train.py 29.5 KB
Newer Older
1 2
import argparse
import ast
G
guosheng 已提交
3 4
import copy
import logging
5
import multiprocessing
Y
Yu Yang 已提交
6
import os
G
guosheng 已提交
7
import six
G
guosheng 已提交
8
import sys
Y
Yibing Liu 已提交
9
sys.path.append("../../models/neural_machine_translation/transformer/")
Y
Yu Yang 已提交
10
import time
Y
ying 已提交
11

Y
Yu Yang 已提交
12
import numpy as np
L
Luo Tao 已提交
13
import paddle.fluid as fluid
Y
ying 已提交
14

Y
Yu Yang 已提交
15 16
import reader
from config import *
Y
Yibing Liu 已提交
17
from desc import *
18
from model import transformer, position_encoding_init
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


def parse_args():
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--src_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of source language.")
    parser.add_argument(
        "--trg_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of target language.")
    parser.add_argument(
        "--train_file_pattern",
        type=str,
        required=True,
        help="The pattern to match training data files.")
    parser.add_argument(
        "--val_file_pattern",
        type=str,
        help="The pattern to match validation data files.")
    parser.add_argument(
        "--use_token_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to "
        "produce batch data according to token number.")
    parser.add_argument(
        "--batch_size",
        type=int,
51
        default=4096,
52
        help="The number of sequences contained in a mini-batch, or the maximum "
53 54 55
        "number of tokens (include paddings) contained in a mini-batch. Note "
        "that this represents the number on single device and the actual batch "
        "size for multi-devices will multiply the device number.")
56 57 58
    parser.add_argument(
        "--pool_size",
        type=int,
59
        default=200000,
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
        help="The buffer size to pool data.")
    parser.add_argument(
        "--sort_type",
        default="pool",
        choices=("global", "pool", "none"),
        help="The grain to sort by length: global for all instances; pool for "
        "instances in pool; none for no sort.")
    parser.add_argument(
        "--shuffle",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle instances in each pass.")
    parser.add_argument(
        "--shuffle_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle the data batches.")
    parser.add_argument(
        "--special_token",
        type=str,
        default=["<s>", "<e>", "<unk>"],
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
83 84
    parser.add_argument(
        "--token_delimiter",
G
guosheng 已提交
85
        type=lambda x: str(x.encode().decode("unicode-escape")),
86 87
        default=" ",
        help="The delimiter used to split tokens in source or target sentences. "
88
        "For EN-DE BPE data we provided, use spaces as token delimiter. ")
89 90 91 92 93
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
94 95 96 97 98 99 100 101 102 103 104
    parser.add_argument(
        '--local',
        type=ast.literal_eval,
        default=True,
        help='Whether to run as local mode.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help="The device type.")
G
fix  
gongweibao 已提交
105 106 107 108 109
    parser.add_argument(
        '--update_method',
        choices=("pserver", "nccl2"),
        default="pserver",
        help='Update method.')
Q
Qiao Longfei 已提交
110 111
    parser.add_argument(
        '--sync', type=ast.literal_eval, default=True, help="sync mode.")
G
guosheng 已提交
112 113 114
    parser.add_argument(
        "--enable_ce",
        type=ast.literal_eval,
115
        default=False,
G
guosheng 已提交
116 117
        help="The flag indicating whether to run the task "
        "for continuous evaluation.")
118 119 120
    parser.add_argument(
        "--use_mem_opt",
        type=ast.literal_eval,
G
guosheng 已提交
121
        default=True,
122 123 124 125 126 127
        help="The flag indicating whether to use memory optimization.")
    parser.add_argument(
        "--use_py_reader",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to use py_reader.")
G
fix  
gongweibao 已提交
128
    parser.add_argument(
G
guosheng 已提交
129 130 131 132
        "--fetch_steps",
        type=int,
        default=100,
        help="The frequency to fetch and print output.")
G
fix  
gongweibao 已提交
133

134
    args = parser.parse_args()
135 136 137 138 139 140 141 142 143 144 145
    # Append args related to dict
    src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    dict_args = [
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]),
        "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx",
        str(src_dict[args.special_token[2]])
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [TrainTaskConfig, ModelHyperParams])
146
    return args
147 148


G
guosheng 已提交
149 150
def append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                         current_endpoint):
151 152
    assert (trainer_id >= 0 and len(worker_endpoints) > 1 and
            current_endpoint in worker_endpoints)
G
fix  
gongweibao 已提交
153 154
    eps = copy.deepcopy(worker_endpoints)
    eps.remove(current_endpoint)
G
guosheng 已提交
155
    nccl_id_var = startup_prog.global_block().create_var(
156
        name="NCCLID", persistable=True, type=fluid.core.VarDesc.VarType.RAW)
G
guosheng 已提交
157
    startup_prog.global_block().append_op(
G
fix  
gongweibao 已提交
158 159 160 161 162 163 164 165 166
        type="gen_nccl_id",
        inputs={},
        outputs={"NCCLID": nccl_id_var},
        attrs={
            "endpoint": current_endpoint,
            "endpoint_list": eps,
            "trainer_id": trainer_id
        })
    return nccl_id_var
167

168

169 170 171 172
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
173
                   is_label=False,
174
                   return_attn_bias=True,
175 176
                   return_max_len=True,
                   return_num_token=False):
177 178
    """
    Pad the instances to the max sequence length in batch, and generate the
179 180 181 182
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
G
guosheng 已提交
183 184 185 186
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
187
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
188 189 190 191 192 193
    if is_label:  # label weight
        inst_weight = np.array(
            [[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts])
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
194
            list(range(0, len(inst))) + [0] * (max_len - len(inst))
195 196
            for inst in insts
        ])
197 198 199 200 201 202
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
203 204
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
205 206 207 208 209 210 211 212 213 214 215 216 217
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
218
    if return_num_token:
G
guosheng 已提交
219 220 221
        num_token = 0
        for inst in insts:
            num_token += len(inst)
222
        return_list += [num_token]
223 224 225
    return return_list if len(return_list) > 1 else return_list[0]


226 227
def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
                        n_head, d_model):
228 229
    """
    Put all padded data needed by training into a dict.
230
    """
231
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
G
guosheng 已提交
232
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
233 234
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
235
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
G
guosheng 已提交
236
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
237 238 239
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)

240 241
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
242

243
    lbl_word, lbl_weight, num_token = pad_batch_data(
244 245 246 247 248 249
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
250 251 252 253 254 255 256
        return_max_len=False,
        return_num_token=True)

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
            trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
257
        ]))
258

259
    return data_input_dict, np.asarray([num_token], dtype="float32")
260 261


262 263 264 265 266 267
def prepare_data_generator(args,
                           is_test,
                           count,
                           pyreader,
                           py_reader_provider_wrapper,
                           place=None):
Q
Qiao Longfei 已提交
268
    """
269 270
    Data generator wrapper for DataReader. If use py_reader, set the data
    provider for py_reader
Q
Qiao Longfei 已提交
271
    """
272 273
    data_reader = reader.DataReader(
        fpattern=args.val_file_pattern if is_test else args.train_file_pattern,
Q
Qiao Longfei 已提交
274 275
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
276
        token_delimiter=args.token_delimiter,
Q
Qiao Longfei 已提交
277
        use_token_batch=args.use_token_batch,
278
        batch_size=args.batch_size * (1 if args.use_token_batch else count),
Q
Qiao Longfei 已提交
279 280
        pool_size=args.pool_size,
        sort_type=args.sort_type,
281 282
        shuffle=args.shuffle,
        shuffle_batch=args.shuffle_batch,
Q
Qiao Longfei 已提交
283 284 285 286 287
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        clip_last_batch=False).batch_generator

    def stack(data_reader, count, clip_last=True):
        def __impl__():
            res = []
            for item in data_reader():
                res.append(item)
                if len(res) == count:
                    yield res
                    res = []
            if len(res) == count:
                yield res
            elif not clip_last:
                data = []
                for item in res:
                    data += item
                if len(data) > count:
                    inst_num_per_part = len(data) // count
                    yield [
                        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                        for i in range(count)
                    ]

        return __impl__

    def split(data_reader, count):
        def __impl__():
            for item in data_reader():
                inst_num_per_part = len(item) // count
                for i in range(count):
                    yield item[inst_num_per_part * i:inst_num_per_part * (i + 1
                                                                          )]

        return __impl__

    if not args.use_token_batch:
        # to make data on each device have similar token number
        data_reader = split(data_reader, count)
    if args.use_py_reader:
        pyreader.decorate_tensor_provider(
328
            py_reader_provider_wrapper(data_reader, place))
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        data_reader = None
    else:  # Data generator for multi-devices
        data_reader = stack(data_reader, count)
    return data_reader


def prepare_feed_dict_list(data_generator, init_flag, count):
    """
    Prepare the list of feed dict for multi-devices.
    """
    feed_dict_list = []
    if data_generator is not None:  # use_py_reader == False
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        data = next(data_generator)
        for idx, data_buffer in enumerate(data):
            data_input_dict, num_token = prepare_batch_input(
                data_buffer, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
            feed_dict_list.append(data_input_dict)
    if init_flag:
        for idx in range(count):
            pos_enc_tables = dict()
            for pos_enc_param_name in pos_enc_param_names:
                pos_enc_tables[pos_enc_param_name] = position_encoding_init(
                    ModelHyperParams.max_length + 1, ModelHyperParams.d_model)
            if len(feed_dict_list) <= idx:
                feed_dict_list.append(pos_enc_tables)
            else:
                feed_dict_list[idx] = dict(
                    list(pos_enc_tables.items()) + list(feed_dict_list[idx]
                                                        .items()))

    return feed_dict_list if len(feed_dict_list) == count else None


366
def py_reader_provider_wrapper(data_reader, place):
367 368 369
    """
    Data provider needed by fluid.layers.py_reader.
    """
Q
Qiao Longfei 已提交
370

371 372 373 374 375 376 377 378
    def py_reader_provider():
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        for batch_id, data in enumerate(data_reader()):
            data_input_dict, num_token = prepare_batch_input(
                data, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
379
            yield [data_input_dict[item] for item in data_input_names]
380 381 382 383 384 385 386

    return py_reader_provider


def test_context(exe, train_exe, dev_count):
    # Context to do validation.
    test_prog = fluid.Program()
G
guosheng 已提交
387 388 389 390
    startup_prog = fluid.Program()
    if args.enable_ce:
        test_prog.random_seed = 1000
        startup_prog.random_seed = 1000
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                use_py_reader=args.use_py_reader,
                is_test=True)
G
guosheng 已提交
412
    test_prog = test_prog.clone(for_test=True)
413
    test_data = prepare_data_generator(
414 415 416 417 418
        args,
        is_test=True,
        count=dev_count,
        pyreader=pyreader,
        py_reader_provider_wrapper=py_reader_provider_wrapper)
419

420 421 422 423 424 425 426 427
    exe.run(startup_prog)  # to init pyreader for testing
    if TrainTaskConfig.ckpt_path:
        fluid.io.load_persistables(
            exe, TrainTaskConfig.ckpt_path, main_program=test_prog)

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.use_experimental_executor = True
    build_strategy = fluid.BuildStrategy()
Q
Qiao Longfei 已提交
428 429
    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
430
        main_program=test_prog,
431 432
        build_strategy=build_strategy,
        exec_strategy=exec_strategy,
Q
Qiao Longfei 已提交
433 434
        share_vars_from=train_exe)

435
    def test(exe=test_exe, pyreader=pyreader):
Q
Qiao Longfei 已提交
436 437
        test_total_cost = 0
        test_total_token = 0
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = test_data()
        while True:
            try:
                feed_dict_list = prepare_feed_dict_list(data_generator, False,
                                                        dev_count)
                outs = test_exe.run(fetch_list=[sum_cost.name, token_num.name],
                                    feed=feed_dict_list)
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break
Q
Qiao Longfei 已提交
455 456 457 458 459 460 461 462 463 464
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


465 466 467 468 469 470 471 472 473 474 475
def train_loop(exe,
               train_prog,
               startup_prog,
               dev_count,
               sum_cost,
               avg_cost,
               token_num,
               predict,
               pyreader,
               nccl2_num_trainers=1,
               nccl2_trainer_id=0):
Q
Qiao Longfei 已提交
476 477
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
478 479 480 481 482
        exe.run(startup_prog)  # to init pyreader for training
        logging.info("load checkpoint from {}".format(
            TrainTaskConfig.ckpt_path))
        fluid.io.load_persistables(
            exe, TrainTaskConfig.ckpt_path, main_program=train_prog)
Q
Qiao Longfei 已提交
483
    else:
G
fix  
gongweibao 已提交
484
        logging.info("init fluid.framework.default_startup_program")
485
        exe.run(startup_prog)
Q
Qiao Longfei 已提交
486

G
fix  
gongweibao 已提交
487
    logging.info("begin reader")
488
    train_data = prepare_data_generator(
489 490 491 492 493
        args,
        is_test=False,
        count=dev_count,
        pyreader=pyreader,
        py_reader_provider_wrapper=py_reader_provider_wrapper)
Q
Qiao Longfei 已提交
494

495 496 497
    # For faster executor
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.use_experimental_executor = True
498
    exec_strategy.num_iteration_per_drop_scope = int(args.fetch_steps)
Q
Qiao Longfei 已提交
499 500 501 502
    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
G
guosheng 已提交
503
    # build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
G
fix  
gongweibao 已提交
504

G
fix  
gongweibao 已提交
505
    logging.info("begin executor")
Q
Qiao Longfei 已提交
506 507
    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
508 509 510
        loss_name=avg_cost.name,
        main_program=train_prog,
        build_strategy=build_strategy,
G
fix  
gongweibao 已提交
511
        exec_strategy=exec_strategy,
512 513
        num_trainers=nccl2_num_trainers,
        trainer_id=nccl2_trainer_id)
Q
Qiao Longfei 已提交
514 515

    if args.val_file_pattern is not None:
516
        test = test_context(exe, train_exe, dev_count)
Q
Qiao Longfei 已提交
517

G
guosheng 已提交
518 519 520 521 522 523
    # the best cross-entropy value with label smoothing
    loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
        (1. - TrainTaskConfig.label_smooth_eps
         )) + TrainTaskConfig.label_smooth_eps *
                        np.log(TrainTaskConfig.label_smooth_eps / (
                            ModelHyperParams.trg_vocab_size - 1) + 1e-20))
G
guosheng 已提交
524

M
minqiyang 已提交
525
    step_idx = 0
526
    init_flag = True
G
fix  
gongweibao 已提交
527 528

    logging.info("begin train")
G
guosheng 已提交
529
    for pass_id in six.moves.xrange(TrainTaskConfig.pass_num):
Q
Qiao Longfei 已提交
530
        pass_start_time = time.time()
531 532 533 534 535 536 537 538 539 540 541 542 543

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = train_data()

        batch_id = 0
        while True:
            try:
                feed_dict_list = prepare_feed_dict_list(data_generator,
                                                        init_flag, dev_count)
                outs = train_exe.run(
544
                    fetch_list=[sum_cost.name, token_num.name]
G
guosheng 已提交
545
                    if step_idx % args.fetch_steps == 0 else [],
546
                    feed=feed_dict_list)
547

G
guosheng 已提交
548
                if step_idx % args.fetch_steps == 0:
549 550
                    sum_cost_val, token_num_val = np.array(outs[0]), np.array(
                        outs[1])
G
fix  
gongweibao 已提交
551 552 553 554 555
                    # sum the cost from multi-devices
                    total_sum_cost = sum_cost_val.sum()
                    total_token_num = token_num_val.sum()
                    total_avg_cost = total_sum_cost / total_token_num

G
guosheng 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
                    if step_idx == 0:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)])))
                        avg_batch_time = time.time()
                    else:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f, speed: %.2f step/s" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)]),
                             args.fetch_steps / (time.time() - avg_batch_time)))
                        avg_batch_time = time.time()

                if step_idx % TrainTaskConfig.save_freq == 0 and step_idx > 0:
575 576 577 578 579 580 581 582 583
                    fluid.io.save_persistables(
                        exe,
                        os.path.join(TrainTaskConfig.ckpt_dir,
                                     "latest.checkpoint"), train_prog)
                    fluid.io.save_params(
                        exe,
                        os.path.join(TrainTaskConfig.model_dir,
                                     "iter_" + str(step_idx) + ".infer.model"),
                        train_prog)
G
guosheng 已提交
584

585 586 587 588 589 590 591 592
                init_flag = False
                batch_id += 1
                step_idx += 1
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break
G
guosheng 已提交
593 594

        time_consumed = time.time() - pass_start_time
595
        # Validate and save the persistable.
G
guosheng 已提交
596 597
        if args.val_file_pattern is not None:
            val_avg_cost, val_ppl = test()
G
fix  
gongweibao 已提交
598
            logging.info(
G
guosheng 已提交
599 600 601 602 603
                "epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
                " consumed %fs" % (pass_id, val_avg_cost,
                                   val_avg_cost - loss_normalizer, val_ppl,
                                   time_consumed))
        else:
G
fix  
gongweibao 已提交
604
            logging.info("epoch: %d, consumed %fs" % (pass_id, time_consumed))
G
guosheng 已提交
605 606 607 608 609 610
        if not args.enable_ce:
            fluid.io.save_persistables(
                exe,
                os.path.join(TrainTaskConfig.ckpt_dir,
                             "pass_" + str(pass_id) + ".checkpoint"),
                train_prog)
611

G
guosheng 已提交
612
    if args.enable_ce:  # For CE
613
        print("kpis\ttrain_cost_card%d\t%f" % (dev_count, total_avg_cost))
614 615
        if args.val_file_pattern is not None:
            print("kpis\ttest_cost_card%d\t%f" % (dev_count, val_avg_cost))
616
        print("kpis\ttrain_duration_card%d\t%f" % (dev_count, time_consumed))
Q
Qiao Longfei 已提交
617 618


619 620 621 622 623
def train(args):
    # priority: ENV > args > config
    is_local = os.getenv("PADDLE_IS_LOCAL", "1")
    if is_local == '0':
        args.local = False
G
fix  
gongweibao 已提交
624
    logging.info(args)
625

626 627
    if args.device == 'CPU':
        TrainTaskConfig.use_gpu = False
G
guosheng 已提交
628

629
    training_role = os.getenv("TRAINING_ROLE", "TRAINER")
G
guosheng 已提交
630

631 632 633 634 635 636 637 638
    if training_role == "PSERVER" or (not TrainTaskConfig.use_gpu):
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()

    exe = fluid.Executor(place)
639

640 641
    train_prog = fluid.Program()
    startup_prog = fluid.Program()
G
guosheng 已提交
642

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    if args.enable_ce:
        train_prog.random_seed = 1000
        startup_prog.random_seed = 1000

    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
Y
Yibing Liu 已提交
666
                ModelHyperParams.bos_idx,
667 668
                use_py_reader=args.use_py_reader,
                is_test=False)
669

670
            optimizer = None
G
fix bug  
gongweibao 已提交
671
            if args.sync:
672 673
                lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
                    ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)
674
                logging.info("before adam")
G
fix  
gongweibao 已提交
675 676 677 678

                with fluid.default_main_program()._lr_schedule_guard():
                    learning_rate = lr_decay * TrainTaskConfig.learning_rate

679
                optimizer = fluid.optimizer.Adam(
G
fix  
gongweibao 已提交
680
                    learning_rate=learning_rate,
681 682 683
                    beta1=TrainTaskConfig.beta1,
                    beta2=TrainTaskConfig.beta2,
                    epsilon=TrainTaskConfig.eps)
G
fix bug  
gongweibao 已提交
684
            else:
685 686 687 688 689
                optimizer = fluid.optimizer.SGD(0.003)
            optimizer.minimize(avg_cost)

    if args.use_mem_opt:
        fluid.memory_optimize(train_prog)
690 691

    if args.local:
692
        logging.info("local start_up:")
693 694
        train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
                   token_num, predict, pyreader)
695
    else:
G
fix  
gongweibao 已提交
696 697 698 699 700 701 702 703 704 705 706 707
        if args.update_method == "nccl2":
            trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
            port = os.getenv("PADDLE_PORT")
            worker_ips = os.getenv("PADDLE_TRAINERS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            trainers_num = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            if trainer_id == 0:
                logging.info("train_id == 0, sleep 60s")
                time.sleep(60)
708 709 710
            logging.info("trainers_num:{}".format(trainers_num))
            logging.info("worker_endpoints:{}".format(worker_endpoints))
            logging.info("current_endpoint:{}".format(current_endpoint))
G
guosheng 已提交
711 712 713 714 715
            append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                                 current_endpoint)
            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader, trainers_num,
                       trainer_id)
G
fix  
gongweibao 已提交
716 717
            return

718 719 720 721 722 723 724 725 726
        port = os.getenv("PADDLE_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
G
fix  
gongweibao 已提交
727

728 729 730 731 732
        logging.info("pserver_endpoints:{}".format(pserver_endpoints))
        logging.info("current_endpoint:{}".format(current_endpoint))
        logging.info("trainer_id:{}".format(trainer_id))
        logging.info("pserver_ips:{}".format(pserver_ips))
        logging.info("port:{}".format(port))
G
fix  
gongweibao 已提交
733

734
        t = fluid.DistributeTranspiler()
735 736 737 738 739 740
        t.transpile(
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers,
            program=train_prog,
            startup_program=startup_prog)
741 742

        if training_role == "PSERVER":
G
fix bug  
gongweibao 已提交
743
            logging.info("distributed: pserver started")
744 745 746
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_PORT")
            if not current_endpoint:
747
                logging.critical("need env SERVER_ENDPOINT")
748 749 750 751 752 753 754 755
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)

            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
G
fix bug  
gongweibao 已提交
756
            logging.info("distributed: trainer started")
757
            trainer_prog = t.get_trainer_program()
G
fix  
gongweibao 已提交
758

759 760
            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader)
761
        else:
762 763
            logging.critical(
                "environment var TRAINER_ROLE should be TRAINER os PSERVER")
G
fix  
gongweibao 已提交
764
            exit(1)
765 766 767


if __name__ == "__main__":
G
fix  
gongweibao 已提交
768
    LOG_FORMAT = "[%(asctime)s %(levelname)s %(filename)s:%(lineno)d] %(message)s"
769 770
    logging.basicConfig(
        stream=sys.stdout, level=logging.DEBUG, format=LOG_FORMAT)
771
    logging.getLogger().setLevel(logging.INFO)
G
fix  
gongweibao 已提交
772

773 774
    args = parse_args()
    train(args)