framework.py 90.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
116
@signature_safe_contextmanager
117 118 119 120 121 122 123 124 125 126 127 128
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
129

130 131 132 133
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
134 135
          with name_scope("attention"):
             ...
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
155 156 157
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
158 159 160 161


def grad_var_name(var_name):
    """
162 163
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
164 165 166
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
167

168
def convert_np_dtype_to_dtype_(np_dtype):
169 170
    """
    Convert the data type in numpy to the data type in Paddle
171

172
    Args:
173
        np_dtype(np.dtype): the data type in numpy.
174

175 176
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
177 178

    """
179 180
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
181
        return core.VarDesc.VarType.FP32
182
    elif dtype == np.float64:
183
        return core.VarDesc.VarType.FP64
184
    elif dtype == np.float16:
185
        return core.VarDesc.VarType.FP16
186
    elif dtype == np.int32:
187
        return core.VarDesc.VarType.INT32
188
    elif dtype == np.int16:
189
        return core.VarDesc.VarType.INT16
190
    elif dtype == np.int64:
191
        return core.VarDesc.VarType.INT64
192
    elif dtype == np.bool:
193
        return core.VarDesc.VarType.BOOL
194 195
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
196 197
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
198 199
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
200
    else:
M
minqiyang 已提交
201
        raise ValueError("Not supported numpy dtype %s" % dtype)
202 203 204


def dtype_is_floating(dtype):
205 206 207
    """
    Check the data type is floating or not.
    Args:
208
        dtype(np.dtype|core.VarDesc.VarType): data type.
209 210 211 212 213
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
214
    if not isinstance(dtype, core.VarDesc.VarType):
215 216
        dtype = convert_np_dtype_to_dtype_(dtype)

217 218 219 220
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
221 222


Y
Yang Yang(Tony) 已提交
223
def _debug_string_(proto, throw_on_error=True):
224 225 226 227 228 229 230 231 232 233 234
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
235
    error_fields = list()
Y
Yang Yang(Tony) 已提交
236
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
237 238
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
239 240 241
    return proto.__str__()


X
Xin Pan 已提交
242
class Variable(object):
243
    """
244 245 246
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
247
    two variables in different blocks could have the same name.
248

249 250
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
251

252
    Most of a Variable's member variables can be setted to be None. It mean
253
    it is not available or will be specified later.
254 255

    Args:
256
        block(Block): The block that the variable belongs to.
257 258
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
259 260
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
261
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
262
            Some kinds of variable do not contain shape, just set it to None.
263 264 265
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
266
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
267
            series data.
268
            Default: None
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
291 292
    """

Y
Yu Yang 已提交
293 294
    def __init__(self,
                 block,
Y
Yu Yang 已提交
295
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
296 297 298 299
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
300
                 capacity=None,
Q
QI JUN 已提交
301
                 persistable=None,
F
fengjiayi 已提交
302
                 error_clip=None,
Y
Yu Yang 已提交
303
                 stop_gradient=False,
F
fengjiayi 已提交
304
                 is_data=False,
Y
Yu Yang 已提交
305
                 **kwargs):
Y
Yu Yang 已提交
306
        self.block = block
F
fengjiayi 已提交
307
        self.error_clip = error_clip
Y
Yu Yang 已提交
308 309

        if name is None:
Y
Yu Yang 已提交
310
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
311
        is_new_var = False
M
minqiyang 已提交
312
        name = cpt.to_text(name)
M
minqiyang 已提交
313
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
314 315

        if self.desc is None:
M
minqiyang 已提交
316
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
317
            is_new_var = True
Y
Yu Yang 已提交
318

Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
327
        if shape is not None:
Y
Yu Yang 已提交
328
            if is_new_var:
329
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
338
        if dtype is not None:
339
            if not isinstance(dtype, core.VarDesc.VarType):
340
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
341
            if is_new_var:
F
fengjiayi 已提交
342
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
343
            else:
F
fengjiayi 已提交
344
                old_dtype = self.dtype
Q
QI JUN 已提交
345
                if dtype != old_dtype:
Y
Yu Yang 已提交
346 347 348 349 350
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
351 352

        if lod_level is not None:
Y
Yu Yang 已提交
353
            if is_new_var:
354
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
355 356 357 358 359 360 361
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
362 363 364 365 366 367 368 369 370 371 372
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

373 374 375 376 377 378 379 380
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
381
        self.block.vars[name] = self
Y
Yu Yang 已提交
382
        self.op = None
M
minqiyang 已提交
383
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
384
        self.is_data = is_data
X
Xin Pan 已提交
385
        if _in_imperative_mode():
M
minqiyang 已提交
386 387 388
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
389
            self._ivar.desc = self.desc
390
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
391

392
    def _numpy(self):
M
minqiyang 已提交
393
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
394
        return np.array(new_ivar.value().get_tensor())
395 396

    def _backward(self):
X
Xin Pan 已提交
397
        self._ivar._run_backward()
398 399

    def _gradient(self):
M
minqiyang 已提交
400
        return np.array(self._ivar._grad_value())
401

X
Xin Pan 已提交
402 403
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
404

405
    def __str__(self):
Y
Yang Yang(Tony) 已提交
406 407
        return self.to_string(True)

F
update  
fengjiayi 已提交
408
    def to_string(self, throw_on_error, with_details=False):
409 410 411 412
        """
        Get debug string.

        Args:
413 414
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
415
            with_details(bool): more details about variables and parameters
416 417
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
418

419 420
        Returns:
            str: The debug string.
421
        """
F
update  
fengjiayi 已提交
422 423
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
424
        protostr = self.desc.serialize_to_string()
425
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
426 427 428 429
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
430 431
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
432
        return res_str
433 434 435

    __repr__ = __str__

W
Wu Yi 已提交
436
    def _set_desc(self, input):
437 438 439 440 441 442 443 444 445
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
446 447
        self.desc = input

448 449
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
450 451 452 453
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
454 455 456

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
457 458 459
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
460

461 462 463 464
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
465 466 467 468
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
469 470
    @property
    def name(self):
M
minqiyang 已提交
471
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
472

T
typhoonzero 已提交
473 474 475 476
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
477 478 479
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
480
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
481 482

    @property
F
fengjiayi 已提交
483 484
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
485 486 487

    @property
    def lod_level(self):
488
        return self.desc.lod_level()
Y
Yu Yang 已提交
489

Y
Yu Yang 已提交
490 491 492 493
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
494
    def _set_error_clip(self, error_clip):
495 496 497 498 499 500 501 502 503
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
504 505
        self.error_clip = error_clip

Y
Yu Yang 已提交
506

F
fengjiayi 已提交
507 508 509
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
510

511 512
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
513 514 515 516
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
517
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
518 519 520 521 522
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
523 524 525 526
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
527 528 529 530 531 532 533 534 535
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
536
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
537 538 539 540 541 542
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
543 544 545 546 547 548 549 550
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
551 552
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
553 554
        return self.op_proto_map[type]

555 556 557 558
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
559
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
560 561
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
562 563
        }

F
fengjiayi 已提交
564

X
Xin Pan 已提交
565
class Operator(object):
566
    """
567 568 569 570 571 572 573
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
574
        type(str): The type of operator. Default None.
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
595
        Block.append_op or Block._prepend_op instead.
596 597 598 599 600 601 602 603 604 605

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
606
    """
607 608 609
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
610 611
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
612
    }
613

Y
Yu Yang 已提交
614 615
    def __init__(self,
                 block,
Y
Yu Yang 已提交
616
                 desc,
Y
Yu Yang 已提交
617 618 619
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
620
                 attrs=None):
Y
Yu Yang 已提交
621
        self.block = block
Y
Yu Yang 已提交
622
        self.desc = desc
G
gongweibao 已提交
623 624 625 626 627
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
628 629 630 631
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
632 633
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
634 635 636

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
637 638
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
639

G
gongweibao 已提交
640 641
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
642

F
fengjiayi 已提交
643 644 645 646 647
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
648 649 650 651 652
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
653
        self.desc.set_type(type)
F
fengjiayi 已提交
654
        proto = OpProtoHolder.instance().get_op_proto(type)
655

656 657 658
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
659 660
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
661
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
662 663
                    return True
            return False
Q
QI JUN 已提交
664

Y
Yang Yang(Tony) 已提交
665 666 667 668 669 670 671
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
672 673 674 675
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
676 677
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
678 679 680
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
681
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
682
                            in_arg_names.append(arg)
683 684
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
685
                        else:
M
minqiyang 已提交
686
                            in_arg_names.append(cpt.to_text(arg.name))
687
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
688 689
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
690

Y
Yu Yang 已提交
691
        if outputs is not None:
692
            for m in proto.outputs:
Q
qingqing01 已提交
693 694 695 696 697 698
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
699
            for out_proto in proto.outputs:
Q
qingqing01 已提交
700 701
                if out_proto.name not in outputs:
                    continue
702 703 704 705
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
706 707
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
708 709 710
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
711
                    out_arg_names.append(cpt.to_text(arg.name))
712 713
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
714

G
gongweibao 已提交
715 716
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
717
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
718
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
719
                attr_name = attr.name
G
gongweibao 已提交
720
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
721
                    continue
G
gongweibao 已提交
722
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
723 724
                self._update_desc_attr(attr_name, attr_val)

725
        self.desc.check_attrs()
M
minqiyang 已提交
726

W
Wu Yi 已提交
727
        if self._has_kernel(type):
Q
QI JUN 已提交
728
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
729
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
730

X
Xin Pan 已提交
731 732 733
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
734
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
735
            if inputs is not None:
X
Xin Pan 已提交
736 737 738 739 740 741
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
742
            if outputs is not None:
X
Xin Pan 已提交
743 744 745 746 747
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
748

W
Wu Yi 已提交
749
    def _has_kernel(self, op_type):
750 751
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
752
    def to_string(self, throw_on_error):
753
        """
754 755
        Get debug string.

756
        Args:
757 758
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
759

760 761
        Returns:
            str: The debug string.
762 763

        """
764
        protostr = self.desc.serialize_to_string()
765
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
766 767 768 769
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
770 771 772

    __repr__ = __str__

F
fengjiayi 已提交
773 774 775 776 777
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
778
        """
779
        Get the input arguments according to the input parameter name.
780

781 782
        Args:
            name(str): The input parameter name.
783

784 785 786
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
787
        """
F
fengjiayi 已提交
788 789
        return self.desc.input(name)

W
Wu Yi 已提交
790
    def _rename_input(self, old_name, new_name):
791 792 793 794 795 796 797 798 799 800
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
801
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
802

W
Wu Yi 已提交
803
    def _rename_output(self, old_name, new_name):
804 805 806 807 808 809 810 811 812 813
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
814
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
815

F
fengjiayi 已提交
816 817 818 819
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
820 821 822 823 824 825 826 827
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
828
    def output(self, name):
829
        """
830
        Get output arguments by the output parameter name.
831

832 833
        Args:
            name(str): The output parameter name.
834

835 836 837
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
838
        """
F
fengjiayi 已提交
839 840 841 842 843 844
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

845 846 847 848 849 850 851 852
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
853
    def has_attr(self, name):
854
        """
855 856
        Whether this Operator has the attribute with name or not.

857
        Args:
858
            name(str): the attribute name.
859

860 861
        Returns:
            bool: True if has this attribute.
862 863

        """
F
fengjiayi 已提交
864 865 866
        return self.desc.has_attr(name)

    def attr_type(self, name):
867
        """
868
        Get the type of attribute by attribute's name.
869

870 871
        Args:
            name(str): the attribute name.
872

873 874
        Returns:
            core.AttrType: the attribute type.
875
        """
F
fengjiayi 已提交
876 877
        return self.desc.attr_type(name)

W
Wu Yi 已提交
878
    def _set_attr(self, name, val):
879 880 881 882 883 884 885 886 887 888
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
902 903
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
904 905
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
906
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
907 908 909 910
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
911
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
912

F
fengjiayi 已提交
913 914 915 916 917
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
918
        """
919 920
        Get the attribute by name.

921
        Args:
922
            name(str): the attribute name.
923

924 925
        Returns:
            bool|int|str|float|list: The attribute value. The return value
926 927
            can be any valid attribute type.
        """
F
fengjiayi 已提交
928
        return self.desc.attr(name)
Y
Yu Yang 已提交
929

W
Wu Yi 已提交
930
    def _block_attr_id(self, name):
931
        """
G
gongweibao 已提交
932
        Get the block attribute's id by name.
933

934 935
        Args:
            name(str): the attribute name.
936

937 938
        Returns:
            int: the block index.
939
        """
W
Wu Yi 已提交
940
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
941

W
Wu Yi 已提交
942
    def _block_attr(self, name):
G
gongweibao 已提交
943 944 945 946 947 948 949 950 951 952
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
953
        id = self._block_attr_id(name)
G
gongweibao 已提交
954 955 956
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
957
    def _blocks_attr(self, name):
G
gongweibao 已提交
958 959 960 961 962 963 964 965 966 967
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
968
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
969 970 971 972 973
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
974
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
975 976 977 978 979 980 981 982 983 984
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
985
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
986

J
JiayiFeng 已提交
987
    def all_attrs(self):
F
fengjiayi 已提交
988
        """
989 990 991
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
992
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
993 994 995 996
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
997 998
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
999
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1000 1001 1002
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1003
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1004 1005 1006 1007
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1008 1009
        return attr_map

Y
Yu Yang 已提交
1010

Y
Yu Yang 已提交
1011
class Block(object):
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1026
        use `Program._create_block()` to create a block.
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1041
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1042
        self.desc = program.desc.block(idx)
1043
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1044
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1045
        self.program = program
1046
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1047

1048
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1049 1050
        return self.to_string(True)

F
fengjiayi 已提交
1051 1052
    def to_string(self, throw_on_error, with_details=False):
        """
1053 1054
        Get debug string.

F
fengjiayi 已提交
1055 1056
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1057
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1058
            with_details(bool): more details about variables and parameters
1059 1060
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1061

1062 1063
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1064 1065 1066 1067
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1068
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1069 1070
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1071
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1072
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1073
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1074
            for op in self.ops:
F
fengjiayi 已提交
1075 1076
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1077 1078 1079
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1080 1081
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1082 1083
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1084 1085 1086

    __repr__ = __str__

Y
Yu Yang 已提交
1087 1088
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1089
        return self.desc.parent
Y
Yu Yang 已提交
1090

Y
Yu Yang 已提交
1091 1092 1093 1094
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1095
    def _set_forward_block_idx(self, idx):
1096 1097 1098 1099 1100 1101 1102 1103 1104
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1105
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1106

Y
Yu Yang 已提交
1107 1108
    @property
    def idx(self):
Y
Yu Yang 已提交
1109
        return self.desc.id
Y
Yu Yang 已提交
1110

Q
Qiao Longfei 已提交
1111
    def var(self, name):
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1125
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1126 1127 1128
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1129 1130
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1131
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1132
        return v
Q
Qiao Longfei 已提交
1133

X
Xin Pan 已提交
1134
    def _find_var_recursive(self, name):
1135 1136 1137 1138 1139 1140 1141
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1142
            Variable: the Variable with the giving name. Or None if not found.
1143
        """
Y
Yu Yang 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1168
        return None
Y
Yu Yang 已提交
1169

X
Xin Pan 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1189

Q
Qiao Longfei 已提交
1190
    def all_parameters(self):
1191
        return list(self.iter_parameters())
1192

1193
    def iter_parameters(self):
M
minqiyang 已提交
1194
        return (item[1] for item in six.iteritems(self.vars)
1195
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1196

Y
Yu Yang 已提交
1197
    def create_var(self, *args, **kwargs):
1198
        var = Variable(block=self, *args, **kwargs)
1199 1200
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1201
        return var
Y
Yu Yang 已提交
1202

Q
Qiao Longfei 已提交
1203 1204 1205
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1206
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1207 1208
        """
        Rename variable in vars and ops' inputs and outputs
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1221
        """
M
minqiyang 已提交
1222 1223
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1224

T
typhoonzero 已提交
1225
        if not self.has_var(name):
1226
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1227 1228
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1229
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1230 1231 1232 1233 1234 1235 1236
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1237
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1238 1239 1240 1241
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1242
        orig_var_type = v.type
M
minqiyang 已提交
1243
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1244
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1245
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1246
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1247 1248 1249 1250
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1251
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1252 1253 1254 1255 1256 1257 1258
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1259
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1260 1261
            var = Variable(
                self,
T
typhoonzero 已提交
1262
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1263 1264 1265 1266
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1267
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1268 1269 1270
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1271
        self._sync_with_cpp()
1272
        return var
T
typhoonzero 已提交
1273

W
Wu Yi 已提交
1274 1275
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1276
        self.desc._remove_var(cpt.to_bytes(name))
1277 1278
        del self.vars[name]

Y
Yu Yang 已提交
1279 1280
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1281
        param = Parameter(global_block, *args, **kwargs)
1282
        if 'initializer' in kwargs:
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1303
        return param
Y
Yu Yang 已提交
1304

Y
Yu Yang 已提交
1305
    def append_op(self, *args, **kwargs):
1306 1307 1308 1309 1310 1311
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1312
        op_desc = self.desc.append_op()
1313 1314 1315 1316 1317 1318 1319 1320
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1321

M
minqiyang 已提交
1322 1323
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1324 1325 1326 1327
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1328
        if _in_imperative_mode():
1329
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1330
                                       _imperative_current_expected_place_,
1331
                                       stop_gradient)
Y
Yu Yang 已提交
1332

W
Wu Yi 已提交
1333
    def _insert_op(self, index, *args, **kwargs):
1334 1335 1336 1337 1338 1339 1340 1341 1342
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1343 1344
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1345 1346 1347 1348
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1349
    def _remove_op(self, index):
1350 1351 1352 1353 1354 1355 1356 1357 1358
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1359 1360
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1361 1362
        del self.ops[index]

W
Wu Yi 已提交
1363
    def _slice_ops(self, start, end):
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1374
        return self.ops[start:end]
Y
Yancey1989 已提交
1375

W
Wu Yi 已提交
1376 1377
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1378 1379 1380 1381 1382 1383 1384
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1385
        self.ops.insert(0, op)
1386
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1387 1388
        return op

W
Wu Yi 已提交
1389
    def _sync_with_cpp(self):
1390
        """
1391 1392
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1393
        """
Q
Qiao Longfei 已提交
1394 1395 1396 1397 1398
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1399
        # sync variables removed from c++ end
1400
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1401
            if not self.desc.find_var(cpt.to_bytes(var)):
1402 1403
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1404
        # sync operators from cpp
1405 1406 1407 1408
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1425 1426 1427 1428 1429

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1430
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1431 1432 1433 1434 1435 1436 1437

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1451 1452 1453 1454
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1455
    def _copy_param_info_from(self, other):
1456
        """
1457 1458
        Copy the information of parameters from the other block.

1459
        Args:
1460 1461 1462 1463 1464
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1465 1466 1467 1468 1469

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1470 1471
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1472
        for p in other.iter_parameters():
1473 1474 1475
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1476
                raise ValueError("_copy_param_info_from should be invoked with "
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1489
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1490
                error_clip=p.error_clip,
1491 1492 1493
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1494
    def _clone_variable(self, var):
1495 1496
        """
        Clone a variable into current block.
1497

1498 1499 1500 1501
        Args:
            var: the variable to be cloned.

        Returns:
1502
            Variable: the new  variable cloned from 'var' in current block.
1503 1504
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1505 1506 1507 1508 1509
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1510 1511
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1512
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1513 1514 1515 1516 1517 1518
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1519 1520
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1521 1522 1523 1524 1525 1526 1527
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1528 1529
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1530
        return ret_var
1531

Y
Yu Yang 已提交
1532

1533 1534
class IrGraph(object):
    """
1535 1536 1537 1538
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1539 1540 1541 1542
    """

    def __init__(self, graph, for_test=False):
        """
1543 1544
        Construct an IrGraph using core.Graph.

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1555 1556 1557
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1558 1559
        return self._for_test

W
WangZhen 已提交
1560
    def all_nodes(self):
1561 1562 1563
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1564
        return {node for node in self.graph.nodes()}
1565 1566

    def all_vars(self):
1567 1568 1569
        """
        Return all variable nodes included in the graph as a set.
        """
1570 1571
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1572
    def all_persistable_vars(self):
1573 1574 1575
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1576 1577 1578 1579 1580 1581 1582
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1583
    def all_ops(self):
1584 1585 1586
        """
        Return all operator nodes included in the graph as a set.
        """
1587 1588
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1589 1590
    def var_node(self, name):
        """
1591 1592
        Get a variable node by name from the graph.

W
WangZhen 已提交
1593 1594
        Args:
            name(str): the name of the variable node.
1595

W
WangZhen 已提交
1596 1597 1598
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1599

W
WangZhen 已提交
1600
        Returns:
1601
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1616
    def create_param_node(self, name, var_type, shape, var_dtype):
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1630 1631 1632 1633 1634 1635 1636 1637
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1652 1653 1654 1655 1656 1657 1658
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1669 1670 1671
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1684 1685
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1686
        for attr, value in six.iteritems(attrs):
1687
            self._update_desc_attr(op_desc, attr, value)
1688
        for input_name, var_nodes in six.iteritems(inputs):
1689 1690 1691 1692
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1693
        for output_name, var_nodes in six.iteritems(outputs):
1694 1695 1696 1697 1698 1699 1700
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1701 1702 1703 1704 1705 1706 1707 1708 1709
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1710 1711 1712
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1713 1714 1715 1716 1717 1718 1719 1720
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1721 1722 1723
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1724 1725 1726 1727 1728 1729 1730
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1731 1732 1733 1734 1735 1736 1737
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1738
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1739
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1740 1741 1742 1743
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1744 1745 1746 1747 1748 1749 1750
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1751
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1752 1753 1754 1755
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1756 1757
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1758
    def has_circle(self):
1759 1760 1761 1762 1763 1764
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1765 1766 1767
        return core.has_circle(self.graph)

    def graph_num(self):
1768 1769 1770 1771 1772 1773
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1774 1775 1776
        return core.graph_num(self.graph)

    def topology_sort(self):
1777 1778 1779 1780 1781 1782 1783 1784
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1785 1786 1787
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1788 1789 1790 1791 1792 1793
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1794 1795
        return core.build_adjacency_list(self.graph)

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1810 1811 1812 1813 1814 1815 1816 1817 1818
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1819 1820 1821 1822 1823 1824
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1825 1826
        ops_num = 0
        for node in self.graph.nodes():
1827
            if node.is_op():
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1854
        convert_pass = core.get_pass('graph_to_program_pass')
1855 1856
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1877
class Program(object):
D
dzhwinter 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1889
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1890 1891

    Returns:
Y
yuyang18 已提交
1892
        A empty program.
D
dzhwinter 已提交
1893 1894

    Examples:
Y
yuyang18 已提交
1895 1896 1897 1898 1899 1900
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1901 1902 1903

    """

1904 1905
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1906 1907
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1908
        self._seed = 0
Y
yuyang18 已提交
1909
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1910
        self._op_role_var = []
T
tangwei12 已提交
1911

1912 1913
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1914
        self._is_distributed = False
1915
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1916
        self._is_chief = False
1917 1918 1919
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1920
        self._endpoints = []
1921 1922 1923
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1924
        self._trainers_endpoints = []
1925
        # the distributed lookup table names
T
tangwei12 已提交
1926
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1927
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1928
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1929
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1930 1931

    @property
D
dzhwinter 已提交
1932
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1933 1934
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1935
        return self.__is_mem_optimized
D
dzhwinter 已提交
1936

D
dzhwinter 已提交
1937 1938 1939
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1940 1941 1942

    @property
    def op_role(self):
Y
yuyang18 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1956 1957 1958
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1959
    def op_role(self, role):
Y
yuyang18 已提交
1960 1961 1962 1963
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1964 1965 1966 1967 1968 1969 1970
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1971 1972 1973 1974
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1975
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1976

S
rename  
sneaxiy 已提交
1977
    @signature_safe_contextmanager
W
Wu Yi 已提交
1978
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1979 1980 1981 1982 1983 1984 1985
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1986
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1987 1988 1989 1990

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1991
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1992 1993
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1994 1995 1996
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1997 1998
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1999 2000 2001 2002
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2003
        yield
X
Xin Pan 已提交
2004 2005
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2006

S
rename  
sneaxiy 已提交
2007
    @signature_safe_contextmanager
X
Xin Pan 已提交
2008
    def _lr_schedule_guard(self, is_with_opt=False):
2009 2010 2011 2012 2013 2014 2015
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2016 2017 2018 2019
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2020 2021 2022 2023 2024 2025 2026

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2027 2028 2029 2030

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2031 2032
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2033 2034
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2035 2036 2037
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2038 2039
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2040

2041
    def __str__(self):
Y
yuyang18 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2051 2052
        return self.to_string(True)

F
fengjiayi 已提交
2053 2054 2055
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2056

F
fengjiayi 已提交
2057
        Args:
Y
yuyang18 已提交
2058 2059
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2060

Y
yuyang18 已提交
2061 2062 2063 2064
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2065 2066
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2067 2068 2069 2070

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2081 2082
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2083 2084
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2085

W
Wu Yi 已提交
2086
    def _get_desc(self):
Y
yuyang18 已提交
2087 2088 2089 2090 2091 2092 2093
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2094 2095
        return self.desc

X
version  
Xin Pan 已提交
2096 2097 2098
    def _version(self):
        return self.desc._version()

2099
    def clone(self, for_test=False):
Y
yuyang18 已提交
2100 2101 2102
        """
        Create a new, duplicated program.

2103

Y
yuyang18 已提交
2104 2105 2106 2107
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2108

Y
yuyang18 已提交
2109 2110 2111 2112
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2113 2114 2115 2116 2117
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2118 2119

        Args:
Y
yuyang18 已提交
2120 2121
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2122

D
dzhwinter 已提交
2123
        Returns:
Y
yuyang18 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2177 2178
        """
        if for_test:
X
Xin Pan 已提交
2179
            p = self._inference_optimize(prune_read_op=False)
2180
        else:
2181
            p = Program()
G
gongweibao 已提交
2182 2183
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2184
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2185 2186 2187
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2188 2189 2190 2191

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2192
            p._sync_with_cpp()
2193

W
Wu Yi 已提交
2194
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2195
        p._copy_data_info_from(self)
2196
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2197
        return p
2198

W
Wu Yi 已提交
2199
    def _prune(self, targets):
Y
yuyang18 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2215 2216 2217 2218 2219 2220
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2221 2222
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2223
                    # and we need to find the current op that generate this
2224 2225 2226 2227 2228 2229 2230 2231
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2232
                    t = t.op
2233 2234 2235 2236
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2237
                else:
2238 2239
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2240 2241 2242 2243

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2244 2245 2246
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2247
        res._sync_with_cpp()
2248 2249
        return res

X
Xin Pan 已提交
2250
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2251
        """
F
fengjiayi 已提交
2252 2253 2254 2255 2256
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2257
        3. change the :code:`is_test`
Y
yuyang18 已提交
2258 2259 2260
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2261
        Args:
X
Xin Pan 已提交
2262 2263
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2264

Y
yuyang18 已提交
2265 2266 2267 2268 2269 2270
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2271
        res = Program()
2272
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2273 2274 2275 2276

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2277
        if prune_read_op:
2278 2279 2280 2281 2282 2283 2284 2285 2286
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2287
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2288 2289

        # change all `is_test` attributes to True
M
minqiyang 已提交
2290
        for i in six.moves.range(res.desc.num_blocks()):
2291
            block = res.desc.block(i)
M
minqiyang 已提交
2292
            for j in six.moves.range(block.op_size()):
2293 2294
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2295
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2296 2297 2298
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2299
        res._sync_with_cpp()
2300 2301
        return res

2302 2303
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2304 2305 2306 2307 2308 2309 2310
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2311
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2312 2313 2314 2315

        Returns:
            Program: A deserialized program desc.
        """
2316 2317
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2318
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2319
        p._sync_with_cpp()
2320
        return p
Y
Yu Yang 已提交
2321

2322
    @staticmethod
2323
    def _construct_from_desc(desc):
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2339 2340
    @property
    def random_seed(self):
Y
yuyang18 已提交
2341 2342 2343 2344 2345 2346
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2347 2348
        return self._seed

Q
qiaolongfei 已提交
2349 2350
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2351 2352 2353
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2354 2355
        return self.desc.num_blocks()

D
dzhwinter 已提交
2356 2357 2358 2359 2360 2361
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2362
    def __repr__(self):
2363
        return self.__str__()
2364

Y
Yu Yang 已提交
2365
    def global_block(self):
Y
yuyang18 已提交
2366 2367 2368
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2369 2370
        return self.blocks[0]

Q
Qiao Longfei 已提交
2371
    def block(self, index):
Y
yuyang18 已提交
2372 2373 2374 2375 2376 2377 2378 2379
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2380 2381
        return self.blocks[index]

Y
Yu Yang 已提交
2382
    def current_block(self):
Y
yuyang18 已提交
2383 2384 2385 2386
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2387 2388
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2389
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2400
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2401 2402 2403
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2404 2405 2406 2407
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2408
    def _rollback(self):
Y
yuyang18 已提交
2409 2410 2411 2412 2413
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2414 2415
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2416
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2427 2428 2429
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2430
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2431

W
Wu Yi 已提交
2432
    def _copy_param_info_from(self, other):
2433
        """
2434
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2435

Y
yuyang18 已提交
2436 2437 2438
        Notes: This is a very low level API. Users should not invoke it
        directly.

2439 2440 2441 2442 2443 2444 2445
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2446
            raise TypeError("_copy_param_info_from should be invoked with "
2447 2448 2449
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2450
            raise ValueError("_copy_param_info_from should be invoked with two "
2451
                             "program, with represent the same topology")
W
Wu Yi 已提交
2452
        self.global_block()._copy_param_info_from(other.global_block())
2453

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2469
        self._parameters_on_pservers = other._parameters_on_pservers
2470
        self._endpoints = other._endpoints
2471
        self._ps_endpoint = other._ps_endpoint
2472 2473
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2474
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2475 2476
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2477

Y
yuyang18 已提交
2478 2479 2480
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2481 2482 2483 2484 2485 2486 2487
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2488
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2489 2490 2491
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2492
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2493
                             "program, with represent the same topology")
2494
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2495 2496 2497
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2498
    def list_vars(self):
Y
yuyang18 已提交
2499 2500 2501 2502 2503 2504
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2505
        for each_block in self.blocks:
2506
            for each_var in list(each_block.vars.values()):
2507 2508
                yield each_var

Y
Yu Yang 已提交
2509

Y
Yu Yang 已提交
2510
class Parameter(Variable):
2511
    """
2512
    Parameter is derived from Variable. A parameter is a persistable
2513
    Variable, and will be updated by optimizers after each iteration.
2514
    The training of a neural network is essentially the updating of
2515 2516
    its parameters.

2517
    Relative to a general Variable, a Parameter has several its own
2518 2519
    member variables:

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2532 2533
    """

Y
Yu Yang 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2544 2545 2546

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2547 2548 2549 2550
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2551 2552
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2553
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2554

W
wanghaoshuang 已提交
2555
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2556

F
fengjiayi 已提交
2557 2558 2559
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2560 2561 2562
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2563

F
update  
fengjiayi 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2578
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2579
            for attr_name in additional_attr:
2580 2581
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2582 2583
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2584 2585 2586 2587
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2588

Y
Yu Yang 已提交
2589
# program is a global instance.
Y
Yu Yang 已提交
2590 2591
_main_program_ = Program()
_startup_program_ = Program()
2592

2593

2594
def default_startup_program():
Y
Yu Yang 已提交
2595
    """
Y
yuyang18 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2605

Y
Yu Yang 已提交
2606 2607 2608
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2609
    return _startup_program_
2610

2611

2612
def default_main_program():
Y
Yu Yang 已提交
2613
    """
Y
yuyang18 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2623

Y
Yu Yang 已提交
2624 2625 2626
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2627
    return _main_program_
Y
Yu Yang 已提交
2628 2629 2630 2631 2632


def switch_main_program(program):
    """
    Switch the main program to a new program.
2633

Y
Yu Yang 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2648
    Switch the startup program to a new program
Y
Yu Yang 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2661
@signature_safe_contextmanager
Y
Yu Yang 已提交
2662 2663
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2664 2665 2666
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2667

Y
Yu Yang 已提交
2668
    Examples:
Y
yuyang18 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2679

Y
Yu Yang 已提交
2680
    Examples:
Y
yuyang18 已提交
2681 2682 2683 2684 2685 2686

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2687

Y
Yu Yang 已提交
2688
    Args:
Y
yuyang18 已提交
2689
        main_program(Program): New main program inside `with` statement.
2690
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2704 2705


W
Wu Yi 已提交
2706
def _get_var(name, program=None):
X
xuwei06 已提交
2707
    """
Y
yuyang18 已提交
2708
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2709

X
xuwei06 已提交
2710 2711 2712
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2713
        If None, default_global_program() will be used.
X
xuwei06 已提交
2714 2715 2716 2717 2718 2719 2720

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2721
    assert isinstance(program, Program)
X
xuwei06 已提交
2722 2723

    return program.global_block().var(name)
2724 2725


S
rename  
sneaxiy 已提交
2726
@signature_safe_contextmanager
2727 2728 2729 2730
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2731

2732
    yield
P
Paddle CI 已提交
2733

2734
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
2735 2736


S
rename  
sneaxiy 已提交
2737
@signature_safe_contextmanager
P
Paddle CI 已提交
2738
def _imperative_place_guard(place):
M
minqiyang 已提交
2739 2740 2741
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2742

2743
    yield
M
minqiyang 已提交
2744

M
minqiyang 已提交
2745
    _imperative_current_expected_place_ = tmp_place