framework.py 68.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21

Y
Yu Yang 已提交
22
import numpy as np
Q
qiaolongfei 已提交
23

M
minqiyang 已提交
24
from .. import compat as cpt
25
from .proto import framework_pb2
26 27
try:
    from . import core
28
except ImportError as e:
29 30 31 32
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
33
    directory. The original error is: \n""" + cpt.get_exception_message(e))
34
except Exception as e:
35
    raise e
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40
    'Program',
    'Operator',
F
fengjiayi 已提交
41
    'Parameter',
42 43 44
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
45
    'get_var',
46
]
Y
Yu Yang 已提交
47

Q
qiaolongfei 已提交
48 49 50 51
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
52 53 54 55 56 57
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()


def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
58 59 60 61


def grad_var_name(var_name):
    """
62 63
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
64 65 66
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
67

68
def convert_np_dtype_to_dtype_(np_dtype):
69 70
    """
    Convert the data type in numpy to the data type in Paddle
71

72
    Args:
73
        np_dtype(np.dtype): the data type in numpy.
74

75 76
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
77 78

    """
79 80
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
81
        return core.VarDesc.VarType.FP32
82
    elif dtype == np.float64:
83
        return core.VarDesc.VarType.FP64
84
    elif dtype == np.float16:
85
        return core.VarDesc.VarType.FP16
86
    elif dtype == np.int32:
87
        return core.VarDesc.VarType.INT32
88
    elif dtype == np.int16:
89
        return core.VarDesc.VarType.INT16
90
    elif dtype == np.int64:
91
        return core.VarDesc.VarType.INT64
92
    elif dtype == np.bool:
93
        return core.VarDesc.VarType.BOOL
94 95
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
96 97
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
98 99
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
100
    else:
M
minqiyang 已提交
101
        raise ValueError("Not supported numpy dtype %s" % dtype)
102 103 104


def dtype_is_floating(dtype):
105 106 107
    """
    Check the data type is floating or not.
    Args:
108
        dtype(np.dtype|core.VarDesc.VarType): data type.
109 110 111 112 113
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
114
    if not isinstance(dtype, core.VarDesc.VarType):
115 116
        dtype = convert_np_dtype_to_dtype_(dtype)

117 118 119 120
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
121 122


Y
Yang Yang(Tony) 已提交
123
def _debug_string_(proto, throw_on_error=True):
124 125 126 127 128 129 130 131 132 133 134
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
135
    error_fields = list()
Y
Yang Yang(Tony) 已提交
136
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
137 138
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
139 140 141
    return proto.__str__()


Y
Yu Yang 已提交
142
class Variable(object):
143
    """
144 145 146
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
147
    two variables in different blocks could have the same name.
148

149 150
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
151

152
    Most of a Variable's member variables can be setted to be None. It mean
153
    it is not available or will be specified later.
154 155

    Args:
156
        block(Block): The block that the variable belongs to.
157 158
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
159 160
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
161
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
162
            Some kinds of variable do not contain shape, just set it to None.
163 164 165
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
166
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
167
            series data.
168
            Default: None
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
191 192
    """

Y
Yu Yang 已提交
193 194
    def __init__(self,
                 block,
Y
Yu Yang 已提交
195
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
196 197 198 199
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
200
                 capacity=None,
Q
QI JUN 已提交
201
                 persistable=None,
F
fengjiayi 已提交
202
                 error_clip=None,
Y
Yu Yang 已提交
203
                 stop_gradient=False,
F
fengjiayi 已提交
204
                 is_data=False,
Y
Yu Yang 已提交
205
                 **kwargs):
Y
Yu Yang 已提交
206
        self.block = block
F
fengjiayi 已提交
207
        self.error_clip = error_clip
Y
Yu Yang 已提交
208 209

        if name is None:
Y
Yu Yang 已提交
210
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
211
        is_new_var = False
M
minqiyang 已提交
212
        name = cpt.to_text(name)
M
minqiyang 已提交
213
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
214 215

        if self.desc is None:
M
minqiyang 已提交
216
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
217
            is_new_var = True
Y
Yu Yang 已提交
218

Y
Yu Yang 已提交
219 220 221 222 223 224 225 226
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
227
        if shape is not None:
Y
Yu Yang 已提交
228
            if is_new_var:
229
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
230 231 232 233 234 235 236 237
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
238
        if dtype is not None:
239
            if not isinstance(dtype, core.VarDesc.VarType):
240
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
241
            if is_new_var:
F
fengjiayi 已提交
242
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
243
            else:
F
fengjiayi 已提交
244
                old_dtype = self.dtype
Q
QI JUN 已提交
245
                if dtype != old_dtype:
Y
Yu Yang 已提交
246 247 248 249 250
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
251 252

        if lod_level is not None:
Y
Yu Yang 已提交
253
            if is_new_var:
254
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
255 256 257 258 259 260 261
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
262 263 264 265 266 267 268 269 270 271 272
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

273 274 275 276 277 278 279 280
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
281
        self.block.vars[name] = self
Y
Yu Yang 已提交
282
        self.op = None
Y
Yu Yang 已提交
283
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
284
        self.is_data = is_data
Y
Yu Yang 已提交
285

286
    def __str__(self):
Y
Yang Yang(Tony) 已提交
287 288
        return self.to_string(True)

F
update  
fengjiayi 已提交
289
    def to_string(self, throw_on_error, with_details=False):
290 291 292 293
        """
        Get debug string.

        Args:
294 295
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
296
            with_details(bool): more details about variables and parameters
297 298
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
299

300 301
        Returns:
            str: The debug string.
302
        """
F
update  
fengjiayi 已提交
303 304
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
305
        protostr = self.desc.serialize_to_string()
306
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
307 308 309 310
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
311 312
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
313
        return res_str
314 315 316

    __repr__ = __str__

W
Wu Yi 已提交
317
    def _set_desc(self, input):
318 319 320 321 322 323 324 325 326
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
327 328
        self.desc = input

329 330 331 332
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
333 334 335 336
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
337 338
    @property
    def name(self):
M
minqiyang 已提交
339
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
340

T
typhoonzero 已提交
341 342 343 344
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
345 346 347
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
348
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
349 350

    @property
F
fengjiayi 已提交
351 352
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
353 354 355

    @property
    def lod_level(self):
356
        return self.desc.lod_level()
Y
Yu Yang 已提交
357

Y
Yu Yang 已提交
358 359 360 361
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
362
    def _set_error_clip(self, error_clip):
363 364 365 366 367 368 369 370 371
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
372 373
        self.error_clip = error_clip

Y
Yu Yang 已提交
374

F
fengjiayi 已提交
375 376 377
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
378

379 380
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
381 382 383 384
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
385
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
386 387 388 389 390
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
391 392 393 394
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
395 396 397 398 399 400 401 402 403
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
404
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
405 406 407 408 409 410
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
411 412 413 414 415 416 417 418
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
419 420
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
421 422
        return self.op_proto_map[type]

423 424 425 426 427 428 429
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
430

Y
Yu Yang 已提交
431
class Operator(object):
432
    """
433 434 435 436 437 438 439
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
440
        type(str): The type of operator. Default None.
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
461
        Block.append_op or Block._prepend_op instead.
462 463 464 465 466 467 468 469 470 471

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
472
    """
473 474 475 476 477
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
478
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
479
    }
480

Y
Yu Yang 已提交
481 482
    def __init__(self,
                 block,
Y
Yu Yang 已提交
483
                 desc,
Y
Yu Yang 已提交
484 485 486 487 488
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
489
        self.desc = desc
G
gongweibao 已提交
490 491 492 493 494
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
495 496 497 498
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
499 500
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
501 502 503

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
504 505
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
506

G
gongweibao 已提交
507 508
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
509

F
fengjiayi 已提交
510 511 512 513 514
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
515
        self.desc.set_type(type)
F
fengjiayi 已提交
516
        proto = OpProtoHolder.instance().get_op_proto(type)
517

Y
Yang Yang(Tony) 已提交
518 519
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
520
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
521 522
                    return True
            return False
Q
QI JUN 已提交
523

Y
Yang Yang(Tony) 已提交
524 525 526 527 528 529 530
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
531 532 533 534
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
535 536
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
537 538 539
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
540
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
541
                            in_arg_names.append(arg)
542 543
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
544
                        else:
M
minqiyang 已提交
545
                            in_arg_names.append(cpt.to_text(arg.name))
546
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
547 548
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
549

Y
Yu Yang 已提交
550
        if outputs is not None:
551 552 553 554 555 556 557
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
558 559
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
560 561 562
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
563

F
fengjiayi 已提交
564
            for out_proto in proto.outputs:
565 566 567 568
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
569 570
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
571 572 573
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
574
                    out_arg_names.append(cpt.to_text(arg.name))
575 576
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
577

G
gongweibao 已提交
578 579
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
580
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
581
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
582
                attr_name = attr.name
G
gongweibao 已提交
583
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
584
                    continue
G
gongweibao 已提交
585
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
586 587
                self._update_desc_attr(attr_name, attr_val)

588
        self.desc.check_attrs()
589
        if self.has_kernel(type):
Q
QI JUN 已提交
590
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
591
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
592

593 594 595
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
596
    def to_string(self, throw_on_error):
597
        """
598 599
        Get debug string.

600
        Args:
601 602
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
603

604 605
        Returns:
            str: The debug string.
606 607

        """
608
        protostr = self.desc.serialize_to_string()
609
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
610 611 612 613
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
614 615 616

    __repr__ = __str__

F
fengjiayi 已提交
617 618 619 620 621
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
622
        """
623
        Get the input arguments according to the input parameter name.
624

625 626
        Args:
            name(str): The input parameter name.
627

628 629 630
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
631
        """
F
fengjiayi 已提交
632 633
        return self.desc.input(name)

T
typhoonzero 已提交
634
    def rename_input(self, old_name, new_name):
635 636 637 638 639 640 641 642 643 644
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
645 646 647
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
648 649 650 651 652 653 654 655 656 657
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
658 659
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
660 661 662 663
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
664 665 666 667 668 669 670 671
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
672
    def output(self, name):
673
        """
674
        Get output arguments by the output parameter name.
675

676 677
        Args:
            name(str): The output parameter name.
678

679 680 681
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
682
        """
F
fengjiayi 已提交
683 684 685 686 687 688
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

689 690 691 692 693 694 695 696
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
697
    def has_attr(self, name):
698
        """
699 700
        Whether this Operator has the attribute with name or not.

701
        Args:
702
            name(str): the attribute name.
703

704 705
        Returns:
            bool: True if has this attribute.
706 707

        """
F
fengjiayi 已提交
708 709 710
        return self.desc.has_attr(name)

    def attr_type(self, name):
711
        """
712
        Get the type of attribute by attribute's name.
713

714 715
        Args:
            name(str): the attribute name.
716

717 718
        Returns:
            core.AttrType: the attribute type.
719
        """
F
fengjiayi 已提交
720 721
        return self.desc.attr_type(name)

Y
yuyang18 已提交
722
    def set_attr(self, name, val):
723 724 725 726 727 728 729 730 731 732
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
746 747
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
748 749
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
750
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
751 752 753 754 755
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
756

F
fengjiayi 已提交
757 758 759 760 761
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
762
        """
763 764
        Get the attribute by name.

765
        Args:
766
            name(str): the attribute name.
767

768 769
        Returns:
            bool|int|str|float|list: The attribute value. The return value
770 771
            can be any valid attribute type.
        """
F
fengjiayi 已提交
772
        return self.desc.attr(name)
Y
Yu Yang 已提交
773

G
gongweibao 已提交
774
    def block_attr_id(self, name):
775
        """
G
gongweibao 已提交
776
        Get the block attribute's id by name.
777

778 779
        Args:
            name(str): the attribute name.
780

781 782
        Returns:
            int: the block index.
783
        """
G
gongweibao 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
830

J
JiayiFeng 已提交
831
    def all_attrs(self):
F
fengjiayi 已提交
832
        """
833 834 835
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
836
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
837 838 839 840
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
841 842
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
843
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
844 845 846 847 848 849 850 851
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
852 853
        return attr_map

Y
Yu Yang 已提交
854

Y
Yu Yang 已提交
855
class Block(object):
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
885
    def __init__(self, program, idx):
Y
Yu Yang 已提交
886
        self.desc = program.desc.block(idx)
887
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
888
        self.ops = list()  # operator list
Y
Yu Yang 已提交
889
        self.program = program
890
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
891

892
    def __str__(self):
Y
Yang Yang(Tony) 已提交
893 894
        return self.to_string(True)

F
fengjiayi 已提交
895 896
    def to_string(self, throw_on_error, with_details=False):
        """
897 898
        Get debug string.

F
fengjiayi 已提交
899 900
        Args:
            throw_on_error(bool): raise exception when self is not initialized
901
                when throw_on_error is True.
F
update  
fengjiayi 已提交
902
            with_details(bool): more details about variables and parameters
903 904
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
905

906 907
        Returns:
            str: The debug string.
F
fengjiayi 已提交
908 909 910 911
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
912
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
913 914
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
915
            for var in list(self.vars.values()):
F
fengjiayi 已提交
916
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
917
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
918
            for op in self.ops:
F
fengjiayi 已提交
919 920
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
921 922 923
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
924 925
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
926 927
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
928 929 930

    __repr__ = __str__

Y
Yu Yang 已提交
931 932
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
933
        return self.desc.parent
Y
Yu Yang 已提交
934

Y
Yu Yang 已提交
935 936 937 938
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
939
    def _set_forward_block_idx(self, idx):
940 941 942 943 944 945 946 947 948
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
949
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
950

Y
Yu Yang 已提交
951 952
    @property
    def idx(self):
Y
Yu Yang 已提交
953
        return self.desc.id
Y
Yu Yang 已提交
954

Q
Qiao Longfei 已提交
955
    def var(self, name):
956 957 958 959 960 961 962 963 964 965 966 967 968
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
969
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
970 971 972
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
973 974
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
975
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
976
        return v
Q
Qiao Longfei 已提交
977

W
Wu Yi 已提交
978
    def _var_recursive(self, name):
979 980 981 982 983 984 985 986 987 988 989 990 991
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1018

Q
Qiao Longfei 已提交
1019
    def all_parameters(self):
1020
        return list(self.iter_parameters())
1021

1022
    def iter_parameters(self):
M
minqiyang 已提交
1023
        return (item[1] for item in six.iteritems(self.vars)
1024
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1025

Y
Yu Yang 已提交
1026
    def create_var(self, *args, **kwargs):
1027
        var = Variable(block=self, *args, **kwargs)
1028 1029
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1030
        return var
Y
Yu Yang 已提交
1031

Q
Qiao Longfei 已提交
1032 1033 1034
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1035
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1036 1037
        """
        Rename variable in vars and ops' inputs and outputs
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1050
        """
M
minqiyang 已提交
1051 1052
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1053

T
typhoonzero 已提交
1054
        if not self.has_var(name):
1055
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1056 1057
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1058
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1059 1060 1061 1062 1063 1064 1065
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1066
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1067 1068 1069 1070
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1071
        orig_var_type = v.type
M
minqiyang 已提交
1072
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1073
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1074
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1075
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1076 1077 1078 1079
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1080
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1081 1082 1083 1084 1085 1086 1087
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1088
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1089 1090
            var = Variable(
                self,
T
typhoonzero 已提交
1091
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1092 1093 1094 1095
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1096
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1097 1098 1099
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1100
        self._sync_with_cpp()
1101
        return var
T
typhoonzero 已提交
1102

W
Wu Yi 已提交
1103 1104
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1105
        self.desc._remove_var(cpt.to_bytes(name))
1106 1107
        del self.vars[name]

Y
Yu Yang 已提交
1108 1109
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1110
        param = Parameter(global_block, *args, **kwargs)
1111
        if 'initializer' in kwargs:
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1132
        return param
Y
Yu Yang 已提交
1133

Y
Yu Yang 已提交
1134
    def append_op(self, *args, **kwargs):
1135 1136 1137 1138 1139 1140
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1141
        op_desc = self.desc.append_op()
1142
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1143 1144 1145
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1146
    def _insert_op(self, index, *args, **kwargs):
1147 1148 1149 1150 1151 1152 1153 1154 1155
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1156 1157
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1158 1159 1160 1161
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1162
    def _remove_op(self, index):
1163 1164 1165 1166 1167 1168 1169 1170 1171
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1172 1173
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1174 1175
        del self.ops[index]

W
Wu Yi 已提交
1176
    def _slice_ops(self, start, end):
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1187
        return self.ops[start:end]
Y
Yancey1989 已提交
1188

W
Wu Yi 已提交
1189 1190
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1191
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1192
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1193 1194
        return op

W
Wu Yi 已提交
1195
    def _sync_with_cpp(self):
1196
        """
1197 1198
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1199
        """
Q
Qiao Longfei 已提交
1200 1201 1202 1203 1204
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1205
        # sync variables removed from c++ end
1206
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1207
            if not self.desc.find_var(cpt.to_bytes(var)):
1208 1209
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1210
        # sync operators from cpp
1211 1212 1213 1214
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1231 1232 1233 1234 1235

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1236
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1237 1238 1239 1240 1241 1242 1243

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1257 1258 1259 1260
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1261
    def _copy_param_info_from(self, other):
1262
        """
1263 1264
        Copy the information of parameters from the other block.

1265
        Args:
1266 1267 1268 1269 1270
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1271 1272 1273 1274 1275

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1276 1277
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1278
        for p in other.iter_parameters():
1279 1280 1281
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1282
                raise ValueError("_copy_param_info_from should be invoked with "
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1295
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1296
                error_clip=p.error_clip,
1297 1298 1299
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1300
    def _clone_variable(self, var):
1301 1302
        """
        Clone a variable into current block.
1303

1304 1305 1306 1307
        Args:
            var: the variable to be cloned.

        Returns:
1308
            Variable: the new  variable cloned from 'var' in current block.
1309 1310
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1311 1312 1313 1314 1315
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1316 1317
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1318
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1319 1320 1321 1322 1323 1324
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1325 1326
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1327 1328 1329 1330 1331 1332 1333
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1334 1335
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1336
        return ret_var
1337

Y
Yu Yang 已提交
1338 1339

class Program(object):
D
dzhwinter 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1351
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1352 1353

    Returns:
Y
yuyang18 已提交
1354
        A empty program.
D
dzhwinter 已提交
1355 1356

    Examples:
Y
yuyang18 已提交
1357 1358 1359 1360 1361 1362
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1363 1364 1365

    """

1366 1367
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1368 1369
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1370
        self._seed = 0
Y
yuyang18 已提交
1371
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1372
        self._op_role_var = []
T
tangwei12 已提交
1373 1374 1375 1376

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1377
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1378 1379
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1380 1381 1382

    @property
    def op_role(self):
Y
yuyang18 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1396 1397 1398 1399 1400 1401 1402 1403
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1404 1405 1406 1407 1408 1409 1410
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1411 1412 1413 1414
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1415
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1416 1417

    @contextlib.contextmanager
1418
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1419 1420 1421 1422 1423 1424 1425
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1426
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1427 1428 1429 1430

        Examples:

            >>> p, g = backward(...)
1431
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1432 1433
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1434 1435
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1436 1437 1438 1439
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1440
        yield
Y
yuyang18 已提交
1441
        self._op_role_var = []
Y
yuyang18 已提交
1442
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1443

1444
    def __str__(self):
Y
yuyang18 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1454 1455
        return self.to_string(True)

F
fengjiayi 已提交
1456 1457 1458
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1459

F
fengjiayi 已提交
1460
        Args:
Y
yuyang18 已提交
1461 1462
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1463

Y
yuyang18 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1484 1485
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1486 1487
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1488

1489
    def get_desc(self):
Y
yuyang18 已提交
1490 1491 1492 1493 1494 1495 1496
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1497 1498
        return self.desc

1499
    def clone(self, for_test=False):
Y
yuyang18 已提交
1500 1501 1502
        """
        Create a new, duplicated program.

1503

Y
yuyang18 已提交
1504 1505 1506 1507
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1508

Y
yuyang18 已提交
1509 1510 1511 1512
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1513 1514 1515 1516 1517
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1518 1519

        Args:
Y
yuyang18 已提交
1520 1521
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1522

D
dzhwinter 已提交
1523
        Returns:
Y
yuyang18 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1577 1578
        """
        if for_test:
1579
            p = self.inference_optimize(export_for_deployment=False)
1580
        else:
1581
            p = Program()
G
gongweibao 已提交
1582 1583
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1584
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1585 1586 1587
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1588 1589 1590 1591

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1592
            p._sync_with_cpp()
1593

W
Wu Yi 已提交
1594
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1595
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1596
        return p
1597

1598
    def prune(self, targets):
Y
yuyang18 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1614 1615 1616 1617 1618 1619
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1620 1621
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1622
                    # and we need to find the current op that generate this
1623 1624 1625 1626 1627 1628 1629 1630
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1631
                    t = t.op
1632 1633 1634 1635
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1636
                else:
1637 1638
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1639 1640 1641 1642

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1643 1644 1645
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1646
        res._sync_with_cpp()
1647 1648
        return res

1649
    def inference_optimize(self, export_for_deployment=True):
Y
yuyang18 已提交
1650
        """
F
fengjiayi 已提交
1651 1652 1653 1654 1655
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1656
        3. change the :code:`is_test`
Y
yuyang18 已提交
1657 1658 1659
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1660 1661 1662 1663
        Args:
            export_for_deployment(bool): remove the read ops that are added by py_reader
                                        for cpp inference library

Y
yuyang18 已提交
1664 1665 1666 1667 1668 1669
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1670 1671
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1672
        res = Program()
1673
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1674 1675 1676 1677

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
        if export_for_deployment:
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1688
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1689 1690

        # change all `is_test` attributes to True
M
minqiyang 已提交
1691
        for i in six.moves.range(res.desc.num_blocks()):
1692
            block = res.desc.block(i)
M
minqiyang 已提交
1693
            for j in six.moves.range(block.op_size()):
1694 1695 1696
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1697 1698 1699
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1700
        res._sync_with_cpp()
1701 1702
        return res

1703 1704
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1705 1706 1707 1708 1709 1710 1711
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1712
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1713 1714 1715 1716

        Returns:
            Program: A deserialized program desc.
        """
1717 1718
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1719
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1720
        p._sync_with_cpp()
1721
        return p
Y
Yu Yang 已提交
1722

D
dzhwinter 已提交
1723 1724
    @property
    def random_seed(self):
Y
yuyang18 已提交
1725 1726 1727 1728 1729 1730
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1731 1732
        return self._seed

Q
qiaolongfei 已提交
1733 1734
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1735 1736 1737
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1738 1739
        return self.desc.num_blocks()

D
dzhwinter 已提交
1740 1741 1742 1743 1744 1745
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1746
    def __repr__(self):
1747
        return self.__str__()
1748

Y
Yu Yang 已提交
1749
    def global_block(self):
Y
yuyang18 已提交
1750 1751 1752
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1753 1754
        return self.blocks[0]

Q
Qiao Longfei 已提交
1755
    def block(self, index):
Y
yuyang18 已提交
1756 1757 1758 1759 1760 1761 1762 1763
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1764 1765
        return self.blocks[index]

Y
Yu Yang 已提交
1766
    def current_block(self):
Y
yuyang18 已提交
1767 1768 1769 1770
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1771 1772
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1773
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1784
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1785 1786 1787
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1788 1789 1790 1791 1792
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1793 1794 1795 1796 1797
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1798 1799
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1800
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1811 1812 1813
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1814
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1815

W
Wu Yi 已提交
1816
    def _copy_param_info_from(self, other):
1817
        """
1818
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1819

Y
yuyang18 已提交
1820 1821 1822
        Notes: This is a very low level API. Users should not invoke it
        directly.

1823 1824 1825 1826 1827 1828 1829
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1830
            raise TypeError("_copy_param_info_from should be invoked with "
1831 1832 1833
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1834
            raise ValueError("_copy_param_info_from should be invoked with two "
1835
                             "program, with represent the same topology")
W
Wu Yi 已提交
1836
        self.global_block()._copy_param_info_from(other.global_block())
1837

F
fengjiayi 已提交
1838 1839 1840
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1841

Y
yuyang18 已提交
1842 1843 1844
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1845 1846 1847 1848 1849 1850 1851
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1852
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1853 1854 1855
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1856
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1857
                             "program, with represent the same topology")
1858
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1859 1860 1861
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1862
    def list_vars(self):
Y
yuyang18 已提交
1863 1864 1865 1866 1867 1868
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1869
        for each_block in self.blocks:
1870
            for each_var in list(each_block.vars.values()):
1871 1872
                yield each_var

Y
Yu Yang 已提交
1873

Y
Yu Yang 已提交
1874
class Parameter(Variable):
1875
    """
1876
    Parameter is derived from Variable. A parameter is a persistable
1877
    Variable, and will be updated by optimizers after each iteration.
1878
    The training of a neural network is essentially the updating of
1879 1880
    its parameters.

1881
    Relative to a general Variable, a Parameter has several its own
1882 1883
    member variables:

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1896 1897
    """

Y
Yu Yang 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1908 1909 1910

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1911 1912 1913 1914
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1915 1916
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1917
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1918

W
wanghaoshuang 已提交
1919
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1920

F
fengjiayi 已提交
1921 1922 1923
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1924 1925 1926
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1927

F
update  
fengjiayi 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1942
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1943
            for attr_name in additional_attr:
1944 1945
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
1946 1947
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1948 1949 1950 1951
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1952

Y
Yu Yang 已提交
1953
# program is a global instance.
Y
Yu Yang 已提交
1954 1955
_main_program_ = Program()
_startup_program_ = Program()
1956

1957

1958
def default_startup_program():
Y
Yu Yang 已提交
1959
    """
Y
yuyang18 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1969

Y
Yu Yang 已提交
1970 1971 1972
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1973
    return _startup_program_
1974

1975

1976
def default_main_program():
Y
Yu Yang 已提交
1977
    """
Y
yuyang18 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1987

Y
Yu Yang 已提交
1988 1989 1990
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1991
    return _main_program_
Y
Yu Yang 已提交
1992 1993 1994 1995 1996


def switch_main_program(program):
    """
    Switch the main program to a new program.
1997

Y
Yu Yang 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2012
    Switch the startup program to a new program
Y
Yu Yang 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2028 2029 2030
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2031

Y
Yu Yang 已提交
2032
    Examples:
Y
yuyang18 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2043

Y
Yu Yang 已提交
2044
    Examples:
Y
yuyang18 已提交
2045 2046 2047 2048 2049 2050

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2051

Y
Yu Yang 已提交
2052
    Args:
Y
yuyang18 已提交
2053
        main_program(Program): New main program inside `with` statement.
2054
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2068 2069 2070 2071


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2072
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2073

X
xuwei06 已提交
2074 2075 2076
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2077
        If None, default_global_program() will be used.
X
xuwei06 已提交
2078 2079 2080 2081 2082 2083 2084

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2085
    assert isinstance(program, Program)
X
xuwei06 已提交
2086 2087

    return program.global_block().var(name)