framework.py 90.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
116
@signature_safe_contextmanager
117 118 119 120 121 122 123 124 125 126 127 128
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
129

130 131 132 133
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
134 135
          with name_scope("attention"):
             ...
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
155 156 157
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
158 159 160 161


def grad_var_name(var_name):
    """
162 163
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
164 165 166
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
167

168
def convert_np_dtype_to_dtype_(np_dtype):
169 170
    """
    Convert the data type in numpy to the data type in Paddle
171

172
    Args:
173
        np_dtype(np.dtype): the data type in numpy.
174

175 176
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
177 178

    """
179 180
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
181
        return core.VarDesc.VarType.FP32
182
    elif dtype == np.float64:
183
        return core.VarDesc.VarType.FP64
184
    elif dtype == np.float16:
185
        return core.VarDesc.VarType.FP16
186
    elif dtype == np.int32:
187
        return core.VarDesc.VarType.INT32
188
    elif dtype == np.int16:
189
        return core.VarDesc.VarType.INT16
190
    elif dtype == np.int64:
191
        return core.VarDesc.VarType.INT64
192
    elif dtype == np.bool:
193
        return core.VarDesc.VarType.BOOL
194 195
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
196 197
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
198 199
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
200
    else:
M
minqiyang 已提交
201
        raise ValueError("Not supported numpy dtype %s" % dtype)
202 203 204


def dtype_is_floating(dtype):
205 206 207
    """
    Check the data type is floating or not.
    Args:
208
        dtype(np.dtype|core.VarDesc.VarType): data type.
209 210 211 212 213
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
214
    if not isinstance(dtype, core.VarDesc.VarType):
215 216
        dtype = convert_np_dtype_to_dtype_(dtype)

217 218 219 220
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
221 222


Y
Yang Yang(Tony) 已提交
223
def _debug_string_(proto, throw_on_error=True):
224 225 226 227 228 229 230 231 232 233 234
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
235
    error_fields = list()
Y
Yang Yang(Tony) 已提交
236
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
237 238
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
239 240 241
    return proto.__str__()


X
Xin Pan 已提交
242
class Variable(object):
243
    """
244 245 246
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
247
    two variables in different blocks could have the same name.
248

249 250
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
251

252
    Most of a Variable's member variables can be setted to be None. It mean
253
    it is not available or will be specified later.
254 255

    Args:
256
        block(Block): The block that the variable belongs to.
257 258
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
259 260
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
261
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
262
            Some kinds of variable do not contain shape, just set it to None.
263 264 265
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
266
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
267
            series data.
268
            Default: None
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
291 292
    """

Y
Yu Yang 已提交
293 294
    def __init__(self,
                 block,
Y
Yu Yang 已提交
295
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
296 297 298 299
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
300
                 capacity=None,
Q
QI JUN 已提交
301
                 persistable=None,
F
fengjiayi 已提交
302
                 error_clip=None,
Y
Yu Yang 已提交
303
                 stop_gradient=False,
F
fengjiayi 已提交
304
                 is_data=False,
Y
Yu Yang 已提交
305
                 **kwargs):
Y
Yu Yang 已提交
306
        self.block = block
F
fengjiayi 已提交
307
        self.error_clip = error_clip
Y
Yu Yang 已提交
308 309

        if name is None:
Y
Yu Yang 已提交
310
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
311
        is_new_var = False
M
minqiyang 已提交
312
        name = cpt.to_text(name)
M
minqiyang 已提交
313
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
314 315

        if self.desc is None:
M
minqiyang 已提交
316
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
317
            is_new_var = True
Y
Yu Yang 已提交
318

Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
327
        if shape is not None:
Y
Yu Yang 已提交
328
            if is_new_var:
329
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
338
        if dtype is not None:
339
            if not isinstance(dtype, core.VarDesc.VarType):
340
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
341
            if is_new_var:
F
fengjiayi 已提交
342
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
343
            else:
F
fengjiayi 已提交
344
                old_dtype = self.dtype
Q
QI JUN 已提交
345
                if dtype != old_dtype:
Y
Yu Yang 已提交
346 347 348 349 350
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
351 352

        if lod_level is not None:
Y
Yu Yang 已提交
353
            if is_new_var:
354
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
355 356 357 358 359 360 361
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
362 363 364 365 366 367 368 369 370 371 372
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

373 374 375 376 377 378 379 380
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
381
        self.block.vars[name] = self
Y
Yu Yang 已提交
382
        self.op = None
M
minqiyang 已提交
383
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
384
        self.is_data = is_data
X
Xin Pan 已提交
385
        if _in_imperative_mode():
M
minqiyang 已提交
386 387 388
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
389
            self._ivar.desc = self.desc
390
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
391

392
    def _numpy(self):
M
minqiyang 已提交
393
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
394
        return np.array(new_ivar.value().get_tensor())
395 396

    def _backward(self):
X
Xin Pan 已提交
397
        self._ivar._run_backward()
398 399

    def _gradient(self):
M
minqiyang 已提交
400
        return np.array(self._ivar._grad_value())
401

X
Xin Pan 已提交
402 403
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
404

405
    def __str__(self):
Y
Yang Yang(Tony) 已提交
406 407
        return self.to_string(True)

F
update  
fengjiayi 已提交
408
    def to_string(self, throw_on_error, with_details=False):
409 410 411 412
        """
        Get debug string.

        Args:
413 414
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
415
            with_details(bool): more details about variables and parameters
416 417
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
418

419 420
        Returns:
            str: The debug string.
421
        """
F
update  
fengjiayi 已提交
422 423
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
424
        protostr = self.desc.serialize_to_string()
425
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
426 427 428 429
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
430 431
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
432
        return res_str
433 434 435

    __repr__ = __str__

W
Wu Yi 已提交
436
    def _set_desc(self, input):
437 438 439 440 441 442 443 444 445
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
446 447
        self.desc = input

448 449
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
450 451 452 453
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
454 455 456

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
457 458 459
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
460

461 462 463 464
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
465 466 467 468
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
469 470
    @property
    def name(self):
M
minqiyang 已提交
471
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
472

T
typhoonzero 已提交
473 474 475 476
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
477 478 479
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
480
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
481 482

    @property
F
fengjiayi 已提交
483 484
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
485 486 487

    @property
    def lod_level(self):
488
        return self.desc.lod_level()
Y
Yu Yang 已提交
489

Y
Yu Yang 已提交
490 491 492 493
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
494
    def _set_error_clip(self, error_clip):
495 496 497 498 499 500 501 502 503
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
504 505
        self.error_clip = error_clip

Y
Yu Yang 已提交
506

F
fengjiayi 已提交
507 508 509
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
510

511 512
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
513 514 515 516
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
517
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
518 519 520 521 522
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
523 524 525 526
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
527 528 529 530 531 532 533 534 535
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
536
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
537 538 539 540 541 542
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
543 544 545 546 547 548 549 550
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
551 552
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
553 554
        return self.op_proto_map[type]

555 556 557 558
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
559
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
560 561
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
562 563
        }

F
fengjiayi 已提交
564

X
Xin Pan 已提交
565
class Operator(object):
566
    """
567 568 569 570 571 572 573
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
574
        type(str): The type of operator. Default None.
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
595
        Block.append_op or Block._prepend_op instead.
596 597 598 599 600 601 602 603 604 605

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
606
    """
607 608 609
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
610 611
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
612
    }
613

Y
Yu Yang 已提交
614 615
    def __init__(self,
                 block,
Y
Yu Yang 已提交
616
                 desc,
Y
Yu Yang 已提交
617 618 619
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
620
                 attrs=None):
Y
Yu Yang 已提交
621
        self.block = block
Y
Yu Yang 已提交
622
        self.desc = desc
G
gongweibao 已提交
623 624 625 626 627
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
628 629 630 631
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
632 633
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
634 635 636

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
637 638
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
639

G
gongweibao 已提交
640 641
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
642

F
fengjiayi 已提交
643 644 645 646 647
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
648 649 650 651 652
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
653
        self.desc.set_type(type)
F
fengjiayi 已提交
654
        proto = OpProtoHolder.instance().get_op_proto(type)
655

656 657 658
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
659 660
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
661
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
662 663
                    return True
            return False
Q
QI JUN 已提交
664

Y
Yang Yang(Tony) 已提交
665 666 667 668 669 670 671
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
672 673 674 675
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
676 677
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
678 679 680
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
681
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
682
                            in_arg_names.append(arg)
683 684
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
685
                        else:
M
minqiyang 已提交
686
                            in_arg_names.append(cpt.to_text(arg.name))
687
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
688 689
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
690

Y
Yu Yang 已提交
691
        if outputs is not None:
692
            for m in proto.outputs:
Q
qingqing01 已提交
693 694 695 696 697 698
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
699
            for out_proto in proto.outputs:
Q
qingqing01 已提交
700 701
                if out_proto.name not in outputs:
                    continue
702 703 704 705
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
706 707
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
708 709 710
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
711
                    out_arg_names.append(cpt.to_text(arg.name))
712 713
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
714

G
gongweibao 已提交
715 716
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
717
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
718
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
719
                attr_name = attr.name
G
gongweibao 已提交
720
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
721
                    continue
G
gongweibao 已提交
722
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
723 724
                self._update_desc_attr(attr_name, attr_val)

725
        self.desc.check_attrs()
W
Wu Yi 已提交
726
        if self._has_kernel(type):
Q
QI JUN 已提交
727
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
728
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
729

X
Xin Pan 已提交
730 731 732
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
733
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
734
            if inputs is not None:
X
Xin Pan 已提交
735 736 737 738 739 740
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
741
            if outputs is not None:
X
Xin Pan 已提交
742 743 744 745 746
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
747

W
Wu Yi 已提交
748
    def _has_kernel(self, op_type):
749 750
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
751
    def to_string(self, throw_on_error):
752
        """
753 754
        Get debug string.

755
        Args:
756 757
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
758

759 760
        Returns:
            str: The debug string.
761 762

        """
763
        protostr = self.desc.serialize_to_string()
764
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
765 766 767 768
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
769 770 771

    __repr__ = __str__

F
fengjiayi 已提交
772 773 774 775 776
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
777
        """
778
        Get the input arguments according to the input parameter name.
779

780 781
        Args:
            name(str): The input parameter name.
782

783 784 785
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
786
        """
F
fengjiayi 已提交
787 788
        return self.desc.input(name)

W
Wu Yi 已提交
789
    def _rename_input(self, old_name, new_name):
790 791 792 793 794 795 796 797 798 799
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
800
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
801

W
Wu Yi 已提交
802
    def _rename_output(self, old_name, new_name):
803 804 805 806 807 808 809 810 811 812
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
813
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
814

F
fengjiayi 已提交
815 816 817 818
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
819 820 821 822 823 824 825 826
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
827
    def output(self, name):
828
        """
829
        Get output arguments by the output parameter name.
830

831 832
        Args:
            name(str): The output parameter name.
833

834 835 836
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
837
        """
F
fengjiayi 已提交
838 839 840 841 842 843
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

844 845 846 847 848 849 850 851
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
852
    def has_attr(self, name):
853
        """
854 855
        Whether this Operator has the attribute with name or not.

856
        Args:
857
            name(str): the attribute name.
858

859 860
        Returns:
            bool: True if has this attribute.
861 862

        """
F
fengjiayi 已提交
863 864 865
        return self.desc.has_attr(name)

    def attr_type(self, name):
866
        """
867
        Get the type of attribute by attribute's name.
868

869 870
        Args:
            name(str): the attribute name.
871

872 873
        Returns:
            core.AttrType: the attribute type.
874
        """
F
fengjiayi 已提交
875 876
        return self.desc.attr_type(name)

W
Wu Yi 已提交
877
    def _set_attr(self, name, val):
878 879 880 881 882 883 884 885 886 887
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
901 902
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
903 904
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
905
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
906 907 908 909
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
910
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
911

F
fengjiayi 已提交
912 913 914 915 916
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
917
        """
918 919
        Get the attribute by name.

920
        Args:
921
            name(str): the attribute name.
922

923 924
        Returns:
            bool|int|str|float|list: The attribute value. The return value
925 926
            can be any valid attribute type.
        """
F
fengjiayi 已提交
927
        return self.desc.attr(name)
Y
Yu Yang 已提交
928

W
Wu Yi 已提交
929
    def _block_attr_id(self, name):
930
        """
G
gongweibao 已提交
931
        Get the block attribute's id by name.
932

933 934
        Args:
            name(str): the attribute name.
935

936 937
        Returns:
            int: the block index.
938
        """
W
Wu Yi 已提交
939
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
940

W
Wu Yi 已提交
941
    def _block_attr(self, name):
G
gongweibao 已提交
942 943 944 945 946 947 948 949 950 951
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
952
        id = self._block_attr_id(name)
G
gongweibao 已提交
953 954 955
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
956
    def _blocks_attr(self, name):
G
gongweibao 已提交
957 958 959 960 961 962 963 964 965 966
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
967
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
968 969 970 971 972
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
973
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
974 975 976 977 978 979 980 981 982 983
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
984
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
985

J
JiayiFeng 已提交
986
    def all_attrs(self):
F
fengjiayi 已提交
987
        """
988 989 990
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
991
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
992 993 994 995
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
996 997
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
998
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
999 1000 1001
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1002
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1003 1004 1005 1006
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1007 1008
        return attr_map

Y
Yu Yang 已提交
1009

Y
Yu Yang 已提交
1010
class Block(object):
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1025
        use `Program._create_block()` to create a block.
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1040
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1041
        self.desc = program.desc.block(idx)
1042
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1043
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1044
        self.program = program
1045
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1046

1047
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1048 1049
        return self.to_string(True)

F
fengjiayi 已提交
1050 1051
    def to_string(self, throw_on_error, with_details=False):
        """
1052 1053
        Get debug string.

F
fengjiayi 已提交
1054 1055
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1056
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1057
            with_details(bool): more details about variables and parameters
1058 1059
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1060

1061 1062
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1063 1064 1065 1066
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1067
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1068 1069
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1070
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1071
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1072
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1073
            for op in self.ops:
F
fengjiayi 已提交
1074 1075
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1076 1077 1078
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1079 1080
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1081 1082
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1083 1084 1085

    __repr__ = __str__

Y
Yu Yang 已提交
1086 1087
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1088
        return self.desc.parent
Y
Yu Yang 已提交
1089

Y
Yu Yang 已提交
1090 1091 1092 1093
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1094
    def _set_forward_block_idx(self, idx):
1095 1096 1097 1098 1099 1100 1101 1102 1103
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1104
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1105

Y
Yu Yang 已提交
1106 1107
    @property
    def idx(self):
Y
Yu Yang 已提交
1108
        return self.desc.id
Y
Yu Yang 已提交
1109

Q
Qiao Longfei 已提交
1110
    def var(self, name):
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1124
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1125 1126 1127
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1128 1129
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1130
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1131
        return v
Q
Qiao Longfei 已提交
1132

X
Xin Pan 已提交
1133
    def _find_var_recursive(self, name):
1134 1135 1136 1137 1138 1139 1140
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1141
            Variable: the Variable with the giving name. Or None if not found.
1142
        """
Y
Yu Yang 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1167
        return None
Y
Yu Yang 已提交
1168

X
Xin Pan 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1188

Q
Qiao Longfei 已提交
1189
    def all_parameters(self):
1190
        return list(self.iter_parameters())
1191

1192
    def iter_parameters(self):
M
minqiyang 已提交
1193
        return (item[1] for item in six.iteritems(self.vars)
1194
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1195

Y
Yu Yang 已提交
1196
    def create_var(self, *args, **kwargs):
1197
        var = Variable(block=self, *args, **kwargs)
1198 1199
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1200
        return var
Y
Yu Yang 已提交
1201

Q
Qiao Longfei 已提交
1202 1203 1204
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1205
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1206 1207
        """
        Rename variable in vars and ops' inputs and outputs
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1220
        """
M
minqiyang 已提交
1221 1222
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1223

T
typhoonzero 已提交
1224
        if not self.has_var(name):
1225
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1226 1227
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1228
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1229 1230 1231 1232 1233 1234 1235
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1236
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1237 1238 1239 1240
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1241
        orig_var_type = v.type
M
minqiyang 已提交
1242
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1243
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1244
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1245
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1246 1247 1248 1249
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1250
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1251 1252 1253 1254 1255 1256 1257
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1258
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1259 1260
            var = Variable(
                self,
T
typhoonzero 已提交
1261
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1262 1263 1264 1265
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1266
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1267 1268 1269
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1270
        self._sync_with_cpp()
1271
        return var
T
typhoonzero 已提交
1272

W
Wu Yi 已提交
1273 1274
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1275
        self.desc._remove_var(cpt.to_bytes(name))
1276 1277
        del self.vars[name]

Y
Yu Yang 已提交
1278 1279
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1280
        param = Parameter(global_block, *args, **kwargs)
1281
        if 'initializer' in kwargs:
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1302
        return param
Y
Yu Yang 已提交
1303

Y
Yu Yang 已提交
1304
    def append_op(self, *args, **kwargs):
1305 1306 1307 1308 1309 1310
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1311
        op_desc = self.desc.append_op()
1312 1313 1314 1315 1316 1317 1318 1319
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1320

M
minqiyang 已提交
1321 1322
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1323 1324 1325 1326
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1327
        if _in_imperative_mode():
1328
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1329
                                       _imperative_current_expected_place_,
1330
                                       stop_gradient)
Y
Yu Yang 已提交
1331

W
Wu Yi 已提交
1332
    def _insert_op(self, index, *args, **kwargs):
1333 1334 1335 1336 1337 1338 1339 1340 1341
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1342 1343
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1344 1345 1346 1347
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1348
    def _remove_op(self, index):
1349 1350 1351 1352 1353 1354 1355 1356 1357
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1358 1359
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1360 1361
        del self.ops[index]

W
Wu Yi 已提交
1362
    def _slice_ops(self, start, end):
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1373
        return self.ops[start:end]
Y
Yancey1989 已提交
1374

W
Wu Yi 已提交
1375 1376
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1377 1378 1379 1380 1381 1382 1383
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1384
        self.ops.insert(0, op)
1385
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1386 1387
        return op

W
Wu Yi 已提交
1388
    def _sync_with_cpp(self):
1389
        """
1390 1391
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1392
        """
Q
Qiao Longfei 已提交
1393 1394 1395 1396 1397
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1398
        # sync variables removed from c++ end
1399
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1400
            if not self.desc.find_var(cpt.to_bytes(var)):
1401 1402
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1403
        # sync operators from cpp
1404 1405 1406 1407
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1424 1425 1426 1427 1428

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1429
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1430 1431 1432 1433 1434 1435 1436

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1450 1451 1452 1453
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1454
    def _copy_param_info_from(self, other):
1455
        """
1456 1457
        Copy the information of parameters from the other block.

1458
        Args:
1459 1460 1461 1462 1463
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1464 1465 1466 1467 1468

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1469 1470
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1471
        for p in other.iter_parameters():
1472 1473 1474
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1475
                raise ValueError("_copy_param_info_from should be invoked with "
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1488
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1489
                error_clip=p.error_clip,
1490 1491 1492
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1493
    def _clone_variable(self, var):
1494 1495
        """
        Clone a variable into current block.
1496

1497 1498 1499 1500
        Args:
            var: the variable to be cloned.

        Returns:
1501
            Variable: the new  variable cloned from 'var' in current block.
1502 1503
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1504 1505 1506 1507 1508
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1509 1510
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1511
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1512 1513 1514 1515 1516 1517
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1518 1519
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1520 1521 1522 1523 1524 1525 1526
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1527 1528
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1529
        return ret_var
1530

Y
Yu Yang 已提交
1531

1532 1533
class IrGraph(object):
    """
1534 1535 1536 1537
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1538 1539 1540 1541
    """

    def __init__(self, graph, for_test=False):
        """
1542 1543
        Construct an IrGraph using core.Graph.

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1554 1555 1556
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1557 1558
        return self._for_test

W
WangZhen 已提交
1559
    def all_nodes(self):
1560 1561 1562
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1563
        return {node for node in self.graph.nodes()}
1564 1565

    def all_vars(self):
1566 1567 1568
        """
        Return all variable nodes included in the graph as a set.
        """
1569 1570
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1571
    def all_persistable_vars(self):
1572 1573 1574
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1575 1576 1577 1578 1579 1580 1581
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1582
    def all_ops(self):
1583 1584 1585
        """
        Return all operator nodes included in the graph as a set.
        """
1586 1587
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1588 1589
    def var_node(self, name):
        """
1590 1591
        Get a variable node by name from the graph.

W
WangZhen 已提交
1592 1593
        Args:
            name(str): the name of the variable node.
1594

W
WangZhen 已提交
1595 1596 1597
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1598

W
WangZhen 已提交
1599
        Returns:
1600
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1615
    def create_param_node(self, name, var_type, shape, var_dtype):
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1629 1630 1631 1632 1633 1634 1635 1636
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1651 1652 1653 1654 1655 1656 1657
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1668 1669 1670
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1683 1684
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1685
        for attr, value in six.iteritems(attrs):
1686
            self._update_desc_attr(op_desc, attr, value)
1687
        for input_name, var_nodes in six.iteritems(inputs):
1688 1689 1690 1691
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1692
        for output_name, var_nodes in six.iteritems(outputs):
1693 1694 1695 1696 1697 1698 1699
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1700 1701 1702 1703 1704 1705 1706 1707 1708
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1709 1710 1711
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1712 1713 1714 1715 1716 1717 1718 1719
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1720 1721 1722
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1723 1724 1725 1726 1727 1728 1729
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1730 1731 1732 1733 1734 1735 1736
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1737
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1738
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1739 1740 1741 1742
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1743 1744 1745 1746 1747 1748 1749
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1750
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1751 1752 1753 1754
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1755 1756
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1757
    def has_circle(self):
1758 1759 1760 1761 1762 1763
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1764 1765 1766
        return core.has_circle(self.graph)

    def graph_num(self):
1767 1768 1769 1770 1771 1772
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1773 1774 1775
        return core.graph_num(self.graph)

    def topology_sort(self):
1776 1777 1778 1779 1780 1781 1782 1783
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1784 1785 1786
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1787 1788 1789 1790 1791 1792
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1793 1794
        return core.build_adjacency_list(self.graph)

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1809 1810 1811 1812 1813 1814 1815 1816 1817
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1818 1819 1820 1821 1822 1823
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1824 1825
        ops_num = 0
        for node in self.graph.nodes():
1826
            if node.is_op():
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1853
        convert_pass = core.get_pass('graph_to_program_pass')
1854 1855
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1876
class Program(object):
D
dzhwinter 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1888
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1889 1890

    Returns:
Y
yuyang18 已提交
1891
        A empty program.
D
dzhwinter 已提交
1892 1893

    Examples:
Y
yuyang18 已提交
1894 1895 1896 1897 1898 1899
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1900 1901 1902

    """

1903 1904
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1905 1906
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1907
        self._seed = 0
Y
yuyang18 已提交
1908
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1909
        self._op_role_var = []
T
tangwei12 已提交
1910

1911 1912
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1913
        self._is_distributed = False
1914
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1915
        self._is_chief = False
1916 1917 1918
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1919
        self._endpoints = []
1920 1921 1922
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1923
        self._trainers_endpoints = []
1924
        # the distributed lookup table names
T
tangwei12 已提交
1925
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1926
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1927
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1928
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1929 1930

    @property
D
dzhwinter 已提交
1931
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1932 1933
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1934
        return self.__is_mem_optimized
D
dzhwinter 已提交
1935

D
dzhwinter 已提交
1936 1937 1938
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1939 1940 1941

    @property
    def op_role(self):
Y
yuyang18 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1955 1956 1957
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1958
    def op_role(self, role):
Y
yuyang18 已提交
1959 1960 1961 1962
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1963 1964 1965 1966 1967 1968 1969
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1970 1971 1972 1973
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1974
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1975

S
rename  
sneaxiy 已提交
1976
    @signature_safe_contextmanager
W
Wu Yi 已提交
1977
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1978 1979 1980 1981 1982 1983 1984
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1985
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1986 1987 1988 1989

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1990
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1991 1992
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1993 1994 1995
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1996 1997
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1998 1999 2000 2001
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2002
        yield
X
Xin Pan 已提交
2003 2004
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2005

S
rename  
sneaxiy 已提交
2006
    @signature_safe_contextmanager
X
Xin Pan 已提交
2007
    def _lr_schedule_guard(self, is_with_opt=False):
2008 2009 2010 2011 2012 2013 2014
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2015 2016 2017 2018
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2019 2020 2021 2022 2023 2024 2025

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2026 2027 2028 2029

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2030 2031
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2032 2033
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2034 2035 2036
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2037 2038
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2039

2040
    def __str__(self):
Y
yuyang18 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2050 2051
        return self.to_string(True)

F
fengjiayi 已提交
2052 2053 2054
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2055

F
fengjiayi 已提交
2056
        Args:
Y
yuyang18 已提交
2057 2058
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2059

Y
yuyang18 已提交
2060 2061 2062 2063
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2064 2065
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2066 2067 2068 2069

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2080 2081
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2082 2083
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2084

W
Wu Yi 已提交
2085
    def _get_desc(self):
Y
yuyang18 已提交
2086 2087 2088 2089 2090 2091 2092
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2093 2094
        return self.desc

X
version  
Xin Pan 已提交
2095 2096 2097
    def _version(self):
        return self.desc._version()

2098
    def clone(self, for_test=False):
Y
yuyang18 已提交
2099 2100 2101
        """
        Create a new, duplicated program.

2102

Y
yuyang18 已提交
2103 2104 2105 2106
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2107

Y
yuyang18 已提交
2108 2109 2110 2111
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2112 2113 2114 2115 2116
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2117 2118

        Args:
Y
yuyang18 已提交
2119 2120
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2121

D
dzhwinter 已提交
2122
        Returns:
Y
yuyang18 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2176 2177
        """
        if for_test:
X
Xin Pan 已提交
2178
            p = self._inference_optimize(prune_read_op=False)
2179
        else:
2180
            p = Program()
G
gongweibao 已提交
2181 2182
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2183
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2184 2185 2186
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2187 2188 2189 2190

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2191
            p._sync_with_cpp()
2192

W
Wu Yi 已提交
2193
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2194
        p._copy_data_info_from(self)
2195
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2196
        return p
2197

W
Wu Yi 已提交
2198
    def _prune(self, targets):
Y
yuyang18 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2214 2215 2216 2217 2218 2219
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2220 2221
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2222
                    # and we need to find the current op that generate this
2223 2224 2225 2226 2227 2228 2229 2230
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2231
                    t = t.op
2232 2233 2234 2235
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2236
                else:
2237 2238
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2239 2240 2241 2242

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2243 2244 2245
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2246
        res._sync_with_cpp()
2247 2248
        return res

X
Xin Pan 已提交
2249
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2250
        """
F
fengjiayi 已提交
2251 2252 2253 2254 2255
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2256
        3. change the :code:`is_test`
Y
yuyang18 已提交
2257 2258 2259
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2260
        Args:
X
Xin Pan 已提交
2261 2262
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2263

Y
yuyang18 已提交
2264 2265 2266 2267 2268 2269
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2270
        res = Program()
2271
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2272 2273 2274 2275

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2276
        if prune_read_op:
2277 2278 2279 2280 2281 2282 2283 2284 2285
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2286
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2287 2288

        # change all `is_test` attributes to True
M
minqiyang 已提交
2289
        for i in six.moves.range(res.desc.num_blocks()):
2290
            block = res.desc.block(i)
M
minqiyang 已提交
2291
            for j in six.moves.range(block.op_size()):
2292 2293
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2294
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2295 2296 2297
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2298
        res._sync_with_cpp()
2299 2300
        return res

2301 2302
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2303 2304 2305 2306 2307 2308 2309
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2310
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2311 2312 2313 2314

        Returns:
            Program: A deserialized program desc.
        """
2315 2316
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2317
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2318
        p._sync_with_cpp()
2319
        return p
Y
Yu Yang 已提交
2320

2321
    @staticmethod
2322
    def _construct_from_desc(desc):
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2338 2339
    @property
    def random_seed(self):
Y
yuyang18 已提交
2340 2341 2342 2343 2344 2345
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2346 2347
        return self._seed

Q
qiaolongfei 已提交
2348 2349
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2350 2351 2352
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2353 2354
        return self.desc.num_blocks()

D
dzhwinter 已提交
2355 2356 2357 2358 2359 2360
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2361
    def __repr__(self):
2362
        return self.__str__()
2363

Y
Yu Yang 已提交
2364
    def global_block(self):
Y
yuyang18 已提交
2365 2366 2367
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2368 2369
        return self.blocks[0]

Q
Qiao Longfei 已提交
2370
    def block(self, index):
Y
yuyang18 已提交
2371 2372 2373 2374 2375 2376 2377 2378
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2379 2380
        return self.blocks[index]

Y
Yu Yang 已提交
2381
    def current_block(self):
Y
yuyang18 已提交
2382 2383 2384 2385
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2386 2387
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2388
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2399
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2400 2401 2402
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2403 2404 2405 2406
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2407
    def _rollback(self):
Y
yuyang18 已提交
2408 2409 2410 2411 2412
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2413 2414
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2415
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2426 2427 2428
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2429
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2430

W
Wu Yi 已提交
2431
    def _copy_param_info_from(self, other):
2432
        """
2433
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2434

Y
yuyang18 已提交
2435 2436 2437
        Notes: This is a very low level API. Users should not invoke it
        directly.

2438 2439 2440 2441 2442 2443 2444
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2445
            raise TypeError("_copy_param_info_from should be invoked with "
2446 2447 2448
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2449
            raise ValueError("_copy_param_info_from should be invoked with two "
2450
                             "program, with represent the same topology")
W
Wu Yi 已提交
2451
        self.global_block()._copy_param_info_from(other.global_block())
2452

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2468
        self._parameters_on_pservers = other._parameters_on_pservers
2469
        self._endpoints = other._endpoints
2470
        self._ps_endpoint = other._ps_endpoint
2471 2472
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2473
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2474 2475
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2476

Y
yuyang18 已提交
2477 2478 2479
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2480 2481 2482 2483 2484 2485 2486
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2487
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2488 2489 2490
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2491
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2492
                             "program, with represent the same topology")
2493
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2494 2495 2496
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2497
    def list_vars(self):
Y
yuyang18 已提交
2498 2499 2500 2501 2502 2503
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2504
        for each_block in self.blocks:
2505
            for each_var in list(each_block.vars.values()):
2506 2507
                yield each_var

Y
Yu Yang 已提交
2508

Y
Yu Yang 已提交
2509
class Parameter(Variable):
2510
    """
2511
    Parameter is derived from Variable. A parameter is a persistable
2512
    Variable, and will be updated by optimizers after each iteration.
2513
    The training of a neural network is essentially the updating of
2514 2515
    its parameters.

2516
    Relative to a general Variable, a Parameter has several its own
2517 2518
    member variables:

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2531 2532
    """

Y
Yu Yang 已提交
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2543 2544 2545

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2546 2547 2548 2549
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2550 2551
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2552
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2553

W
wanghaoshuang 已提交
2554
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2555

F
fengjiayi 已提交
2556 2557 2558
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2559 2560 2561
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2562

F
update  
fengjiayi 已提交
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2577
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2578
            for attr_name in additional_attr:
2579 2580
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2581 2582
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2583 2584 2585 2586
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2587

Y
Yu Yang 已提交
2588
# program is a global instance.
Y
Yu Yang 已提交
2589 2590
_main_program_ = Program()
_startup_program_ = Program()
2591

2592

2593
def default_startup_program():
Y
Yu Yang 已提交
2594
    """
Y
yuyang18 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2604

Y
Yu Yang 已提交
2605 2606 2607
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2608
    return _startup_program_
2609

2610

2611
def default_main_program():
Y
Yu Yang 已提交
2612
    """
Y
yuyang18 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2622

Y
Yu Yang 已提交
2623 2624 2625
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2626
    return _main_program_
Y
Yu Yang 已提交
2627 2628 2629 2630 2631


def switch_main_program(program):
    """
    Switch the main program to a new program.
2632

Y
Yu Yang 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2647
    Switch the startup program to a new program
Y
Yu Yang 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2660
@signature_safe_contextmanager
Y
Yu Yang 已提交
2661 2662
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2663 2664 2665
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2666

Y
Yu Yang 已提交
2667
    Examples:
Y
yuyang18 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2678

Y
Yu Yang 已提交
2679
    Examples:
Y
yuyang18 已提交
2680 2681 2682 2683 2684 2685

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2686

Y
Yu Yang 已提交
2687
    Args:
Y
yuyang18 已提交
2688
        main_program(Program): New main program inside `with` statement.
2689
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2703 2704


W
Wu Yi 已提交
2705
def _get_var(name, program=None):
X
xuwei06 已提交
2706
    """
Y
yuyang18 已提交
2707
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2708

X
xuwei06 已提交
2709 2710 2711
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2712
        If None, default_global_program() will be used.
X
xuwei06 已提交
2713 2714 2715 2716 2717 2718 2719

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2720
    assert isinstance(program, Program)
X
xuwei06 已提交
2721 2722

    return program.global_block().var(name)
2723 2724


S
rename  
sneaxiy 已提交
2725
@signature_safe_contextmanager
2726 2727 2728 2729
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2730

2731
    yield
P
Paddle CI 已提交
2732

2733
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
2734 2735


S
rename  
sneaxiy 已提交
2736
@signature_safe_contextmanager
P
Paddle CI 已提交
2737
def _imperative_place_guard(place):
M
minqiyang 已提交
2738 2739 2740
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2741

2742
    yield
M
minqiyang 已提交
2743

M
minqiyang 已提交
2744
    _imperative_current_expected_place_ = tmp_place