train.py 29.4 KB
Newer Older
1 2
import argparse
import ast
G
guosheng 已提交
3 4
import copy
import logging
5
import multiprocessing
Y
Yu Yang 已提交
6
import os
G
guosheng 已提交
7
import six
G
guosheng 已提交
8
import sys
Y
Yu Yang 已提交
9
import time
Y
ying 已提交
10

Y
Yu Yang 已提交
11
import numpy as np
L
Luo Tao 已提交
12
import paddle.fluid as fluid
Y
ying 已提交
13

Y
Yu Yang 已提交
14 15
import reader
from config import *
16
from model import transformer, position_encoding_init
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


def parse_args():
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--src_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of source language.")
    parser.add_argument(
        "--trg_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of target language.")
    parser.add_argument(
        "--train_file_pattern",
        type=str,
        required=True,
        help="The pattern to match training data files.")
    parser.add_argument(
        "--val_file_pattern",
        type=str,
        help="The pattern to match validation data files.")
    parser.add_argument(
        "--use_token_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to "
        "produce batch data according to token number.")
    parser.add_argument(
        "--batch_size",
        type=int,
49
        default=4096,
50
        help="The number of sequences contained in a mini-batch, or the maximum "
51 52 53
        "number of tokens (include paddings) contained in a mini-batch. Note "
        "that this represents the number on single device and the actual batch "
        "size for multi-devices will multiply the device number.")
54 55 56
    parser.add_argument(
        "--pool_size",
        type=int,
57
        default=200000,
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        help="The buffer size to pool data.")
    parser.add_argument(
        "--sort_type",
        default="pool",
        choices=("global", "pool", "none"),
        help="The grain to sort by length: global for all instances; pool for "
        "instances in pool; none for no sort.")
    parser.add_argument(
        "--shuffle",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle instances in each pass.")
    parser.add_argument(
        "--shuffle_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle the data batches.")
    parser.add_argument(
        "--special_token",
        type=str,
        default=["<s>", "<e>", "<unk>"],
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
81 82
    parser.add_argument(
        "--token_delimiter",
G
guosheng 已提交
83
        type=lambda x: str(x.encode().decode("unicode-escape")),
84 85
        default=" ",
        help="The delimiter used to split tokens in source or target sentences. "
86
        "For EN-DE BPE data we provided, use spaces as token delimiter. ")
87 88 89 90 91
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
92 93 94 95 96 97 98 99 100 101 102
    parser.add_argument(
        '--local',
        type=ast.literal_eval,
        default=True,
        help='Whether to run as local mode.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help="The device type.")
G
fix  
gongweibao 已提交
103 104 105 106 107
    parser.add_argument(
        '--update_method',
        choices=("pserver", "nccl2"),
        default="pserver",
        help='Update method.')
Q
Qiao Longfei 已提交
108 109
    parser.add_argument(
        '--sync', type=ast.literal_eval, default=True, help="sync mode.")
G
guosheng 已提交
110 111 112
    parser.add_argument(
        "--enable_ce",
        type=ast.literal_eval,
113
        default=False,
G
guosheng 已提交
114 115
        help="The flag indicating whether to run the task "
        "for continuous evaluation.")
116 117 118
    parser.add_argument(
        "--use_mem_opt",
        type=ast.literal_eval,
G
guosheng 已提交
119
        default=True,
120 121 122 123 124 125
        help="The flag indicating whether to use memory optimization.")
    parser.add_argument(
        "--use_py_reader",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to use py_reader.")
G
fix  
gongweibao 已提交
126
    parser.add_argument(
G
guosheng 已提交
127 128 129 130
        "--fetch_steps",
        type=int,
        default=100,
        help="The frequency to fetch and print output.")
G
fix  
gongweibao 已提交
131

132
    args = parser.parse_args()
133 134 135 136 137 138 139 140 141 142 143
    # Append args related to dict
    src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    dict_args = [
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]),
        "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx",
        str(src_dict[args.special_token[2]])
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [TrainTaskConfig, ModelHyperParams])
144
    return args
145 146


G
guosheng 已提交
147 148
def append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                         current_endpoint):
149 150
    assert (trainer_id >= 0 and len(worker_endpoints) > 1 and
            current_endpoint in worker_endpoints)
G
fix  
gongweibao 已提交
151 152
    eps = copy.deepcopy(worker_endpoints)
    eps.remove(current_endpoint)
G
guosheng 已提交
153
    nccl_id_var = startup_prog.global_block().create_var(
154
        name="NCCLID", persistable=True, type=fluid.core.VarDesc.VarType.RAW)
G
guosheng 已提交
155
    startup_prog.global_block().append_op(
G
fix  
gongweibao 已提交
156 157 158 159 160 161 162 163 164
        type="gen_nccl_id",
        inputs={},
        outputs={"NCCLID": nccl_id_var},
        attrs={
            "endpoint": current_endpoint,
            "endpoint_list": eps,
            "trainer_id": trainer_id
        })
    return nccl_id_var
165

166

167 168 169 170
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
171
                   is_label=False,
172
                   return_attn_bias=True,
173 174
                   return_max_len=True,
                   return_num_token=False):
175 176
    """
    Pad the instances to the max sequence length in batch, and generate the
177 178 179 180
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
G
guosheng 已提交
181 182 183 184
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
185
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
186 187 188 189 190 191
    if is_label:  # label weight
        inst_weight = np.array(
            [[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts])
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
192
            list(range(0, len(inst))) + [0] * (max_len - len(inst))
193 194
            for inst in insts
        ])
195 196 197 198 199 200
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
201 202
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
203 204 205 206 207 208 209 210 211 212 213 214 215
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
216
    if return_num_token:
G
guosheng 已提交
217 218 219
        num_token = 0
        for inst in insts:
            num_token += len(inst)
220
        return_list += [num_token]
221 222 223
    return return_list if len(return_list) > 1 else return_list[0]


224 225
def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
                        n_head, d_model):
226 227
    """
    Put all padded data needed by training into a dict.
228
    """
229
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
G
guosheng 已提交
230
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
231 232
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
233
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
G
guosheng 已提交
234
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
235 236 237
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)

238 239
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
240

241
    lbl_word, lbl_weight, num_token = pad_batch_data(
242 243 244 245 246 247
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
248 249 250 251 252 253 254
        return_max_len=False,
        return_num_token=True)

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
            trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
255
        ]))
256

257
    return data_input_dict, np.asarray([num_token], dtype="float32")
258 259


260 261 262 263 264 265
def prepare_data_generator(args,
                           is_test,
                           count,
                           pyreader,
                           py_reader_provider_wrapper,
                           place=None):
Q
Qiao Longfei 已提交
266
    """
267 268
    Data generator wrapper for DataReader. If use py_reader, set the data
    provider for py_reader
Q
Qiao Longfei 已提交
269
    """
270 271
    data_reader = reader.DataReader(
        fpattern=args.val_file_pattern if is_test else args.train_file_pattern,
Q
Qiao Longfei 已提交
272 273
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
274
        token_delimiter=args.token_delimiter,
Q
Qiao Longfei 已提交
275
        use_token_batch=args.use_token_batch,
276
        batch_size=args.batch_size * (1 if args.use_token_batch else count),
Q
Qiao Longfei 已提交
277 278
        pool_size=args.pool_size,
        sort_type=args.sort_type,
279 280
        shuffle=args.shuffle,
        shuffle_batch=args.shuffle_batch,
Q
Qiao Longfei 已提交
281 282 283 284 285
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        clip_last_batch=False).batch_generator

    def stack(data_reader, count, clip_last=True):
        def __impl__():
            res = []
            for item in data_reader():
                res.append(item)
                if len(res) == count:
                    yield res
                    res = []
            if len(res) == count:
                yield res
            elif not clip_last:
                data = []
                for item in res:
                    data += item
                if len(data) > count:
                    inst_num_per_part = len(data) // count
                    yield [
                        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                        for i in range(count)
                    ]

        return __impl__

    def split(data_reader, count):
        def __impl__():
            for item in data_reader():
                inst_num_per_part = len(item) // count
                for i in range(count):
                    yield item[inst_num_per_part * i:inst_num_per_part * (i + 1
                                                                          )]

        return __impl__

    if not args.use_token_batch:
        # to make data on each device have similar token number
        data_reader = split(data_reader, count)
    if args.use_py_reader:
        pyreader.decorate_tensor_provider(
326
            py_reader_provider_wrapper(data_reader, place))
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        data_reader = None
    else:  # Data generator for multi-devices
        data_reader = stack(data_reader, count)
    return data_reader


def prepare_feed_dict_list(data_generator, init_flag, count):
    """
    Prepare the list of feed dict for multi-devices.
    """
    feed_dict_list = []
    if data_generator is not None:  # use_py_reader == False
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        data = next(data_generator)
        for idx, data_buffer in enumerate(data):
            data_input_dict, num_token = prepare_batch_input(
                data_buffer, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
            feed_dict_list.append(data_input_dict)
    if init_flag:
        for idx in range(count):
            pos_enc_tables = dict()
            for pos_enc_param_name in pos_enc_param_names:
                pos_enc_tables[pos_enc_param_name] = position_encoding_init(
                    ModelHyperParams.max_length + 1, ModelHyperParams.d_model)
            if len(feed_dict_list) <= idx:
                feed_dict_list.append(pos_enc_tables)
            else:
                feed_dict_list[idx] = dict(
                    list(pos_enc_tables.items()) + list(feed_dict_list[idx]
                                                        .items()))

    return feed_dict_list if len(feed_dict_list) == count else None


364
def py_reader_provider_wrapper(data_reader, place):
365 366 367
    """
    Data provider needed by fluid.layers.py_reader.
    """
Q
Qiao Longfei 已提交
368

369 370 371 372 373 374 375 376
    def py_reader_provider():
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        for batch_id, data in enumerate(data_reader()):
            data_input_dict, num_token = prepare_batch_input(
                data, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
377
            yield [data_input_dict[item] for item in data_input_names]
378 379 380 381 382 383 384

    return py_reader_provider


def test_context(exe, train_exe, dev_count):
    # Context to do validation.
    test_prog = fluid.Program()
G
guosheng 已提交
385 386 387 388
    startup_prog = fluid.Program()
    if args.enable_ce:
        test_prog.random_seed = 1000
        startup_prog.random_seed = 1000
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                use_py_reader=args.use_py_reader,
                is_test=True)
G
guosheng 已提交
410
    test_prog = test_prog.clone(for_test=True)
411
    test_data = prepare_data_generator(
412 413 414 415 416
        args,
        is_test=True,
        count=dev_count,
        pyreader=pyreader,
        py_reader_provider_wrapper=py_reader_provider_wrapper)
417

418 419 420 421 422 423 424 425
    exe.run(startup_prog)  # to init pyreader for testing
    if TrainTaskConfig.ckpt_path:
        fluid.io.load_persistables(
            exe, TrainTaskConfig.ckpt_path, main_program=test_prog)

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.use_experimental_executor = True
    build_strategy = fluid.BuildStrategy()
Q
Qiao Longfei 已提交
426 427
    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
428
        main_program=test_prog,
429 430
        build_strategy=build_strategy,
        exec_strategy=exec_strategy,
Q
Qiao Longfei 已提交
431 432
        share_vars_from=train_exe)

433
    def test(exe=test_exe, pyreader=pyreader):
Q
Qiao Longfei 已提交
434 435
        test_total_cost = 0
        test_total_token = 0
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = test_data()
        while True:
            try:
                feed_dict_list = prepare_feed_dict_list(data_generator, False,
                                                        dev_count)
                outs = test_exe.run(fetch_list=[sum_cost.name, token_num.name],
                                    feed=feed_dict_list)
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break
Q
Qiao Longfei 已提交
453 454 455 456 457 458 459 460 461 462
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


463 464 465 466 467 468 469 470 471 472 473
def train_loop(exe,
               train_prog,
               startup_prog,
               dev_count,
               sum_cost,
               avg_cost,
               token_num,
               predict,
               pyreader,
               nccl2_num_trainers=1,
               nccl2_trainer_id=0):
Q
Qiao Longfei 已提交
474 475
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
476 477 478 479 480
        exe.run(startup_prog)  # to init pyreader for training
        logging.info("load checkpoint from {}".format(
            TrainTaskConfig.ckpt_path))
        fluid.io.load_persistables(
            exe, TrainTaskConfig.ckpt_path, main_program=train_prog)
Q
Qiao Longfei 已提交
481
    else:
G
fix  
gongweibao 已提交
482
        logging.info("init fluid.framework.default_startup_program")
483
        exe.run(startup_prog)
Q
Qiao Longfei 已提交
484

G
fix  
gongweibao 已提交
485
    logging.info("begin reader")
486
    train_data = prepare_data_generator(
487 488 489 490 491
        args,
        is_test=False,
        count=dev_count,
        pyreader=pyreader,
        py_reader_provider_wrapper=py_reader_provider_wrapper)
Q
Qiao Longfei 已提交
492

493 494 495
    # For faster executor
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.use_experimental_executor = True
496
    exec_strategy.num_iteration_per_drop_scope = int(args.fetch_steps)
Q
Qiao Longfei 已提交
497 498 499 500
    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
G
guosheng 已提交
501
    # build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
G
fix  
gongweibao 已提交
502

G
fix  
gongweibao 已提交
503
    logging.info("begin executor")
Q
Qiao Longfei 已提交
504 505
    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
506 507 508
        loss_name=avg_cost.name,
        main_program=train_prog,
        build_strategy=build_strategy,
G
fix  
gongweibao 已提交
509
        exec_strategy=exec_strategy,
510 511
        num_trainers=nccl2_num_trainers,
        trainer_id=nccl2_trainer_id)
Q
Qiao Longfei 已提交
512 513

    if args.val_file_pattern is not None:
514
        test = test_context(exe, train_exe, dev_count)
Q
Qiao Longfei 已提交
515

G
guosheng 已提交
516 517 518 519 520 521
    # the best cross-entropy value with label smoothing
    loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
        (1. - TrainTaskConfig.label_smooth_eps
         )) + TrainTaskConfig.label_smooth_eps *
                        np.log(TrainTaskConfig.label_smooth_eps / (
                            ModelHyperParams.trg_vocab_size - 1) + 1e-20))
G
guosheng 已提交
522

M
minqiyang 已提交
523
    step_idx = 0
524
    init_flag = True
G
fix  
gongweibao 已提交
525 526

    logging.info("begin train")
G
guosheng 已提交
527
    for pass_id in six.moves.xrange(TrainTaskConfig.pass_num):
Q
Qiao Longfei 已提交
528
        pass_start_time = time.time()
529 530 531 532 533 534 535 536 537 538 539 540 541

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = train_data()

        batch_id = 0
        while True:
            try:
                feed_dict_list = prepare_feed_dict_list(data_generator,
                                                        init_flag, dev_count)
                outs = train_exe.run(
542
                    fetch_list=[sum_cost.name, token_num.name]
G
guosheng 已提交
543
                    if step_idx % args.fetch_steps == 0 else [],
544
                    feed=feed_dict_list)
545

G
guosheng 已提交
546
                if step_idx % args.fetch_steps == 0:
547 548
                    sum_cost_val, token_num_val = np.array(outs[0]), np.array(
                        outs[1])
G
fix  
gongweibao 已提交
549 550 551 552 553
                    # sum the cost from multi-devices
                    total_sum_cost = sum_cost_val.sum()
                    total_token_num = token_num_val.sum()
                    total_avg_cost = total_sum_cost / total_token_num

G
guosheng 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
                    if step_idx == 0:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)])))
                        avg_batch_time = time.time()
                    else:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f, speed: %.2f step/s" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)]),
                             args.fetch_steps / (time.time() - avg_batch_time)))
                        avg_batch_time = time.time()

                if step_idx % TrainTaskConfig.save_freq == 0 and step_idx > 0:
573 574 575 576 577 578 579 580 581
                    fluid.io.save_persistables(
                        exe,
                        os.path.join(TrainTaskConfig.ckpt_dir,
                                     "latest.checkpoint"), train_prog)
                    fluid.io.save_params(
                        exe,
                        os.path.join(TrainTaskConfig.model_dir,
                                     "iter_" + str(step_idx) + ".infer.model"),
                        train_prog)
G
guosheng 已提交
582

583 584 585 586 587 588 589 590
                init_flag = False
                batch_id += 1
                step_idx += 1
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break
G
guosheng 已提交
591 592

        time_consumed = time.time() - pass_start_time
593
        # Validate and save the persistable.
G
guosheng 已提交
594 595
        if args.val_file_pattern is not None:
            val_avg_cost, val_ppl = test()
G
fix  
gongweibao 已提交
596
            logging.info(
G
guosheng 已提交
597 598 599 600 601
                "epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
                " consumed %fs" % (pass_id, val_avg_cost,
                                   val_avg_cost - loss_normalizer, val_ppl,
                                   time_consumed))
        else:
G
fix  
gongweibao 已提交
602
            logging.info("epoch: %d, consumed %fs" % (pass_id, time_consumed))
G
guosheng 已提交
603 604 605 606 607 608
        if not args.enable_ce:
            fluid.io.save_persistables(
                exe,
                os.path.join(TrainTaskConfig.ckpt_dir,
                             "pass_" + str(pass_id) + ".checkpoint"),
                train_prog)
609

G
guosheng 已提交
610
    if args.enable_ce:  # For CE
611
        print("kpis\ttrain_cost_card%d\t%f" % (dev_count, total_avg_cost))
612 613
        if args.val_file_pattern is not None:
            print("kpis\ttest_cost_card%d\t%f" % (dev_count, val_avg_cost))
614
        print("kpis\ttrain_duration_card%d\t%f" % (dev_count, time_consumed))
Q
Qiao Longfei 已提交
615 616


617 618 619 620 621
def train(args):
    # priority: ENV > args > config
    is_local = os.getenv("PADDLE_IS_LOCAL", "1")
    if is_local == '0':
        args.local = False
G
fix  
gongweibao 已提交
622
    logging.info(args)
623

624 625
    if args.device == 'CPU':
        TrainTaskConfig.use_gpu = False
G
guosheng 已提交
626

627
    training_role = os.getenv("TRAINING_ROLE", "TRAINER")
G
guosheng 已提交
628

629 630 631 632 633 634 635 636
    if training_role == "PSERVER" or (not TrainTaskConfig.use_gpu):
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()

    exe = fluid.Executor(place)
637

638 639
    train_prog = fluid.Program()
    startup_prog = fluid.Program()
G
guosheng 已提交
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    if args.enable_ce:
        train_prog.random_seed = 1000
        startup_prog.random_seed = 1000

    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                use_py_reader=args.use_py_reader,
                is_test=False)
666

667
            optimizer = None
G
fix bug  
gongweibao 已提交
668
            if args.sync:
669 670
                lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
                    ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)
671
                logging.info("before adam")
G
fix  
gongweibao 已提交
672 673 674 675

                with fluid.default_main_program()._lr_schedule_guard():
                    learning_rate = lr_decay * TrainTaskConfig.learning_rate

676
                optimizer = fluid.optimizer.Adam(
G
fix  
gongweibao 已提交
677
                    learning_rate=learning_rate,
678 679 680
                    beta1=TrainTaskConfig.beta1,
                    beta2=TrainTaskConfig.beta2,
                    epsilon=TrainTaskConfig.eps)
G
fix bug  
gongweibao 已提交
681
            else:
682 683 684 685 686
                optimizer = fluid.optimizer.SGD(0.003)
            optimizer.minimize(avg_cost)

    if args.use_mem_opt:
        fluid.memory_optimize(train_prog)
687 688

    if args.local:
689
        logging.info("local start_up:")
690 691
        train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
                   token_num, predict, pyreader)
692
    else:
G
fix  
gongweibao 已提交
693 694 695 696 697 698 699 700 701 702 703 704
        if args.update_method == "nccl2":
            trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
            port = os.getenv("PADDLE_PORT")
            worker_ips = os.getenv("PADDLE_TRAINERS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            trainers_num = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            if trainer_id == 0:
                logging.info("train_id == 0, sleep 60s")
                time.sleep(60)
705 706 707
            logging.info("trainers_num:{}".format(trainers_num))
            logging.info("worker_endpoints:{}".format(worker_endpoints))
            logging.info("current_endpoint:{}".format(current_endpoint))
G
guosheng 已提交
708 709 710 711 712
            append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                                 current_endpoint)
            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader, trainers_num,
                       trainer_id)
G
fix  
gongweibao 已提交
713 714
            return

715 716 717 718 719 720 721 722 723
        port = os.getenv("PADDLE_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
G
fix  
gongweibao 已提交
724

725 726 727 728 729
        logging.info("pserver_endpoints:{}".format(pserver_endpoints))
        logging.info("current_endpoint:{}".format(current_endpoint))
        logging.info("trainer_id:{}".format(trainer_id))
        logging.info("pserver_ips:{}".format(pserver_ips))
        logging.info("port:{}".format(port))
G
fix  
gongweibao 已提交
730

731
        t = fluid.DistributeTranspiler()
732 733 734 735 736 737
        t.transpile(
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers,
            program=train_prog,
            startup_program=startup_prog)
738 739

        if training_role == "PSERVER":
G
fix bug  
gongweibao 已提交
740
            logging.info("distributed: pserver started")
741 742 743
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_PORT")
            if not current_endpoint:
744
                logging.critical("need env SERVER_ENDPOINT")
745 746 747 748 749 750 751 752
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)

            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
G
fix bug  
gongweibao 已提交
753
            logging.info("distributed: trainer started")
754
            trainer_prog = t.get_trainer_program()
G
fix  
gongweibao 已提交
755

756 757
            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader)
758
        else:
759 760
            logging.critical(
                "environment var TRAINER_ROLE should be TRAINER os PSERVER")
G
fix  
gongweibao 已提交
761
            exit(1)
762 763 764


if __name__ == "__main__":
G
fix  
gongweibao 已提交
765
    LOG_FORMAT = "[%(asctime)s %(levelname)s %(filename)s:%(lineno)d] %(message)s"
766 767
    logging.basicConfig(
        stream=sys.stdout, level=logging.DEBUG, format=LOG_FORMAT)
768
    logging.getLogger().setLevel(logging.INFO)
G
fix  
gongweibao 已提交
769

770 771
    args = parse_args()
    train(args)