framework.py 84.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
S
rename  
sneaxiy 已提交
19
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24

Y
Yu Yang 已提交
25
import numpy as np
26
import subprocess
Q
qiaolongfei 已提交
27

M
minqiyang 已提交
28
from .. import compat as cpt
29
from .proto import framework_pb2
30
try:
P
peizhilin 已提交
31
    if os.name == 'nt':
P
peizhilin 已提交
32
        import sys
P
peizhilin 已提交
33 34 35 36 37
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

38
    from . import core
39
except ImportError as e:
P
peizhilin 已提交
40
    if os.name == 'nt':
41
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
42
        raise ImportError(
43 44 45 46 47
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
48 49 50 51 52 53
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
54
except Exception as e:
55
    raise e
56
from . import unique_name
Y
Yu Yang 已提交
57

58
__all__ = [
59 60 61 62
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
63
    'name_scope',
64
]
Y
Yu Yang 已提交
65

Q
qiaolongfei 已提交
66 67 68 69
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
70 71
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

72
_imperative_tracer_ = None
M
minqiyang 已提交
73
_imperative_current_expected_place_ = None
74 75 76 77 78 79 80 81 82


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
83

M
minqiyang 已提交
84
def _current_expected_place():
M
minqiyang 已提交
85
    return _imperative_current_expected_place_
M
minqiyang 已提交
86 87


Q
Qiao Longfei 已提交
88 89 90 91 92 93 94 95 96
def is_pserver_mode(main_program):
    main = main_program if main_program \
        else default_main_program()
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
123
@signature_safe_contextmanager
124 125 126 127 128 129 130 131 132 133 134 135
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
136

137 138 139 140
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
141 142
          with name_scope("attention"):
             ...
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
162 163 164
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
165 166 167 168


def grad_var_name(var_name):
    """
169 170
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
171 172 173
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
174

175
def convert_np_dtype_to_dtype_(np_dtype):
176 177
    """
    Convert the data type in numpy to the data type in Paddle
178

179
    Args:
180
        np_dtype(np.dtype): the data type in numpy.
181

182 183
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
184 185

    """
186 187
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
188
        return core.VarDesc.VarType.FP32
189
    elif dtype == np.float64:
190
        return core.VarDesc.VarType.FP64
191
    elif dtype == np.float16:
192
        return core.VarDesc.VarType.FP16
193
    elif dtype == np.int32:
194
        return core.VarDesc.VarType.INT32
195
    elif dtype == np.int16:
196
        return core.VarDesc.VarType.INT16
197
    elif dtype == np.int64:
198
        return core.VarDesc.VarType.INT64
199
    elif dtype == np.bool:
200
        return core.VarDesc.VarType.BOOL
201 202
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
203 204
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
205 206
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
207
    else:
M
minqiyang 已提交
208
        raise ValueError("Not supported numpy dtype %s" % dtype)
209 210 211


def dtype_is_floating(dtype):
212 213 214
    """
    Check the data type is floating or not.
    Args:
215
        dtype(np.dtype|core.VarDesc.VarType): data type.
216 217 218 219 220
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
221
    if not isinstance(dtype, core.VarDesc.VarType):
222 223
        dtype = convert_np_dtype_to_dtype_(dtype)

224 225 226 227
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
228 229


Y
Yang Yang(Tony) 已提交
230
def _debug_string_(proto, throw_on_error=True):
231 232 233 234 235 236 237 238 239 240 241
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
242
    error_fields = list()
Y
Yang Yang(Tony) 已提交
243
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
244 245
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
246 247 248
    return proto.__str__()


X
Xin Pan 已提交
249
class Variable(object):
250
    """
251 252 253
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
254
    two variables in different blocks could have the same name.
255

256 257
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
258

259
    Most of a Variable's member variables can be setted to be None. It mean
260
    it is not available or will be specified later.
261 262

    Args:
263
        block(Block): The block that the variable belongs to.
264 265
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
266 267
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
268
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
269
            Some kinds of variable do not contain shape, just set it to None.
270 271 272
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
273
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
274
            series data.
275
            Default: None
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
298 299
    """

Y
Yu Yang 已提交
300 301
    def __init__(self,
                 block,
Y
Yu Yang 已提交
302
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
303 304 305 306
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
307
                 capacity=None,
Q
QI JUN 已提交
308
                 persistable=None,
F
fengjiayi 已提交
309
                 error_clip=None,
Y
Yu Yang 已提交
310
                 stop_gradient=False,
F
fengjiayi 已提交
311
                 is_data=False,
Y
Yu Yang 已提交
312
                 **kwargs):
Y
Yu Yang 已提交
313
        self.block = block
F
fengjiayi 已提交
314
        self.error_clip = error_clip
Y
Yu Yang 已提交
315 316

        if name is None:
Y
Yu Yang 已提交
317
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
318
        is_new_var = False
M
minqiyang 已提交
319
        name = cpt.to_text(name)
M
minqiyang 已提交
320
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
321 322

        if self.desc is None:
M
minqiyang 已提交
323
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
324
            is_new_var = True
Y
Yu Yang 已提交
325

Y
Yu Yang 已提交
326 327 328 329 330 331 332 333
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
334
        if shape is not None:
Y
Yu Yang 已提交
335
            if is_new_var:
336
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
337 338 339 340 341 342 343 344
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
345
        if dtype is not None:
346
            if not isinstance(dtype, core.VarDesc.VarType):
347
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
348
            if is_new_var:
F
fengjiayi 已提交
349
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
350
            else:
F
fengjiayi 已提交
351
                old_dtype = self.dtype
Q
QI JUN 已提交
352
                if dtype != old_dtype:
Y
Yu Yang 已提交
353 354 355 356 357
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
358 359

        if lod_level is not None:
Y
Yu Yang 已提交
360
            if is_new_var:
361
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
362 363 364 365 366 367 368
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
369 370 371 372 373 374 375 376 377 378 379
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

380 381 382 383 384 385 386 387
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
388
        self.block.vars[name] = self
Y
Yu Yang 已提交
389
        self.op = None
M
minqiyang 已提交
390
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
391
        self.is_data = is_data
X
Xin Pan 已提交
392
        if _in_imperative_mode():
M
minqiyang 已提交
393 394 395
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
396
            self._ivar.desc = self.desc
397
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
398

399
    def _numpy(self):
M
minqiyang 已提交
400
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
401
        return np.array(new_ivar.value().get_tensor())
402 403

    def _backward(self):
X
Xin Pan 已提交
404
        self._ivar._run_backward()
405 406

    def _gradient(self):
M
minqiyang 已提交
407
        return np.array(self._ivar._grad_value())
408

X
Xin Pan 已提交
409 410
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
411

412
    def __str__(self):
Y
Yang Yang(Tony) 已提交
413 414
        return self.to_string(True)

F
update  
fengjiayi 已提交
415
    def to_string(self, throw_on_error, with_details=False):
416 417 418 419
        """
        Get debug string.

        Args:
420 421
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
422
            with_details(bool): more details about variables and parameters
423 424
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
425

426 427
        Returns:
            str: The debug string.
428
        """
F
update  
fengjiayi 已提交
429 430
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
431
        protostr = self.desc.serialize_to_string()
432
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
433 434 435 436
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
437 438
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
439
        return res_str
440 441 442

    __repr__ = __str__

W
Wu Yi 已提交
443
    def _set_desc(self, input):
444 445 446 447 448 449 450 451 452
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
453 454
        self.desc = input

455 456
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
457 458 459 460
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
461 462 463

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
464 465 466
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
467

468 469 470 471
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
472 473 474 475
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
476 477
    @property
    def name(self):
M
minqiyang 已提交
478
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
479

T
typhoonzero 已提交
480 481 482 483
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
484 485 486
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
487
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
488 489

    @property
F
fengjiayi 已提交
490 491
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
492 493 494

    @property
    def lod_level(self):
495
        return self.desc.lod_level()
Y
Yu Yang 已提交
496

Y
Yu Yang 已提交
497 498 499 500
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
501
    def _set_error_clip(self, error_clip):
502 503 504 505 506 507 508 509 510
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
511 512
        self.error_clip = error_clip

Y
Yu Yang 已提交
513

F
fengjiayi 已提交
514 515 516
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
517

518 519
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
520 521 522 523
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
524
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
525 526 527 528 529
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
530 531 532 533
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
534 535 536 537 538 539 540 541 542
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
543
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
544 545 546 547 548 549
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
550 551 552 553 554 555 556 557
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
558 559
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
560 561
        return self.op_proto_map[type]

562 563 564 565
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
566
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
567
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
568 569
        }

F
fengjiayi 已提交
570

X
Xin Pan 已提交
571
class Operator(object):
572
    """
573 574 575 576 577 578 579
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
580
        type(str): The type of operator. Default None.
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
601
        Block.append_op or Block._prepend_op instead.
602 603 604 605 606 607 608 609 610 611

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
612
    """
613 614 615
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
616 617
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
618
    }
619

Y
Yu Yang 已提交
620 621
    def __init__(self,
                 block,
Y
Yu Yang 已提交
622
                 desc,
Y
Yu Yang 已提交
623 624 625
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
626
                 attrs=None):
Y
Yu Yang 已提交
627
        self.block = block
Y
Yu Yang 已提交
628
        self.desc = desc
G
gongweibao 已提交
629 630 631 632 633
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
634 635 636 637
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
638 639
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
640 641 642

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
643 644
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
645

G
gongweibao 已提交
646 647
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
648

F
fengjiayi 已提交
649 650 651 652 653
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
654 655 656 657 658
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
659
        self.desc.set_type(type)
F
fengjiayi 已提交
660
        proto = OpProtoHolder.instance().get_op_proto(type)
661

662 663 664
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
665 666
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
667
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
668 669
                    return True
            return False
Q
QI JUN 已提交
670

Y
Yang Yang(Tony) 已提交
671 672 673 674 675 676 677
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
678 679 680 681
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
682 683
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
684 685 686
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
687
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
688
                            in_arg_names.append(arg)
689 690
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
691
                        else:
M
minqiyang 已提交
692
                            in_arg_names.append(cpt.to_text(arg.name))
693
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
694 695
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
696

Y
Yu Yang 已提交
697
        if outputs is not None:
698
            for m in proto.outputs:
Q
qingqing01 已提交
699 700 701 702 703 704
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
705
            for out_proto in proto.outputs:
Q
qingqing01 已提交
706 707
                if out_proto.name not in outputs:
                    continue
708 709 710 711
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
712 713
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
714 715 716
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
717
                    out_arg_names.append(cpt.to_text(arg.name))
718 719
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
720

G
gongweibao 已提交
721 722
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
723
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
724
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
725
                attr_name = attr.name
G
gongweibao 已提交
726
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
727
                    continue
G
gongweibao 已提交
728
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
729 730
                self._update_desc_attr(attr_name, attr_val)

731
        self.desc.check_attrs()
M
minqiyang 已提交
732

W
Wu Yi 已提交
733
        if self._has_kernel(type):
Q
QI JUN 已提交
734
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
735
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
736

X
Xin Pan 已提交
737 738 739
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
740
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
741
            if inputs is not None:
X
Xin Pan 已提交
742 743 744 745 746 747
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
748
            if outputs is not None:
X
Xin Pan 已提交
749 750 751 752 753
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
754

W
Wu Yi 已提交
755
    def _has_kernel(self, op_type):
756 757
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
758
    def to_string(self, throw_on_error):
759
        """
760 761
        Get debug string.

762
        Args:
763 764
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
765

766 767
        Returns:
            str: The debug string.
768 769

        """
770
        protostr = self.desc.serialize_to_string()
771
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
772 773 774 775
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
776 777 778

    __repr__ = __str__

F
fengjiayi 已提交
779 780 781 782 783
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
784
        """
785
        Get the input arguments according to the input parameter name.
786

787 788
        Args:
            name(str): The input parameter name.
789

790 791 792
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
793
        """
F
fengjiayi 已提交
794 795
        return self.desc.input(name)

W
Wu Yi 已提交
796
    def _rename_input(self, old_name, new_name):
797 798 799 800 801 802 803 804 805 806
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
807
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
808

W
Wu Yi 已提交
809
    def _rename_output(self, old_name, new_name):
810 811 812 813 814 815 816 817 818 819
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
820
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
821

F
fengjiayi 已提交
822 823 824 825
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
826 827 828 829 830 831 832 833
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
834
    def output(self, name):
835
        """
836
        Get output arguments by the output parameter name.
837

838 839
        Args:
            name(str): The output parameter name.
840

841 842 843
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
844
        """
F
fengjiayi 已提交
845 846 847 848 849 850
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

851 852 853 854 855 856 857 858
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
859
    def has_attr(self, name):
860
        """
861 862
        Whether this Operator has the attribute with name or not.

863
        Args:
864
            name(str): the attribute name.
865

866 867
        Returns:
            bool: True if has this attribute.
868 869

        """
F
fengjiayi 已提交
870 871 872
        return self.desc.has_attr(name)

    def attr_type(self, name):
873
        """
874
        Get the type of attribute by attribute's name.
875

876 877
        Args:
            name(str): the attribute name.
878

879 880
        Returns:
            core.AttrType: the attribute type.
881
        """
F
fengjiayi 已提交
882 883
        return self.desc.attr_type(name)

W
Wu Yi 已提交
884
    def _set_attr(self, name, val):
885 886 887 888 889 890 891 892 893 894
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
908 909
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
910 911
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
912
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
913 914 915 916
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
917
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
918

F
fengjiayi 已提交
919 920 921 922 923
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
924
        """
925 926
        Get the attribute by name.

927
        Args:
928
            name(str): the attribute name.
929

930 931
        Returns:
            bool|int|str|float|list: The attribute value. The return value
932 933
            can be any valid attribute type.
        """
F
fengjiayi 已提交
934
        return self.desc.attr(name)
Y
Yu Yang 已提交
935

W
Wu Yi 已提交
936
    def _block_attr_id(self, name):
937
        """
G
gongweibao 已提交
938
        Get the block attribute's id by name.
939

940 941
        Args:
            name(str): the attribute name.
942

943 944
        Returns:
            int: the block index.
945
        """
W
Wu Yi 已提交
946
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
947

W
Wu Yi 已提交
948
    def _block_attr(self, name):
G
gongweibao 已提交
949 950 951 952 953 954 955 956 957 958
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
959
        id = self._block_attr_id(name)
G
gongweibao 已提交
960 961 962
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
963
    def _blocks_attr(self, name):
G
gongweibao 已提交
964 965 966 967 968 969 970 971 972 973
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
974
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
975 976 977 978 979
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
980
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
981 982 983 984 985 986 987 988 989 990
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
991
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
992

J
JiayiFeng 已提交
993
    def all_attrs(self):
F
fengjiayi 已提交
994
        """
995 996 997
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
998
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
999 1000 1001 1002
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1003 1004
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1005
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1006 1007 1008
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1009
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1010 1011 1012 1013
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1014 1015
        return attr_map

Y
Yu Yang 已提交
1016

Y
Yu Yang 已提交
1017
class Block(object):
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1032
        use `Program._create_block()` to create a block.
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1047
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1048
        self.desc = program.desc.block(idx)
1049
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1050
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1051
        self.program = program
1052
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1053

1054
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1055 1056
        return self.to_string(True)

F
fengjiayi 已提交
1057 1058
    def to_string(self, throw_on_error, with_details=False):
        """
1059 1060
        Get debug string.

F
fengjiayi 已提交
1061 1062
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1063
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1064
            with_details(bool): more details about variables and parameters
1065 1066
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1067

1068 1069
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1070 1071 1072 1073
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1074
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1075 1076
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1077
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1078
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1079
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1080
            for op in self.ops:
F
fengjiayi 已提交
1081 1082
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1083 1084 1085
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1086 1087
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1088 1089
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1090 1091 1092

    __repr__ = __str__

Y
Yu Yang 已提交
1093 1094
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1095
        return self.desc.parent
Y
Yu Yang 已提交
1096

Y
Yu Yang 已提交
1097 1098 1099 1100
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1101
    def _set_forward_block_idx(self, idx):
1102 1103 1104 1105 1106 1107 1108 1109 1110
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1111
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1112

Y
Yu Yang 已提交
1113 1114
    @property
    def idx(self):
Y
Yu Yang 已提交
1115
        return self.desc.id
Y
Yu Yang 已提交
1116

Q
Qiao Longfei 已提交
1117
    def var(self, name):
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1131
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1132 1133 1134
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1135 1136
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1137
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1138
        return v
Q
Qiao Longfei 已提交
1139

X
Xin Pan 已提交
1140
    def _find_var_recursive(self, name):
1141 1142 1143 1144 1145 1146 1147
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1148
            Variable: the Variable with the giving name. Or None if not found.
1149
        """
Y
Yu Yang 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1174
        return None
Y
Yu Yang 已提交
1175

X
Xin Pan 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1195

Q
Qiao Longfei 已提交
1196
    def all_parameters(self):
1197
        return list(self.iter_parameters())
1198

1199
    def iter_parameters(self):
M
minqiyang 已提交
1200
        return (item[1] for item in six.iteritems(self.vars)
1201
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1202

Y
Yu Yang 已提交
1203
    def create_var(self, *args, **kwargs):
1204
        var = Variable(block=self, *args, **kwargs)
1205 1206
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1207
        return var
Y
Yu Yang 已提交
1208

Q
Qiao Longfei 已提交
1209 1210 1211
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1212
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1213 1214
        """
        Rename variable in vars and ops' inputs and outputs
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1227
        """
M
minqiyang 已提交
1228 1229
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1230

T
typhoonzero 已提交
1231
        if not self.has_var(name):
1232
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1233 1234
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1235
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1236 1237 1238 1239 1240 1241 1242
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1243
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1244 1245 1246 1247
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1248
        orig_var_type = v.type
M
minqiyang 已提交
1249
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1250
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1251
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1252
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1253 1254 1255 1256
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1257
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1258 1259 1260 1261 1262 1263 1264
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1265
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1266 1267
            var = Variable(
                self,
T
typhoonzero 已提交
1268
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1269 1270 1271 1272
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1273
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1274 1275 1276
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1277
        self._sync_with_cpp()
1278
        return var
T
typhoonzero 已提交
1279

W
Wu Yi 已提交
1280 1281
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1282
        self.desc._remove_var(cpt.to_bytes(name))
1283 1284
        del self.vars[name]

Y
Yu Yang 已提交
1285 1286
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1287
        param = Parameter(global_block, *args, **kwargs)
1288
        if 'initializer' in kwargs:
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1309
        return param
Y
Yu Yang 已提交
1310

Y
Yu Yang 已提交
1311
    def append_op(self, *args, **kwargs):
1312 1313 1314 1315 1316 1317
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1318
        op_desc = self.desc.append_op()
1319 1320 1321 1322 1323 1324 1325 1326
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1327

M
minqiyang 已提交
1328 1329
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1330 1331 1332 1333
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1334
        if _in_imperative_mode():
1335
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1336 1337
                                       _imperative_current_expected_place_,
                                       stop_gradient)
Y
Yu Yang 已提交
1338

W
Wu Yi 已提交
1339
    def _insert_op(self, index, *args, **kwargs):
1340 1341 1342 1343 1344 1345 1346 1347 1348
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1349 1350
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1351 1352 1353 1354
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1355
    def _remove_op(self, index):
1356 1357 1358 1359 1360 1361 1362 1363 1364
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1365 1366
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1367 1368
        del self.ops[index]

W
Wu Yi 已提交
1369
    def _slice_ops(self, start, end):
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1380
        return self.ops[start:end]
Y
Yancey1989 已提交
1381

W
Wu Yi 已提交
1382 1383
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1384 1385 1386 1387 1388 1389 1390
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1391
        self.ops.insert(0, op)
1392
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1393 1394
        return op

W
Wu Yi 已提交
1395
    def _sync_with_cpp(self):
1396
        """
1397 1398
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1399
        """
Q
Qiao Longfei 已提交
1400 1401 1402 1403 1404
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1405
        # sync variables removed from c++ end
1406
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1407
            if not self.desc.find_var(cpt.to_bytes(var)):
1408 1409
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1410
        # sync operators from cpp
1411 1412 1413 1414
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1431 1432 1433 1434 1435

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1436
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1437 1438 1439 1440 1441 1442 1443

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1457 1458 1459 1460
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1461
    def _copy_param_info_from(self, other):
1462
        """
1463 1464
        Copy the information of parameters from the other block.

1465
        Args:
1466 1467 1468 1469 1470
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1471 1472 1473 1474 1475

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1476 1477
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1478
        for p in other.iter_parameters():
1479 1480 1481
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1482
                raise ValueError("_copy_param_info_from should be invoked with "
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1495
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1496
                error_clip=p.error_clip,
1497 1498 1499
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1500
    def _clone_variable(self, var):
1501 1502
        """
        Clone a variable into current block.
1503

1504 1505 1506 1507
        Args:
            var: the variable to be cloned.

        Returns:
1508
            Variable: the new  variable cloned from 'var' in current block.
1509 1510
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1511 1512 1513 1514 1515
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1516 1517
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1518
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1519 1520 1521 1522 1523 1524
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1525 1526
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1527 1528 1529 1530 1531 1532 1533
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1534 1535
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1536
        return ret_var
1537

Y
Yu Yang 已提交
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
class IrGraph(object):
    """
    IrGraph uses core.Graph as the delegation to accomplish the manipulation.
    """

    def __init__(self, graph, for_test=False):
        """
        Construct the IrGraph using core.Graph.
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
        return self._for_test

    def all_parameters(self):
        param_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                param_nodes.add(node)
        return param_nodes

    def all_vars(self):
        return {node for node in self.graph.nodes() if node.is_var()}

    def all_ops(self):
        return {node for node in self.graph.nodes() if node.is_op()}

    def create_param_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
        for attr, value in attrs.iteritems():
            self._update_desc_attr(op_desc, attr, value)
        for input_name, var_nodes in inputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
        for output_name, var_nodes in outputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
        assert old_input_node in self.graph.nodes() and new_input_node in self.graph.nodes() and \
            op_node in self.graph.nodes(), 'Th three arguments must be in the graph nodes.'
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
            'Th two arguments must be in the graph nodes.'
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
        if not isinstance(remove_nodes, set):
            remove_nodes = set(remove_nodes)
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

    def draw(self, save_path, name, marked_nodes=None):
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

        remove_ctr_vars = set()
        ops_num = 0
        for node in self.graph.nodes():
            if node.is_ctrl_var():
                remove_ctr_vars.add(node)
            elif node.is_op():
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        self.safe_remove_nodes(remove_ctr_vars)
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
        convert_pass = core.get_pass('graph_to_program_pass')
        convert_pass.set('program', Program().desc)
        convert_pass.apply(self.graph)
        desc = convert_pass.get_program('program')
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1687
class Program(object):
D
dzhwinter 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1699
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1700 1701

    Returns:
Y
yuyang18 已提交
1702
        A empty program.
D
dzhwinter 已提交
1703 1704

    Examples:
Y
yuyang18 已提交
1705 1706 1707 1708 1709 1710
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1711 1712 1713

    """

1714 1715
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1716 1717
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1718
        self._seed = 0
Y
yuyang18 已提交
1719
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1720
        self._op_role_var = []
T
tangwei12 已提交
1721

1722 1723
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1724
        self._is_distributed = False
1725
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1726
        self._is_chief = False
1727 1728 1729
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1730
        self._endpoints = []
1731 1732 1733
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1734
        self._trainers_endpoints = []
1735
        # the distributed lookup table names
T
tangwei12 已提交
1736
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1737
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1738
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1739
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1740 1741

    @property
D
dzhwinter 已提交
1742
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1743 1744
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1745
        return self.__is_mem_optimized
D
dzhwinter 已提交
1746

D
dzhwinter 已提交
1747 1748 1749
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1750 1751 1752

    @property
    def op_role(self):
Y
yuyang18 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1766 1767 1768
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1769
    def op_role(self, role):
Y
yuyang18 已提交
1770 1771 1772 1773
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1774 1775 1776 1777 1778 1779 1780
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1781 1782 1783 1784
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1785
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1786

S
rename  
sneaxiy 已提交
1787
    @signature_safe_contextmanager
W
Wu Yi 已提交
1788
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1789 1790 1791 1792 1793 1794 1795
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1796
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1797 1798 1799 1800

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1801
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1802 1803
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1804 1805 1806
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1807 1808
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1809 1810 1811 1812
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1813
        yield
X
Xin Pan 已提交
1814 1815
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1816

S
rename  
sneaxiy 已提交
1817
    @signature_safe_contextmanager
X
Xin Pan 已提交
1818
    def _lr_schedule_guard(self, is_with_opt=False):
1819 1820 1821 1822 1823 1824 1825
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1826 1827 1828 1829
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1830 1831 1832 1833 1834 1835 1836

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1837 1838 1839 1840

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1841 1842
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1843 1844
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1845 1846 1847
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1848 1849
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1850

1851
    def __str__(self):
Y
yuyang18 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1861 1862
        return self.to_string(True)

F
fengjiayi 已提交
1863 1864 1865
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1866

F
fengjiayi 已提交
1867
        Args:
Y
yuyang18 已提交
1868 1869
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1870

Y
yuyang18 已提交
1871 1872 1873 1874
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1875 1876
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1877 1878 1879 1880

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1891 1892
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1893 1894
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1895

W
Wu Yi 已提交
1896
    def _get_desc(self):
Y
yuyang18 已提交
1897 1898 1899 1900 1901 1902 1903
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1904 1905
        return self.desc

X
version  
Xin Pan 已提交
1906 1907 1908
    def _version(self):
        return self.desc._version()

1909
    def clone(self, for_test=False):
Y
yuyang18 已提交
1910 1911 1912
        """
        Create a new, duplicated program.

1913

Y
yuyang18 已提交
1914 1915 1916 1917
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1918

Y
yuyang18 已提交
1919 1920 1921 1922
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1923 1924 1925 1926 1927
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1928 1929

        Args:
Y
yuyang18 已提交
1930 1931
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1932

D
dzhwinter 已提交
1933
        Returns:
Y
yuyang18 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1987 1988
        """
        if for_test:
X
Xin Pan 已提交
1989
            p = self._inference_optimize(prune_read_op=False)
1990
        else:
1991
            p = Program()
G
gongweibao 已提交
1992 1993
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1994
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1995 1996 1997
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1998 1999 2000 2001

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2002
            p._sync_with_cpp()
2003

W
Wu Yi 已提交
2004
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2005
        p._copy_data_info_from(self)
2006
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2007
        return p
2008

W
Wu Yi 已提交
2009
    def _prune(self, targets):
Y
yuyang18 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2025 2026 2027 2028 2029 2030
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2031 2032
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2033
                    # and we need to find the current op that generate this
2034 2035 2036 2037 2038 2039 2040 2041
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2042
                    t = t.op
2043 2044 2045 2046
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2047
                else:
2048 2049
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2050 2051 2052 2053

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2054 2055 2056
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2057
        res._sync_with_cpp()
2058 2059
        return res

X
Xin Pan 已提交
2060
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2061
        """
F
fengjiayi 已提交
2062 2063 2064 2065 2066
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2067
        3. change the :code:`is_test`
Y
yuyang18 已提交
2068 2069 2070
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2071
        Args:
X
Xin Pan 已提交
2072 2073
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2074

Y
yuyang18 已提交
2075 2076 2077 2078 2079 2080
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2081
        res = Program()
2082
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2083 2084 2085 2086

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2087
        if prune_read_op:
2088 2089 2090 2091 2092 2093 2094 2095 2096
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2097
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2098 2099

        # change all `is_test` attributes to True
M
minqiyang 已提交
2100
        for i in six.moves.range(res.desc.num_blocks()):
2101
            block = res.desc.block(i)
M
minqiyang 已提交
2102
            for j in six.moves.range(block.op_size()):
2103 2104
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2105
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2106 2107 2108
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2109
        res._sync_with_cpp()
2110 2111
        return res

2112 2113
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2114 2115 2116 2117 2118 2119 2120
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2121
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2122 2123 2124 2125

        Returns:
            Program: A deserialized program desc.
        """
2126 2127
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2128
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2129
        p._sync_with_cpp()
2130
        return p
Y
Yu Yang 已提交
2131

2132
    @staticmethod
2133
    def _construct_from_desc(desc):
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2149 2150
    @property
    def random_seed(self):
Y
yuyang18 已提交
2151 2152 2153 2154 2155 2156
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2157 2158
        return self._seed

Q
qiaolongfei 已提交
2159 2160
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2161 2162 2163
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2164 2165
        return self.desc.num_blocks()

D
dzhwinter 已提交
2166 2167 2168 2169 2170 2171
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2172
    def __repr__(self):
2173
        return self.__str__()
2174

Y
Yu Yang 已提交
2175
    def global_block(self):
Y
yuyang18 已提交
2176 2177 2178
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2179 2180
        return self.blocks[0]

Q
Qiao Longfei 已提交
2181
    def block(self, index):
Y
yuyang18 已提交
2182 2183 2184 2185 2186 2187 2188 2189
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2190 2191
        return self.blocks[index]

Y
Yu Yang 已提交
2192
    def current_block(self):
Y
yuyang18 已提交
2193 2194 2195 2196
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2197 2198
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2199
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2210
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2211 2212 2213
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2214 2215 2216 2217
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2218
    def _rollback(self):
Y
yuyang18 已提交
2219 2220 2221 2222 2223
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2224 2225
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2226
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2237 2238 2239
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2240
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2241

W
Wu Yi 已提交
2242
    def _copy_param_info_from(self, other):
2243
        """
2244
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2245

Y
yuyang18 已提交
2246 2247 2248
        Notes: This is a very low level API. Users should not invoke it
        directly.

2249 2250 2251 2252 2253 2254 2255
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2256
            raise TypeError("_copy_param_info_from should be invoked with "
2257 2258 2259
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2260
            raise ValueError("_copy_param_info_from should be invoked with two "
2261
                             "program, with represent the same topology")
W
Wu Yi 已提交
2262
        self.global_block()._copy_param_info_from(other.global_block())
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2279
        self._parameters_on_pservers = other._parameters_on_pservers
2280
        self._endpoints = other._endpoints
2281
        self._ps_endpoint = other._ps_endpoint
2282 2283
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2284
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2285 2286
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2287

Y
yuyang18 已提交
2288 2289 2290
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2291 2292 2293 2294 2295 2296 2297
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2298
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2299 2300 2301
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2302
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2303
                             "program, with represent the same topology")
2304
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2305 2306 2307
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2308
    def list_vars(self):
Y
yuyang18 已提交
2309 2310 2311 2312 2313 2314
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2315
        for each_block in self.blocks:
2316
            for each_var in list(each_block.vars.values()):
2317 2318
                yield each_var

Y
Yu Yang 已提交
2319

Y
Yu Yang 已提交
2320
class Parameter(Variable):
2321
    """
2322
    Parameter is derived from Variable. A parameter is a persistable
2323
    Variable, and will be updated by optimizers after each iteration.
2324
    The training of a neural network is essentially the updating of
2325 2326
    its parameters.

2327
    Relative to a general Variable, a Parameter has several its own
2328 2329
    member variables:

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2342 2343
    """

Y
Yu Yang 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2354 2355 2356

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2357 2358 2359 2360
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2361 2362
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2363
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2364

W
wanghaoshuang 已提交
2365
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2366

F
fengjiayi 已提交
2367 2368 2369
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2370 2371 2372
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2373

F
update  
fengjiayi 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2388
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2389
            for attr_name in additional_attr:
2390 2391
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2392 2393
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2394 2395 2396 2397
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2398

Y
Yu Yang 已提交
2399
# program is a global instance.
Y
Yu Yang 已提交
2400 2401
_main_program_ = Program()
_startup_program_ = Program()
2402

2403

2404
def default_startup_program():
Y
Yu Yang 已提交
2405
    """
Y
yuyang18 已提交
2406 2407 2408 2409 2410 2411 2412 2413 2414
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2415

Y
Yu Yang 已提交
2416 2417 2418
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2419
    return _startup_program_
2420

2421

2422
def default_main_program():
Y
Yu Yang 已提交
2423
    """
Y
yuyang18 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2433

Y
Yu Yang 已提交
2434 2435 2436
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2437
    return _main_program_
Y
Yu Yang 已提交
2438 2439 2440 2441 2442


def switch_main_program(program):
    """
    Switch the main program to a new program.
2443

Y
Yu Yang 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2458
    Switch the startup program to a new program
Y
Yu Yang 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2471
@signature_safe_contextmanager
Y
Yu Yang 已提交
2472 2473
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2474 2475 2476
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2477

Y
Yu Yang 已提交
2478
    Examples:
Y
yuyang18 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2489

Y
Yu Yang 已提交
2490
    Examples:
Y
yuyang18 已提交
2491 2492 2493 2494 2495 2496

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2497

Y
Yu Yang 已提交
2498
    Args:
Y
yuyang18 已提交
2499
        main_program(Program): New main program inside `with` statement.
2500
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2514 2515


W
Wu Yi 已提交
2516
def _get_var(name, program=None):
X
xuwei06 已提交
2517
    """
Y
yuyang18 已提交
2518
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2519

X
xuwei06 已提交
2520 2521 2522
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2523
        If None, default_global_program() will be used.
X
xuwei06 已提交
2524 2525 2526 2527 2528 2529 2530

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2531
    assert isinstance(program, Program)
X
xuwei06 已提交
2532 2533

    return program.global_block().var(name)
2534 2535


S
rename  
sneaxiy 已提交
2536
@signature_safe_contextmanager
P
Paddle CI 已提交
2537
def _imperative_guard(tracer):
2538 2539 2540
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2541

P
Paddle CI 已提交
2542 2543 2544 2545 2546
    yield

    _imperative_tracer_ = tmp_trace


S
rename  
sneaxiy 已提交
2547
@signature_safe_contextmanager
P
Paddle CI 已提交
2548
def _imperative_place_guard(place):
M
minqiyang 已提交
2549 2550 2551
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2552

2553
    yield
M
minqiyang 已提交
2554

M
minqiyang 已提交
2555
    _imperative_current_expected_place_ = tmp_place