framework.py 90.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import six
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
Q
qiaolongfei 已提交
28

M
minqiyang 已提交
29
from .. import compat as cpt
30
from .proto import framework_pb2
31
try:
P
peizhilin 已提交
32
    if os.name == 'nt':
P
peizhilin 已提交
33
        import sys
P
peizhilin 已提交
34 35 36 37 38
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

39
    from . import core
40
except ImportError as e:
P
peizhilin 已提交
41
    if os.name == 'nt':
42
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
43
        raise ImportError(
44 45 46 47 48
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
49 50 51 52 53 54
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
55
except Exception as e:
56
    raise e
57
from . import unique_name
Y
Yu Yang 已提交
58

59
__all__ = [
60 61 62 63
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
64
    'name_scope',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

73
_imperative_tracer_ = None
M
minqiyang 已提交
74
_imperative_current_expected_place_ = None
75 76 77 78 79 80 81 82 83


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
84

M
minqiyang 已提交
85
def _current_expected_place():
M
minqiyang 已提交
86
    return _imperative_current_expected_place_
M
minqiyang 已提交
87 88


89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
128

129 130 131 132
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
133 134
          with name_scope("attention"):
             ...
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
154 155 156
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
157 158 159 160


def grad_var_name(var_name):
    """
161 162
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
163 164 165
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
166

167
def convert_np_dtype_to_dtype_(np_dtype):
168 169
    """
    Convert the data type in numpy to the data type in Paddle
170

171
    Args:
172
        np_dtype(np.dtype): the data type in numpy.
173

174 175
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
176 177

    """
178 179
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
180
        return core.VarDesc.VarType.FP32
181
    elif dtype == np.float64:
182
        return core.VarDesc.VarType.FP64
183
    elif dtype == np.float16:
184
        return core.VarDesc.VarType.FP16
185
    elif dtype == np.int32:
186
        return core.VarDesc.VarType.INT32
187
    elif dtype == np.int16:
188
        return core.VarDesc.VarType.INT16
189
    elif dtype == np.int64:
190
        return core.VarDesc.VarType.INT64
191
    elif dtype == np.bool:
192
        return core.VarDesc.VarType.BOOL
193 194
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
195 196
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
197 198
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
199
    else:
M
minqiyang 已提交
200
        raise ValueError("Not supported numpy dtype %s" % dtype)
201 202 203


def dtype_is_floating(dtype):
204 205 206
    """
    Check the data type is floating or not.
    Args:
207
        dtype(np.dtype|core.VarDesc.VarType): data type.
208 209 210 211 212
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
213
    if not isinstance(dtype, core.VarDesc.VarType):
214 215
        dtype = convert_np_dtype_to_dtype_(dtype)

216 217 218 219
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
220 221


Y
Yang Yang(Tony) 已提交
222
def _debug_string_(proto, throw_on_error=True):
223 224 225 226 227 228 229 230 231 232 233
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
234
    error_fields = list()
Y
Yang Yang(Tony) 已提交
235
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
236 237
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
238 239 240
    return proto.__str__()


X
Xin Pan 已提交
241
class Variable(object):
242
    """
243 244 245
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
246
    two variables in different blocks could have the same name.
247

248 249
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
250

251
    Most of a Variable's member variables can be setted to be None. It mean
252
    it is not available or will be specified later.
253 254

    Args:
255
        block(Block): The block that the variable belongs to.
256 257
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
258 259
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
260
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
261
            Some kinds of variable do not contain shape, just set it to None.
262 263 264
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
265
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
266
            series data.
267
            Default: None
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
290 291
    """

Y
Yu Yang 已提交
292 293
    def __init__(self,
                 block,
Y
Yu Yang 已提交
294
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
295 296 297 298
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
299
                 capacity=None,
Q
QI JUN 已提交
300
                 persistable=None,
F
fengjiayi 已提交
301
                 error_clip=None,
Y
Yu Yang 已提交
302
                 stop_gradient=False,
F
fengjiayi 已提交
303
                 is_data=False,
Y
Yu Yang 已提交
304
                 **kwargs):
Y
Yu Yang 已提交
305
        self.block = block
F
fengjiayi 已提交
306
        self.error_clip = error_clip
Y
Yu Yang 已提交
307 308

        if name is None:
Y
Yu Yang 已提交
309
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
310
        is_new_var = False
M
minqiyang 已提交
311
        name = cpt.to_text(name)
M
minqiyang 已提交
312
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
313 314

        if self.desc is None:
M
minqiyang 已提交
315
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
316
            is_new_var = True
Y
Yu Yang 已提交
317

Y
Yu Yang 已提交
318 319 320 321 322 323 324 325
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
326
        if shape is not None:
Y
Yu Yang 已提交
327
            if is_new_var:
328
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
329 330 331 332 333 334 335 336
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
337
        if dtype is not None:
338
            if not isinstance(dtype, core.VarDesc.VarType):
339
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
340
            if is_new_var:
F
fengjiayi 已提交
341
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
342
            else:
F
fengjiayi 已提交
343
                old_dtype = self.dtype
Q
QI JUN 已提交
344
                if dtype != old_dtype:
Y
Yu Yang 已提交
345 346 347 348 349
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
350 351

        if lod_level is not None:
Y
Yu Yang 已提交
352
            if is_new_var:
353
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
354 355 356 357 358 359 360
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
361 362 363 364 365 366 367 368 369 370 371
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

372 373 374 375 376 377 378 379
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
380
        self.block.vars[name] = self
Y
Yu Yang 已提交
381
        self.op = None
M
minqiyang 已提交
382
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
383
        self.is_data = is_data
X
Xin Pan 已提交
384
        if _in_imperative_mode():
M
minqiyang 已提交
385 386 387
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
388
            self._ivar.desc = self.desc
389
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
390

391
    def _numpy(self):
M
minqiyang 已提交
392
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
393
        return np.array(new_ivar.value().get_tensor())
394 395

    def _backward(self):
X
Xin Pan 已提交
396
        self._ivar._run_backward()
397 398

    def _gradient(self):
M
minqiyang 已提交
399
        return np.array(self._ivar._grad_value())
400

X
Xin Pan 已提交
401 402
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
403

404
    def __str__(self):
Y
Yang Yang(Tony) 已提交
405 406
        return self.to_string(True)

F
update  
fengjiayi 已提交
407
    def to_string(self, throw_on_error, with_details=False):
408 409 410 411
        """
        Get debug string.

        Args:
412 413
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
414
            with_details(bool): more details about variables and parameters
415 416
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
417

418 419
        Returns:
            str: The debug string.
420
        """
F
update  
fengjiayi 已提交
421 422
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
423
        protostr = self.desc.serialize_to_string()
424
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
425 426 427 428
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
429 430
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
431
        return res_str
432 433 434

    __repr__ = __str__

W
Wu Yi 已提交
435
    def _set_desc(self, input):
436 437 438 439 440 441 442 443 444
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
445 446
        self.desc = input

447 448
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
449 450 451 452
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
453 454 455

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
456 457 458
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
459

460 461 462 463
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
464 465 466 467
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
468 469
    @property
    def name(self):
M
minqiyang 已提交
470
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
471

T
typhoonzero 已提交
472 473 474 475
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
476 477 478
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
479
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
480 481

    @property
F
fengjiayi 已提交
482 483
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
484 485 486

    @property
    def lod_level(self):
487
        return self.desc.lod_level()
Y
Yu Yang 已提交
488

Y
Yu Yang 已提交
489 490 491 492
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
493
    def _set_error_clip(self, error_clip):
494 495 496 497 498 499 500 501 502
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
503 504
        self.error_clip = error_clip

Y
Yu Yang 已提交
505

F
fengjiayi 已提交
506 507 508
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
509

510 511
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
512 513 514 515
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
516
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
517 518 519 520 521
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
522 523 524 525
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
526 527 528 529 530 531 532 533 534
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
535
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
536 537 538 539 540 541
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
542 543 544 545 546 547 548 549
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
550 551
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
552 553
        return self.op_proto_map[type]

554 555 556 557
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
558
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
559
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
560 561
        }

F
fengjiayi 已提交
562

X
Xin Pan 已提交
563
class Operator(object):
564
    """
565 566 567 568 569 570 571
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
572
        type(str): The type of operator. Default None.
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
593
        Block.append_op or Block._prepend_op instead.
594 595 596 597 598 599 600 601 602 603

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
604
    """
605 606 607
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
608 609
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
610
    }
611

Y
Yu Yang 已提交
612 613
    def __init__(self,
                 block,
Y
Yu Yang 已提交
614
                 desc,
Y
Yu Yang 已提交
615 616 617
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
618
                 attrs=None):
Y
Yu Yang 已提交
619
        self.block = block
Y
Yu Yang 已提交
620
        self.desc = desc
G
gongweibao 已提交
621 622 623 624 625
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
626 627 628 629
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
630 631
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
632 633 634

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
635 636
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
637

G
gongweibao 已提交
638 639
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
640

F
fengjiayi 已提交
641 642 643 644 645
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
646 647 648 649 650
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
651
        self.desc.set_type(type)
F
fengjiayi 已提交
652
        proto = OpProtoHolder.instance().get_op_proto(type)
653

654 655 656
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
657 658
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
659
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
660 661
                    return True
            return False
Q
QI JUN 已提交
662

Y
Yang Yang(Tony) 已提交
663 664 665 666 667 668 669
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
670 671 672 673
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
674 675
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
676 677 678
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
679
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
680
                            in_arg_names.append(arg)
681 682
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
683
                        else:
M
minqiyang 已提交
684
                            in_arg_names.append(cpt.to_text(arg.name))
685
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
686 687
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
688

Y
Yu Yang 已提交
689
        if outputs is not None:
690
            for m in proto.outputs:
Q
qingqing01 已提交
691 692 693 694 695 696
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
697
            for out_proto in proto.outputs:
Q
qingqing01 已提交
698 699
                if out_proto.name not in outputs:
                    continue
700 701 702 703
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
704 705
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
706 707 708
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
709
                    out_arg_names.append(cpt.to_text(arg.name))
710 711
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
712

G
gongweibao 已提交
713 714
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
715
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
716
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
717
                attr_name = attr.name
G
gongweibao 已提交
718
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
719
                    continue
G
gongweibao 已提交
720
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
721 722
                self._update_desc_attr(attr_name, attr_val)

723
        self.desc.check_attrs()
M
minqiyang 已提交
724

W
Wu Yi 已提交
725
        if self._has_kernel(type):
Q
QI JUN 已提交
726
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
727
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
728

X
Xin Pan 已提交
729 730 731
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
732
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
733
            if inputs is not None:
X
Xin Pan 已提交
734 735 736 737 738 739
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
740
            if outputs is not None:
X
Xin Pan 已提交
741 742 743 744 745
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
746

W
Wu Yi 已提交
747
    def _has_kernel(self, op_type):
748 749
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
750
    def to_string(self, throw_on_error):
751
        """
752 753
        Get debug string.

754
        Args:
755 756
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
757

758 759
        Returns:
            str: The debug string.
760 761

        """
762
        protostr = self.desc.serialize_to_string()
763
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
764 765 766 767
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
768 769 770

    __repr__ = __str__

F
fengjiayi 已提交
771 772 773 774 775
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
776
        """
777
        Get the input arguments according to the input parameter name.
778

779 780
        Args:
            name(str): The input parameter name.
781

782 783 784
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
785
        """
F
fengjiayi 已提交
786 787
        return self.desc.input(name)

W
Wu Yi 已提交
788
    def _rename_input(self, old_name, new_name):
789 790 791 792 793 794 795 796 797 798
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
799
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
800

W
Wu Yi 已提交
801
    def _rename_output(self, old_name, new_name):
802 803 804 805 806 807 808 809 810 811
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
812
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
813

F
fengjiayi 已提交
814 815 816 817
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
818 819 820 821 822 823 824 825
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
826
    def output(self, name):
827
        """
828
        Get output arguments by the output parameter name.
829

830 831
        Args:
            name(str): The output parameter name.
832

833 834 835
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
836
        """
F
fengjiayi 已提交
837 838 839 840 841 842
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

843 844 845 846 847 848 849 850
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
851
    def has_attr(self, name):
852
        """
853 854
        Whether this Operator has the attribute with name or not.

855
        Args:
856
            name(str): the attribute name.
857

858 859
        Returns:
            bool: True if has this attribute.
860 861

        """
F
fengjiayi 已提交
862 863 864
        return self.desc.has_attr(name)

    def attr_type(self, name):
865
        """
866
        Get the type of attribute by attribute's name.
867

868 869
        Args:
            name(str): the attribute name.
870

871 872
        Returns:
            core.AttrType: the attribute type.
873
        """
F
fengjiayi 已提交
874 875
        return self.desc.attr_type(name)

W
Wu Yi 已提交
876
    def _set_attr(self, name, val):
877 878 879 880 881 882 883 884 885 886
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
900 901
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
902 903
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
904
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
905 906 907 908
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
909
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
910

F
fengjiayi 已提交
911 912 913 914 915
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
916
        """
917 918
        Get the attribute by name.

919
        Args:
920
            name(str): the attribute name.
921

922 923
        Returns:
            bool|int|str|float|list: The attribute value. The return value
924 925
            can be any valid attribute type.
        """
F
fengjiayi 已提交
926
        return self.desc.attr(name)
Y
Yu Yang 已提交
927

W
Wu Yi 已提交
928
    def _block_attr_id(self, name):
929
        """
G
gongweibao 已提交
930
        Get the block attribute's id by name.
931

932 933
        Args:
            name(str): the attribute name.
934

935 936
        Returns:
            int: the block index.
937
        """
W
Wu Yi 已提交
938
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
939

W
Wu Yi 已提交
940
    def _block_attr(self, name):
G
gongweibao 已提交
941 942 943 944 945 946 947 948 949 950
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
951
        id = self._block_attr_id(name)
G
gongweibao 已提交
952 953 954
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
955
    def _blocks_attr(self, name):
G
gongweibao 已提交
956 957 958 959 960 961 962 963 964 965
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
966
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
967 968 969 970 971
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
972
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
973 974 975 976 977 978 979 980 981 982
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
983
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
984

J
JiayiFeng 已提交
985
    def all_attrs(self):
F
fengjiayi 已提交
986
        """
987 988 989
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
990
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
991 992 993 994
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
995 996
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
997
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
998 999 1000
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1001
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1002 1003 1004 1005
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1006 1007
        return attr_map

Y
Yu Yang 已提交
1008

Y
Yu Yang 已提交
1009
class Block(object):
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1024
        use `Program._create_block()` to create a block.
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1039
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1040
        self.desc = program.desc.block(idx)
1041
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1042
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1043
        self.program = program
1044
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1045

1046
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1047 1048
        return self.to_string(True)

F
fengjiayi 已提交
1049 1050
    def to_string(self, throw_on_error, with_details=False):
        """
1051 1052
        Get debug string.

F
fengjiayi 已提交
1053 1054
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1055
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1056
            with_details(bool): more details about variables and parameters
1057 1058
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1059

1060 1061
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1062 1063 1064 1065
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1066
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1067 1068
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1069
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1070
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1071
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1072
            for op in self.ops:
F
fengjiayi 已提交
1073 1074
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1075 1076 1077
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1078 1079
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1080 1081
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1082 1083 1084

    __repr__ = __str__

Y
Yu Yang 已提交
1085 1086
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1087
        return self.desc.parent
Y
Yu Yang 已提交
1088

Y
Yu Yang 已提交
1089 1090 1091 1092
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1093
    def _set_forward_block_idx(self, idx):
1094 1095 1096 1097 1098 1099 1100 1101 1102
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1103
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1104

Y
Yu Yang 已提交
1105 1106
    @property
    def idx(self):
Y
Yu Yang 已提交
1107
        return self.desc.id
Y
Yu Yang 已提交
1108

Q
Qiao Longfei 已提交
1109
    def var(self, name):
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1123
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1124 1125 1126
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1127 1128
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1129
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1130
        return v
Q
Qiao Longfei 已提交
1131

X
Xin Pan 已提交
1132
    def _find_var_recursive(self, name):
1133 1134 1135 1136 1137 1138 1139
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1140
            Variable: the Variable with the giving name. Or None if not found.
1141
        """
Y
Yu Yang 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1166
        return None
Y
Yu Yang 已提交
1167

X
Xin Pan 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1187

Q
Qiao Longfei 已提交
1188
    def all_parameters(self):
1189
        return list(self.iter_parameters())
1190

1191
    def iter_parameters(self):
M
minqiyang 已提交
1192
        return (item[1] for item in six.iteritems(self.vars)
1193
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1194

Y
Yu Yang 已提交
1195
    def create_var(self, *args, **kwargs):
1196
        var = Variable(block=self, *args, **kwargs)
1197 1198
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1199
        return var
Y
Yu Yang 已提交
1200

Q
Qiao Longfei 已提交
1201 1202 1203
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1204
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1205 1206
        """
        Rename variable in vars and ops' inputs and outputs
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1219
        """
M
minqiyang 已提交
1220 1221
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1222

T
typhoonzero 已提交
1223
        if not self.has_var(name):
1224
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1225 1226
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1227
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1228 1229 1230 1231 1232 1233 1234
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1235
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1236 1237 1238 1239
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1240
        orig_var_type = v.type
M
minqiyang 已提交
1241
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1242
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1243
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1244
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1245 1246 1247 1248
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1249
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1250 1251 1252 1253 1254 1255 1256
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1257
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1258 1259
            var = Variable(
                self,
T
typhoonzero 已提交
1260
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1261 1262 1263 1264
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1265
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1266 1267 1268
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1269
        self._sync_with_cpp()
1270
        return var
T
typhoonzero 已提交
1271

W
Wu Yi 已提交
1272 1273
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1274
        self.desc._remove_var(cpt.to_bytes(name))
1275 1276
        del self.vars[name]

Y
Yu Yang 已提交
1277 1278
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1279
        param = Parameter(global_block, *args, **kwargs)
1280
        if 'initializer' in kwargs:
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1301
        return param
Y
Yu Yang 已提交
1302

Y
Yu Yang 已提交
1303
    def append_op(self, *args, **kwargs):
1304 1305 1306 1307 1308 1309
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1310
        op_desc = self.desc.append_op()
1311 1312 1313 1314 1315 1316 1317 1318
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1319

M
minqiyang 已提交
1320 1321
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1322 1323 1324 1325
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1326
        if _in_imperative_mode():
1327
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1328
                                       _imperative_current_expected_place_,
1329
                                       stop_gradient)
Y
Yu Yang 已提交
1330

W
Wu Yi 已提交
1331
    def _insert_op(self, index, *args, **kwargs):
1332 1333 1334 1335 1336 1337 1338 1339 1340
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1341 1342
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1343 1344 1345 1346
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1347
    def _remove_op(self, index):
1348 1349 1350 1351 1352 1353 1354 1355 1356
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1357 1358
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1359 1360
        del self.ops[index]

W
Wu Yi 已提交
1361
    def _slice_ops(self, start, end):
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1372
        return self.ops[start:end]
Y
Yancey1989 已提交
1373

W
Wu Yi 已提交
1374 1375
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1376 1377 1378 1379 1380 1381 1382
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1383
        self.ops.insert(0, op)
1384
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1385 1386
        return op

W
Wu Yi 已提交
1387
    def _sync_with_cpp(self):
1388
        """
1389 1390
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1391
        """
Q
Qiao Longfei 已提交
1392 1393 1394 1395 1396
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1397
        # sync variables removed from c++ end
1398
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1399
            if not self.desc.find_var(cpt.to_bytes(var)):
1400 1401
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1402
        # sync operators from cpp
1403 1404 1405 1406
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1423 1424 1425 1426 1427

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1428
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1429 1430 1431 1432 1433 1434 1435

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1449 1450 1451 1452
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1453
    def _copy_param_info_from(self, other):
1454
        """
1455 1456
        Copy the information of parameters from the other block.

1457
        Args:
1458 1459 1460 1461 1462
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1463 1464 1465 1466 1467

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1468 1469
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1470
        for p in other.iter_parameters():
1471 1472 1473
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1474
                raise ValueError("_copy_param_info_from should be invoked with "
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1487
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1488
                error_clip=p.error_clip,
1489 1490 1491
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1492
    def _clone_variable(self, var):
1493 1494
        """
        Clone a variable into current block.
1495

1496 1497 1498 1499
        Args:
            var: the variable to be cloned.

        Returns:
1500
            Variable: the new  variable cloned from 'var' in current block.
1501 1502
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1503 1504 1505 1506 1507
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1508 1509
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1510
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1511 1512 1513 1514 1515 1516
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1517 1518
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1519 1520 1521 1522 1523 1524 1525
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1526 1527
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1528
        return ret_var
1529

Y
Yu Yang 已提交
1530

1531 1532
class IrGraph(object):
    """
1533 1534 1535 1536
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1537 1538 1539 1540
    """

    def __init__(self, graph, for_test=False):
        """
1541 1542
        Construct an IrGraph using core.Graph.

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1553 1554 1555
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1556 1557
        return self._for_test

W
WangZhen 已提交
1558
    def all_nodes(self):
1559 1560 1561
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1562
        return {node for node in self.graph.nodes()}
1563 1564

    def all_vars(self):
1565 1566 1567
        """
        Return all variable nodes included in the graph as a set.
        """
1568 1569
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1570
    def all_persistable_vars(self):
1571 1572 1573
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1574 1575 1576 1577 1578 1579 1580
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1581
    def all_ops(self):
1582 1583 1584
        """
        Return all operator nodes included in the graph as a set.
        """
1585 1586
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1587 1588
    def var_node(self, name):
        """
1589 1590
        Get a variable node by name from the graph.

W
WangZhen 已提交
1591 1592
        Args:
            name(str): the name of the variable node.
1593

W
WangZhen 已提交
1594 1595 1596
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1597

W
WangZhen 已提交
1598
        Returns:
1599
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1614
    def create_param_node(self, name, var_type, shape, var_dtype):
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1628 1629 1630 1631 1632 1633 1634 1635
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1650 1651 1652 1653 1654 1655 1656
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1667 1668 1669
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1682 1683
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1684
        for attr, value in six.iteritems(attrs):
1685
            self._update_desc_attr(op_desc, attr, value)
1686
        for input_name, var_nodes in six.iteritems(inputs):
1687 1688 1689 1690
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1691
        for output_name, var_nodes in six.iteritems(outputs):
1692 1693 1694 1695 1696 1697 1698
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1699 1700 1701 1702 1703 1704 1705 1706 1707
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1708 1709 1710
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1711 1712 1713 1714 1715 1716 1717 1718
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1719 1720 1721
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1722 1723 1724 1725 1726 1727 1728
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1729 1730 1731 1732 1733 1734 1735
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1736
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1737
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1738 1739 1740 1741
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1742 1743 1744 1745 1746 1747 1748
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1749
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1750 1751 1752 1753
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1754 1755
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1756
    def has_circle(self):
1757 1758 1759 1760 1761 1762
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1763 1764 1765
        return core.has_circle(self.graph)

    def graph_num(self):
1766 1767 1768 1769 1770 1771
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1772 1773 1774
        return core.graph_num(self.graph)

    def topology_sort(self):
1775 1776 1777 1778 1779 1780 1781 1782
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1783 1784 1785
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1786 1787 1788 1789 1790 1791
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1792 1793
        return core.build_adjacency_list(self.graph)

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1808 1809 1810 1811 1812 1813 1814 1815 1816
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1817 1818 1819 1820 1821 1822
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1823 1824
        ops_num = 0
        for node in self.graph.nodes():
1825
            if node.is_op():
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1852
        convert_pass = core.get_pass('graph_to_program_pass')
1853 1854
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1875
class Program(object):
D
dzhwinter 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1887
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1888 1889

    Returns:
Y
yuyang18 已提交
1890
        A empty program.
D
dzhwinter 已提交
1891 1892

    Examples:
Y
yuyang18 已提交
1893 1894 1895 1896 1897 1898
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1899 1900 1901

    """

1902 1903
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1904 1905
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1906
        self._seed = 0
Y
yuyang18 已提交
1907
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1908
        self._op_role_var = []
T
tangwei12 已提交
1909

1910 1911
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1912
        self._is_distributed = False
1913
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1914
        self._is_chief = False
1915 1916 1917
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1918
        self._endpoints = []
1919 1920 1921
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1922
        self._trainers_endpoints = []
1923
        # the distributed lookup table names
T
tangwei12 已提交
1924
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1925 1926 1927

    @property
    def op_role(self):
Y
yuyang18 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1941 1942 1943 1944 1945 1946 1947 1948
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1949 1950 1951 1952 1953 1954 1955
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1956 1957 1958 1959
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1960
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1961 1962

    @contextlib.contextmanager
W
Wu Yi 已提交
1963
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1964 1965 1966 1967 1968 1969 1970
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1971
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1972 1973 1974 1975

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1976
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1977 1978
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1979 1980 1981
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1982 1983
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1984 1985 1986 1987
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1988
        yield
X
Xin Pan 已提交
1989 1990
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1991

1992
    @contextlib.contextmanager
X
Xin Pan 已提交
1993
    def _lr_schedule_guard(self, is_with_opt=False):
1994 1995 1996 1997 1998 1999 2000
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2001 2002 2003 2004
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2005 2006 2007 2008 2009 2010 2011

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2012 2013 2014 2015

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2016 2017
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2018 2019
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2020 2021 2022
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2023 2024
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2025

2026
    def __str__(self):
Y
yuyang18 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2036 2037
        return self.to_string(True)

F
fengjiayi 已提交
2038 2039 2040
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2041

F
fengjiayi 已提交
2042
        Args:
Y
yuyang18 已提交
2043 2044
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2045

Y
yuyang18 已提交
2046 2047 2048 2049
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2050 2051
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2052 2053 2054 2055

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2066 2067
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2068 2069
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2070

W
Wu Yi 已提交
2071
    def _get_desc(self):
Y
yuyang18 已提交
2072 2073 2074 2075 2076 2077 2078
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2079 2080
        return self.desc

X
version  
Xin Pan 已提交
2081 2082 2083
    def _version(self):
        return self.desc._version()

2084
    def clone(self, for_test=False):
Y
yuyang18 已提交
2085 2086 2087
        """
        Create a new, duplicated program.

2088

Y
yuyang18 已提交
2089 2090 2091 2092
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2093

Y
yuyang18 已提交
2094 2095 2096 2097
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2098 2099 2100 2101 2102
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2103 2104

        Args:
Y
yuyang18 已提交
2105 2106
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2107

D
dzhwinter 已提交
2108
        Returns:
Y
yuyang18 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2162 2163
        """
        if for_test:
X
Xin Pan 已提交
2164
            p = self._inference_optimize(prune_read_op=False)
2165
        else:
2166
            p = Program()
G
gongweibao 已提交
2167 2168
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2169
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2170 2171 2172
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2173 2174 2175 2176

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2177
            p._sync_with_cpp()
2178

W
Wu Yi 已提交
2179
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2180
        p._copy_data_info_from(self)
2181
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2182
        return p
2183

W
Wu Yi 已提交
2184
    def _prune(self, targets):
Y
yuyang18 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2200 2201 2202 2203 2204 2205
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2206 2207
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2208
                    # and we need to find the current op that generate this
2209 2210 2211 2212 2213 2214 2215 2216
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2217
                    t = t.op
2218 2219 2220 2221
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2222
                else:
2223 2224
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2225 2226 2227 2228

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2229 2230 2231
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2232
        res._sync_with_cpp()
2233 2234
        return res

X
Xin Pan 已提交
2235
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2236
        """
F
fengjiayi 已提交
2237 2238 2239 2240 2241
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2242
        3. change the :code:`is_test`
Y
yuyang18 已提交
2243 2244 2245
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2246
        Args:
X
Xin Pan 已提交
2247 2248
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2249

Y
yuyang18 已提交
2250 2251 2252 2253 2254 2255
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2256
        res = Program()
2257
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2258 2259 2260 2261

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2262
        if prune_read_op:
2263 2264 2265 2266 2267 2268 2269 2270 2271
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2272
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2273 2274

        # change all `is_test` attributes to True
M
minqiyang 已提交
2275
        for i in six.moves.range(res.desc.num_blocks()):
2276
            block = res.desc.block(i)
M
minqiyang 已提交
2277
            for j in six.moves.range(block.op_size()):
2278 2279
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2280
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2281 2282 2283
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2284
        res._sync_with_cpp()
2285 2286
        return res

2287 2288
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2289 2290 2291 2292 2293 2294 2295
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2296
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2297 2298 2299 2300

        Returns:
            Program: A deserialized program desc.
        """
2301 2302
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2303
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2304
        p._sync_with_cpp()
2305
        return p
Y
Yu Yang 已提交
2306

2307
    @staticmethod
2308
    def _construct_from_desc(desc):
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2324 2325
    @property
    def random_seed(self):
Y
yuyang18 已提交
2326 2327 2328 2329 2330 2331
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2332 2333
        return self._seed

Q
qiaolongfei 已提交
2334 2335
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2336 2337 2338
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2339 2340
        return self.desc.num_blocks()

D
dzhwinter 已提交
2341 2342 2343 2344 2345 2346
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2347
    def __repr__(self):
2348
        return self.__str__()
2349

Y
Yu Yang 已提交
2350
    def global_block(self):
Y
yuyang18 已提交
2351 2352 2353
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2354 2355
        return self.blocks[0]

Q
Qiao Longfei 已提交
2356
    def block(self, index):
Y
yuyang18 已提交
2357 2358 2359 2360 2361 2362 2363 2364
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2365 2366
        return self.blocks[index]

Y
Yu Yang 已提交
2367
    def current_block(self):
Y
yuyang18 已提交
2368 2369 2370 2371
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2372 2373
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2374
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2385
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2386 2387 2388
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2389 2390 2391 2392
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2393
    def _rollback(self):
Y
yuyang18 已提交
2394 2395 2396 2397 2398
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2399 2400
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2401
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2412 2413 2414
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2415
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2416

W
Wu Yi 已提交
2417
    def _copy_param_info_from(self, other):
2418
        """
2419
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2420

Y
yuyang18 已提交
2421 2422 2423
        Notes: This is a very low level API. Users should not invoke it
        directly.

2424 2425 2426 2427 2428 2429 2430
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2431
            raise TypeError("_copy_param_info_from should be invoked with "
2432 2433 2434
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2435
            raise ValueError("_copy_param_info_from should be invoked with two "
2436
                             "program, with represent the same topology")
W
Wu Yi 已提交
2437
        self.global_block()._copy_param_info_from(other.global_block())
2438

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2454
        self._parameters_on_pservers = other._parameters_on_pservers
2455
        self._endpoints = other._endpoints
2456
        self._ps_endpoint = other._ps_endpoint
2457 2458
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2459
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2460 2461
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2462

Y
yuyang18 已提交
2463 2464 2465
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2466 2467 2468 2469 2470 2471 2472
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2473
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2474 2475 2476
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2477
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2478
                             "program, with represent the same topology")
2479
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2480 2481 2482
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2483
    def list_vars(self):
Y
yuyang18 已提交
2484 2485 2486 2487 2488 2489
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2490
        for each_block in self.blocks:
2491
            for each_var in list(each_block.vars.values()):
2492 2493
                yield each_var

Y
Yu Yang 已提交
2494

Y
Yu Yang 已提交
2495
class Parameter(Variable):
2496
    """
2497
    Parameter is derived from Variable. A parameter is a persistable
2498
    Variable, and will be updated by optimizers after each iteration.
2499
    The training of a neural network is essentially the updating of
2500 2501
    its parameters.

2502
    Relative to a general Variable, a Parameter has several its own
2503 2504
    member variables:

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2517 2518
    """

Y
Yu Yang 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2529 2530 2531

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2532 2533 2534 2535
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2536 2537
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2538
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2539

W
wanghaoshuang 已提交
2540
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2541

F
fengjiayi 已提交
2542 2543 2544
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2545 2546 2547
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2548

F
update  
fengjiayi 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2563
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2564
            for attr_name in additional_attr:
2565 2566
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2567 2568
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2569 2570 2571 2572
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2573

Y
Yu Yang 已提交
2574
# program is a global instance.
Y
Yu Yang 已提交
2575 2576
_main_program_ = Program()
_startup_program_ = Program()
2577

2578

2579
def default_startup_program():
Y
Yu Yang 已提交
2580
    """
Y
yuyang18 已提交
2581 2582 2583 2584 2585 2586 2587 2588 2589
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2590

Y
Yu Yang 已提交
2591 2592 2593
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2594
    return _startup_program_
2595

2596

2597
def default_main_program():
Y
Yu Yang 已提交
2598
    """
Y
yuyang18 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2608

Y
Yu Yang 已提交
2609 2610 2611
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2612
    return _main_program_
Y
Yu Yang 已提交
2613 2614 2615 2616 2617


def switch_main_program(program):
    """
    Switch the main program to a new program.
2618

Y
Yu Yang 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2633
    Switch the startup program to a new program
Y
Yu Yang 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2649 2650 2651
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2652

Y
Yu Yang 已提交
2653
    Examples:
Y
yuyang18 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2664

Y
Yu Yang 已提交
2665
    Examples:
Y
yuyang18 已提交
2666 2667 2668 2669 2670 2671

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2672

Y
Yu Yang 已提交
2673
    Args:
Y
yuyang18 已提交
2674
        main_program(Program): New main program inside `with` statement.
2675
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2689 2690


W
Wu Yi 已提交
2691
def _get_var(name, program=None):
X
xuwei06 已提交
2692
    """
Y
yuyang18 已提交
2693
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2694

X
xuwei06 已提交
2695 2696 2697
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2698
        If None, default_global_program() will be used.
X
xuwei06 已提交
2699 2700 2701 2702 2703 2704 2705

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2706
    assert isinstance(program, Program)
X
xuwei06 已提交
2707 2708

    return program.global_block().var(name)
2709 2710 2711 2712 2713 2714 2715


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2716

2717
    yield
P
Paddle CI 已提交
2718

2719
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
2720 2721 2722 2723


@contextlib.contextmanager
def _imperative_place_guard(place):
M
minqiyang 已提交
2724 2725 2726
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2727

2728
    yield
M
minqiyang 已提交
2729

M
minqiyang 已提交
2730
    _imperative_current_expected_place_ = tmp_place