class Autograd {
}
};
VarBase
*
VarBase
::
NewVarBase
(
const
platform
::
Place
&
dst_place
,
const
bool
blocking
)
const
{
std
::
unique_ptr
<
VarBase
>
VarBase
::
NewVarBase
(
const
platform
::
Place
&
dst_place
,
const
bool
blocking
)
const
{
PADDLE_ENFORCE
(
var_
->
IsInitialized
(),
"Variable must be initialized when getting numpy tensor"
);
VarBase
*
new_var
=
new
VarBase
(
);
std
::
unique_ptr
<
VarBase
>
new_var
(
new
VarBase
()
);
framework
::
LoDTensor
*
tensor
=
new_var
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
());
...
...
@@ -240,9 +240,8 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
framework
::
Scope
scope
;
platform
::
Place
place
=
place_
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place
);
p
.
op
.
RuntimeInferShape
(
scope
,
place
,
ctx
);
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place_
);
p
.
op
.
RuntimeInferShape
(
scope
,
place_
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
c8965dc1
...
...
@@ -21,6 +21,7 @@
#include <map> // NOLINT
#include <string> // NOLINT
#include <vector> // NOLINT
#include <memory> // NOLINT
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
...
...
@@ -153,8 +154,8 @@ class VarBase {
framework
::
LoDTensor
&
GradValue
();
VarBase
*
NewVarBase
(
const
platform
::
Place
&
dst_place
,
const
bool
blocking
)
const
;
std
::
unique_ptr
<
VarBase
>
NewVarBase
(
const
platform
::
Place
&
dst_place
,
const
bool
blocking
)
const
;
inline
std
::
string
GradName
()
const
{
PADDLE_ENFORCE
(
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
c8965dc1
...
...
@@ -137,13 +137,21 @@ PYBIND11_MODULE(core, m) {
.
def
(
"_grad_ivar"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
grads_
;
},
py
::
return_value_policy
::
reference
)
.
def
(
"_to"
,
.
def
(
"_
copy_
to"
,
[](
const
imperative
::
VarBase
&
self
,
const
platform
::
CPUPlace
&
place
,
bool
blocking
)
{
return
self
.
NewVarBase
(
place
,
blocking
);
},
bool
blocking
)
{
std
::
unique_ptr
<
imperative
::
VarBase
>
new_var
=
self
.
NewVarBase
(
place
,
blocking
);
return
new_var
.
release
();
},
py
::
return_value_policy
::
take_ownership
)
.
def
(
"_to"
,
.
def
(
"_
copy_
to"
,
[](
const
imperative
::
VarBase
&
self
,
const
platform
::
CUDAPlace
&
place
,
bool
blocking
)
{
return
self
.
NewVarBase
(
place
,
blocking
);
},
bool
blocking
)
{
std
::
unique_ptr
<
imperative
::
VarBase
>
new_var
=
self
.
NewVarBase
(
place
,
blocking
);
return
new_var
.
release
();
},
py
::
return_value_policy
::
take_ownership
)
.
def
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
py
::
return_value_policy
::
reference
)
...
...
python/paddle/fluid/framework.py
浏览文件 @
c8965dc1
...
...
@@ -67,7 +67,7 @@ ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
CONTROL_DEP_VAR_PREFIX
=
core
.
kControlDepVarName
()
_imperative_tracer_
=
None
_current_expected_place_
=
None
_
imperative_
current_expected_place_
=
None
def
_in_imperative_mode
():
...
...
@@ -79,7 +79,7 @@ def _imperative_tracer():
def
_current_expected_place
():
return
_current_expected_place_
return
_
imperative_
current_expected_place_
class
NameScope
(
object
):
...
...
@@ -385,7 +385,7 @@ class Variable(object):
self
.
_ivar
.
stop_gradient
=
stop_gradient
def
_numpy
(
self
):
new_ivar
=
self
.
_ivar
.
_to
(
core
.
CPUPlace
(),
True
)
new_ivar
=
self
.
_ivar
.
_
copy_
to
(
core
.
CPUPlace
(),
True
)
return
np
.
array
(
new_ivar
.
value
().
get_tensor
())
def
_backward
(
self
):
...
...
@@ -1313,7 +1313,8 @@ class Block(object):
def
_trace_op
(
self
,
op
,
stop_gradient
=
False
):
if
_in_imperative_mode
():
_imperative_tracer
().
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
self
.
desc
,
_current_expected_place_
,
stop_gradient
)
_imperative_current_expected_place_
,
stop_gradient
)
def
_insert_op
(
self
,
index
,
*
args
,
**
kwargs
):
"""
...
...
@@ -2338,10 +2339,10 @@ def _imperative_guard(tracer):
@
contextlib
.
contextmanager
def
_imperative_place_guard
(
place
):
global
_current_expected_place_
tmp_place
=
_current_expected_place_
_current_expected_place_
=
place
global
_
imperative_
current_expected_place_
tmp_place
=
_
imperative_
current_expected_place_
_
imperative_
current_expected_place_
=
place
yield
_current_expected_place_
=
tmp_place
_
imperative_
current_expected_place_
=
tmp_place
python/paddle/fluid/imperative/nn.py
浏览文件 @
c8965dc1
...
...
@@ -144,7 +144,7 @@ class Conv2D(layers.Layer):
attrs
=
{
'axis'
:
1
})
# Currently, we don't support inplace in imperative mode
return
self
.
_helper
.
append_activation
(
pre_act
,
force_no_inplace
=
True
)
return
self
.
_helper
.
append_activation
(
pre_act
)
class
Pool2D
(
layers
.
Layer
):
...
...
@@ -286,8 +286,7 @@ class FC(layers.Layer):
else
:
pre_activation
=
pre_bias
# Currently, we don't support inplace in imperative mode
return
self
.
_helper
.
append_activation
(
pre_activation
,
force_no_inplace
=
True
)
return
self
.
_helper
.
append_activation
(
pre_activation
)
class
BatchNorm
(
layers
.
Layer
):
...
...
@@ -419,5 +418,4 @@ class BatchNorm(layers.Layer):
})
# Currently, we don't support inplace in imperative mode
return
self
.
_helper
.
append_activation
(
batch_norm_out
,
force_no_inplace
=
True
)
return
self
.
_helper
.
append_activation
(
batch_norm_out
)
python/paddle/fluid/layer_helper.py
浏览文件 @
c8965dc1
...
...
@@ -419,7 +419,7 @@ class LayerHelper(object):
attrs
=
{
'axis'
:
dim_start
})
return
tmp
def
append_activation
(
self
,
input_var
,
force_no_inplace
=
False
):
def
append_activation
(
self
,
input_var
):
act
=
self
.
kwargs
.
get
(
'act'
,
None
)
if
act
is
None
:
return
input_var
...
...
@@ -436,7 +436,7 @@ class LayerHelper(object):
tmp
=
input_var
# NOTE(dzhwinter): some activation support inplace compution.
# NOTE(minqiyang): currently, we don't support inplace in imperative mode
if
not
force_no_inplace
and
core
.
IsInplace
(
act_type
):
if
not
imperative_base
.
enabled
()
and
core
.
IsInplace
(
act_type
):
tmp
=
input_var
else
:
tmp
=
self
.
create_variable_for_type_inference
(
dtype
=
input_var
.
dtype
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
c8965dc1
...
...
@@ -388,7 +388,6 @@ class Optimizer(object):
params_grads
=
[]
for
param
in
parameters
:
if
param
.
stop_gradient
:
print
(
"parameter:"
,
param
.
name
,
"stop gradient, skip it"
)
continue
# create gradient variable
grad_var
=
Variable
(
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
c8965dc1
...
...
@@ -68,7 +68,7 @@ class MLP(fluid.imperative.Layer):
class
TestImperative
(
unittest
.
TestCase
):
def
test_layer
(
self
):
with
fluid
.
imperative
.
guard
(
device
=
None
):
with
fluid
.
imperative
.
guard
():
cl
=
core
.
Layer
()
cl
.
forward
([])
l
=
fluid
.
imperative
.
Layer
()
...
...
@@ -76,7 +76,7 @@ class TestImperative(unittest.TestCase):
def
test_pylayer_func_id
(
self
):
with
fluid
.
imperative
.
guard
(
device
=
None
):
with
fluid
.
imperative
.
guard
():
class
PyLayer1
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
):
...
...
@@ -116,7 +116,7 @@ class TestImperative(unittest.TestCase):
def
test_pylayer
(
self
):
np_inp
=
np
.
ones
([
2
,
2
],
np
.
float32
)
with
fluid
.
imperative
.
guard
(
device
=
None
):
with
fluid
.
imperative
.
guard
():
my_py_layer
=
MyPyLayer
()
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
outs
=
my_py_layer
(
var_inp
)
...
...
@@ -133,7 +133,8 @@ class TestImperative(unittest.TestCase):
x
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
tanh
(
x1
))
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
x1
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
static_out
,
static_grad
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
...
...
@@ -144,7 +145,7 @@ class TestImperative(unittest.TestCase):
def
test_layer_in_out
(
self
):
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
(
device
=
None
):
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
l
=
MyLayer
()
x
=
l
(
var_inp
)[
0
]
...
...
@@ -160,7 +161,8 @@ class TestImperative(unittest.TestCase):
x
=
l
(
inp
)[
0
]
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
l
.
_x_for_debug
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
static_out
,
static_grad
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
...
...
@@ -171,7 +173,7 @@ class TestImperative(unittest.TestCase):
def
test_mlp
(
self
):
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
(
device
=
None
):
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
mlp
=
MLP
()
out
=
mlp
(
var_inp
)
...
...
@@ -186,7 +188,8 @@ class TestImperative(unittest.TestCase):
out
=
mlp
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
out
,
parameter_list
=
[
mlp
.
_fc1
.
_w
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
fluid
.
default_startup_program
())
static_out
,
static_grad
=
exe
.
run
(
...
...
python/paddle/fluid/tests/unittests/test_imperative_gan.py
浏览文件 @
c8965dc1
...
...
@@ -20,6 +20,7 @@ import sys
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
test_imperative_base
import
new_program_scope
...
...
@@ -58,7 +59,7 @@ class Generator(fluid.imperative.Layer):
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_
mnist_cpu
_float32
(
self
):
def
test_
gan
_float32
(
self
):
seed
=
90
startup
=
fluid
.
Program
()
...
...
@@ -115,7 +116,8 @@ class TestImperativeMnist(unittest.TestCase):
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
.
minimize
(
g_loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
()
if
not
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CUDAPlace
(
0
))
static_params
=
dict
()
with
fluid
.
scope_guard
(
scope
):
img
=
np
.
ones
([
2
,
1
],
np
.
float32
)
...
...
@@ -135,7 +137,7 @@ class TestImperativeMnist(unittest.TestCase):
scope
.
find_var
(
param
.
name
).
get_tensor
())
dy_params
=
dict
()
with
fluid
.
imperative
.
guard
(
place
=
fluid
.
CPUPlace
()
):
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
c8965dc1
...
...
@@ -101,7 +101,7 @@ class TestImperativeMnist(unittest.TestCase):
def
test_mnist_cpu_float32
(
self
):
seed
=
90
with
fluid
.
imperative
.
guard
(
place
=
fuild
.
CPUPlace
()
):
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -145,7 +145,8 @@ class TestImperativeMnist(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
c8965dc1
...
...
@@ -143,7 +143,7 @@ class BottleneckBlock(fluid.imperative.Layer):
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
'elementwise_add_activation'
,
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
,
force_no_inplace
=
True
)
return
layer_helper
.
append_activation
(
y
)
class
ResNet
(
fluid
.
imperative
.
Layer
):
...
...
@@ -204,12 +204,9 @@ class ResNet(fluid.imperative.Layer):
class
TestImperativeResnet
(
unittest
.
TestCase
):
def
test_resnet_
gpu_
float32
(
self
):
def
test_resnet_float32
(
self
):
seed
=
90
if
not
core
.
is_compiled_with_cuda
():
return
batch_size
=
train_parameters
[
"batch_size"
]
batch_num
=
1
with
fluid
.
imperative
.
guard
():
...
...
@@ -277,168 +274,8 @@ class TestImperativeResnet(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
train_parameters
)
np
.
random
.
seed
(
seed
)
import
random
random
.
seed
=
seed
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
),
batch_size
=
batch_size
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
out
=
resnet
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
optimizer
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
static_param_name_list
=
[]
static_grad_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
static_param_name_list
.
append
(
param
.
name
)
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
if
not
param
.
stop_gradient
:
static_grad_name_list
.
append
(
param
.
name
+
core
.
grad_var_suffix
())
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
batch_num
:
break
static_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
batch_size
,
1
])
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
fetch_list
.
extend
(
static_grad_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_grad_value
=
{}
static_out
=
out
[
0
]
param_start_pos
=
1
grad_start_pos
=
len
(
static_param_name_list
)
+
param_start_pos
for
i
in
range
(
param_start_pos
,
len
(
static_param_name_list
)
+
param_start_pos
):
static_param_value
[
static_param_name_list
[
i
-
param_start_pos
]]
=
out
[
i
]
for
i
in
range
(
grad_start_pos
,
len
(
static_grad_name_list
)
+
grad_start_pos
):
static_grad_value
[
static_grad_name_list
[
i
-
grad_start_pos
]]
=
out
[
i
]
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
self
.
assertEqual
(
len
(
dy_param_init_value
),
len
(
static_param_init_value
))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
isfinite
(
value
.
all
()))
self
.
assertFalse
(
np
.
isnan
(
value
.
any
()))
self
.
assertEqual
(
len
(
dy_grad_value
),
len
(
static_grad_value
))
for
key
,
value
in
six
.
iteritems
(
static_grad_value
):
# TODO(minqiyang): find a way to align the gradient
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_grad_value
[
key
]))
self
.
assertTrue
(
np
.
isfinite
(
value
.
all
()))
self
.
assertFalse
(
np
.
isnan
(
value
.
any
()))
self
.
assertEqual
(
len
(
dy_param_value
),
len
(
static_param_value
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
]))
self
.
assertTrue
(
np
.
isfinite
(
value
.
all
()))
self
.
assertFalse
(
np
.
isnan
(
value
.
any
()))
def
test_resnet_cpu_float32
(
self
):
seed
=
90
batch_size
=
train_parameters
[
"batch_size"
]
batch_num
=
1
with
fluid
.
imperative
.
guard
(
place
=
fluid
.
CPUPlace
()):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
train_parameters
)
np
.
random
.
seed
(
seed
)
import
random
random
.
seed
=
seed
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
),
batch_size
=
batch_size
)
dy_param_init_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
batch_num
:
break
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
batch_size
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
out
=
resnet
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
dy_out
=
avg_loss
.
_numpy
()
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
if
param
.
name
not
in
dy_param_init_value
:
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
dy_grad_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
if
not
param
.
stop_gradient
:
np_array
=
np
.
array
(
param
.
_ivar
.
_grad_ivar
().
value
()
.
get_tensor
())
dy_grad_value
[
param
.
name
+
core
.
grad_var_suffix
(
)]
=
np_array
optimizer
.
minimize
(
avg_loss
)
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
train_parameters
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录