Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
be5c8e56
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
be5c8e56
编写于
8月 15, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove reshape op for embedding and softmax
上级
c34bb5f1
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
60 addition
and
180 deletion
+60
-180
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+5
-33
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+39
-109
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+16
-38
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
be5c8e56
...
...
@@ -116,29 +116,23 @@ seq_len = ModelHyperParams.max_length
input_descs
=
{
# The actual data shape of src_word is:
# [batch_size * max_src_len_in_batch, 1]
"src_word"
:
[(
batch_size
*
seq_len
,
1L
),
"int64"
,
2
],
"src_word"
:
[(
batch_size
,
seq_len
,
1L
),
"int64"
,
2
],
# The actual data shape of src_pos is:
# [batch_size * max_src_len_in_batch, 1]
"src_pos"
:
[(
batch_size
*
seq_len
,
1L
),
"int64"
],
"src_pos"
:
[(
batch_size
,
seq_len
,
1L
),
"int64"
],
# This input is used to remove attention weights on paddings in the
# encoder.
# The actual data shape of src_slf_attn_bias is:
# [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
"src_slf_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
),
"float32"
],
# This shape input is used to reshape the output of embedding layer.
"src_data_shape"
:
[(
3L
,
),
"int32"
],
# This shape input is used to reshape before softmax in self attention.
"src_slf_attn_pre_softmax_shape"
:
[(
2L
,
),
"int32"
],
# This shape input is used to reshape after softmax in self attention.
"src_slf_attn_post_softmax_shape"
:
[(
4L
,
),
"int32"
],
# The actual data shape of trg_word is:
# [batch_size * max_trg_len_in_batch, 1]
"trg_word"
:
[(
batch_size
*
seq_len
,
1L
),
"int64"
,
"trg_word"
:
[(
batch_size
,
seq_len
,
1L
),
"int64"
,
2
],
# lod_level is only used in fast decoder.
# The actual data shape of trg_pos is:
# [batch_size * max_trg_len_in_batch, 1]
"trg_pos"
:
[(
batch_size
*
seq_len
,
1L
),
"int64"
],
"trg_pos"
:
[(
batch_size
,
seq_len
,
1L
),
"int64"
],
# This input is used to remove attention weights on paddings and
# subsequent words in the decoder.
# The actual data shape of trg_slf_attn_bias is:
...
...
@@ -151,18 +145,6 @@ input_descs = {
# [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
"trg_src_attn_bias"
:
[(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
),
"float32"
],
# This shape input is used to reshape the output of embedding layer.
"trg_data_shape"
:
[(
3L
,
),
"int32"
],
# This shape input is used to reshape before softmax in self attention.
"trg_slf_attn_pre_softmax_shape"
:
[(
2L
,
),
"int32"
],
# This shape input is used to reshape after softmax in self attention.
"trg_slf_attn_post_softmax_shape"
:
[(
4L
,
),
"int32"
],
# This shape input is used to reshape before softmax in encoder-decoder
# attention.
"trg_src_attn_pre_softmax_shape"
:
[(
2L
,
),
"int32"
],
# This shape input is used to reshape after softmax in encoder-decoder
# attention.
"trg_src_attn_post_softmax_shape"
:
[(
4L
,
),
"int32"
],
# This input is used in independent decoder program for inference.
# The actual data shape of enc_output is:
# [batch_size, max_src_len_in_batch, d_model]
...
...
@@ -193,22 +175,12 @@ encoder_data_input_fields = (
"src_word"
,
"src_pos"
,
"src_slf_attn_bias"
,
)
encoder_util_input_fields
=
(
"src_data_shape"
,
"src_slf_attn_pre_softmax_shape"
,
"src_slf_attn_post_softmax_shape"
,
)
decoder_data_input_fields
=
(
"trg_word"
,
"trg_pos"
,
"trg_slf_attn_bias"
,
"trg_src_attn_bias"
,
"enc_output"
,
)
decoder_util_input_fields
=
(
"trg_data_shape"
,
"trg_slf_attn_pre_softmax_shape"
,
"trg_slf_attn_post_softmax_shape"
,
"trg_src_attn_pre_softmax_shape"
,
"trg_src_attn_post_softmax_shape"
,
)
label_data_input_fields
=
(
"lbl_word"
,
"lbl_weight"
,
)
...
...
@@ -218,6 +190,6 @@ fast_decoder_data_input_fields = (
"trg_word"
,
"init_score"
,
"trg_src_attn_bias"
,
)
fast_decoder_util_input_fields
=
decoder_util_input_fields
+
(
fast_decoder_util_input_fields
=
(
"trg_slf_attn_pre_softmax_shape_delta"
,
"trg_slf_attn_post_softmax_shape_delta"
,
)
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
be5c8e56
...
...
@@ -29,8 +29,6 @@ def multi_head_attention(queries,
d_model
,
n_head
=
1
,
dropout_rate
=
0.
,
pre_softmax_shape
=
None
,
post_softmax_shape
=
None
,
cache
=
None
):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
...
...
@@ -101,14 +99,9 @@ def multi_head_attention(queries,
"""
scaled_q
=
layers
.
scale
(
x
=
q
,
scale
=
d_model
**-
0.5
)
product
=
layers
.
matmul
(
x
=
scaled_q
,
y
=
k
,
transpose_y
=
True
)
weights
=
layers
.
reshape
(
x
=
layers
.
elementwise_add
(
x
=
product
,
y
=
attn_bias
)
if
attn_bias
else
product
,
shape
=
[
-
1
,
product
.
shape
[
-
1
]],
actual_shape
=
pre_softmax_shape
,
act
=
"softmax"
)
weights
=
layers
.
reshape
(
x
=
weights
,
shape
=
product
.
shape
,
actual_shape
=
post_softmax_shape
)
if
attn_bias
:
product
+=
attn_bias
weights
=
layers
.
softmax
(
product
)
if
dropout_rate
:
weights
=
layers
.
dropout
(
weights
,
...
...
@@ -191,7 +184,6 @@ def prepare_encoder(src_word,
src_emb_dim
,
src_max_len
,
dropout_rate
=
0.
,
src_data_shape
=
None
,
word_emb_param_name
=
None
,
pos_enc_param_name
=
None
):
"""Add word embeddings and position encodings.
...
...
@@ -212,10 +204,6 @@ def prepare_encoder(src_word,
param_attr
=
fluid
.
ParamAttr
(
name
=
pos_enc_param_name
,
trainable
=
False
))
enc_input
=
src_word_emb
+
src_pos_enc
enc_input
=
layers
.
reshape
(
x
=
enc_input
,
shape
=
[
batch_size
,
seq_len
,
src_emb_dim
],
actual_shape
=
src_data_shape
)
return
layers
.
dropout
(
enc_input
,
dropout_prob
=
dropout_rate
,
...
...
@@ -236,18 +224,16 @@ def encoder_layer(enc_input,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
=
0.
,
pre_softmax_shape
=
None
,
post_softmax_shape
=
None
):
dropout_rate
=
0.
):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output
=
multi_head_attention
(
enc_input
,
enc_input
,
enc_input
,
attn_bias
,
d_key
,
d_value
,
d_model
,
n_head
,
dropout_rate
,
pre_softmax_shape
,
post_softmax_shap
e
)
attn_output
=
multi_head_attention
(
enc_input
,
enc_input
,
enc_input
,
attn_bias
,
d_key
,
d_value
,
d_model
,
n_head
,
dropout_rat
e
)
attn_output
=
post_process_layer
(
enc_input
,
attn_output
,
"dan"
,
dropout_rate
)
ffd_output
=
positionwise_feed_forward
(
attn_output
,
d_inner_hid
,
d_model
)
...
...
@@ -262,25 +248,14 @@ def encoder(enc_input,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
=
0.
,
pre_softmax_shape
=
None
,
post_softmax_shape
=
None
):
dropout_rate
=
0.
):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for
i
in
range
(
n_layer
):
enc_output
=
encoder_layer
(
enc_input
,
attn_bias
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
pre_softmax_shape
,
post_softmax_shape
,
)
enc_output
=
encoder_layer
(
enc_input
,
attn_bias
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
)
enc_input
=
enc_output
return
enc_output
...
...
@@ -295,10 +270,6 @@ def decoder_layer(dec_input,
d_model
,
d_inner_hid
,
dropout_rate
=
0.
,
slf_attn_pre_softmax_shape
=
None
,
slf_attn_post_softmax_shape
=
None
,
src_attn_pre_softmax_shape
=
None
,
src_attn_post_softmax_shape
=
None
,
cache
=
None
):
""" The layer to be stacked in decoder part.
The structure of this module is similar to that in the encoder part except
...
...
@@ -314,8 +285,6 @@ def decoder_layer(dec_input,
d_model
,
n_head
,
dropout_rate
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
cache
,
)
slf_attn_output
=
post_process_layer
(
dec_input
,
...
...
@@ -331,9 +300,7 @@ def decoder_layer(dec_input,
d_value
,
d_model
,
n_head
,
dropout_rate
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
)
dropout_rate
,
)
enc_attn_output
=
post_process_layer
(
slf_attn_output
,
enc_attn_output
,
...
...
@@ -362,10 +329,6 @@ def decoder(dec_input,
d_model
,
d_inner_hid
,
dropout_rate
=
0.
,
slf_attn_pre_softmax_shape
=
None
,
slf_attn_post_softmax_shape
=
None
,
src_attn_pre_softmax_shape
=
None
,
src_attn_post_softmax_shape
=
None
,
caches
=
None
):
"""
The decoder is composed of a stack of identical decoder_layer layers.
...
...
@@ -381,12 +344,7 @@ def decoder(dec_input,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
None
if
caches
is
None
else
caches
[
i
],
)
dropout_rate
,
)
dec_input
=
dec_output
return
dec_output
...
...
@@ -425,8 +383,7 @@ def transformer(
assert
src_vocab_size
==
src_vocab_size
,
(
"Vocabularies in source and target should be same for weight sharing."
)
enc_inputs
=
make_all_inputs
(
encoder_data_input_fields
+
encoder_util_input_fields
)
enc_inputs
=
make_all_inputs
(
encoder_data_input_fields
)
enc_output
=
wrap_encoder
(
src_vocab_size
,
...
...
@@ -441,8 +398,7 @@ def transformer(
weight_sharing
,
enc_inputs
,
)
dec_inputs
=
make_all_inputs
(
decoder_data_input_fields
[:
-
1
]
+
decoder_util_input_fields
)
dec_inputs
=
make_all_inputs
(
decoder_data_input_fields
[:
-
1
])
predict
=
wrap_decoder
(
trg_vocab_size
,
...
...
@@ -466,8 +422,10 @@ def transformer(
label
=
layers
.
one_hot
(
input
=
label
,
depth
=
trg_vocab_size
),
epsilon
=
label_smooth_eps
)
cost
=
layers
.
softmax_with_cross_entropy
(
logits
=
predict
,
logits
=
layers
.
reshape
(
predict
,
shape
=
[
-
1
,
trg_vocab_size
]),
label
=
label
,
soft_label
=
True
if
label_smooth_eps
else
False
)
weighted_cost
=
cost
*
weights
...
...
@@ -494,13 +452,11 @@ def wrap_encoder(src_vocab_size,
"""
if
enc_inputs
is
None
:
# This is used to implement independent encoder program in inference.
src_word
,
src_pos
,
src_slf_attn_bias
,
src_data_shape
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
=
\
src_word
,
src_pos
,
src_slf_attn_bias
=
\
make_all_inputs
(
encoder_data_input_fields
+
encoder_util_input_fields
)
encoder_util_input_fields
)
else
:
src_word
,
src_pos
,
src_slf_attn_bias
,
src_data_shape
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
=
\
src_word
,
src_pos
,
src_slf_attn_bias
=
\
enc_inputs
enc_input
=
prepare_encoder
(
src_word
,
...
...
@@ -509,20 +465,9 @@ def wrap_encoder(src_vocab_size,
d_model
,
max_length
,
dropout_rate
,
src_data_shape
,
word_emb_param_name
=
word_emb_param_names
[
0
])
enc_output
=
encoder
(
enc_input
,
src_slf_attn_bias
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
)
enc_output
=
encoder
(
enc_input
,
src_slf_attn_bias
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
)
return
enc_output
...
...
@@ -545,15 +490,10 @@ def wrap_decoder(trg_vocab_size,
if
dec_inputs
is
None
:
# This is used to implement independent decoder program in inference.
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
\
enc_output
,
trg_data_shape
,
slf_attn_pre_softmax_shape
,
\
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
\
src_attn_post_softmax_shape
=
make_all_inputs
(
enc_output
=
make_all_inputs
(
decoder_data_input_fields
+
decoder_util_input_fields
)
else
:
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
\
trg_data_shape
,
slf_attn_pre_softmax_shape
,
\
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
\
src_attn_post_softmax_shape
=
dec_inputs
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
=
dec_inputs
dec_input
=
prepare_decoder
(
trg_word
,
...
...
@@ -562,7 +502,6 @@ def wrap_decoder(trg_vocab_size,
d_model
,
max_length
,
dropout_rate
,
trg_data_shape
,
word_emb_param_name
=
word_emb_param_names
[
0
]
if
weight_sharing
else
word_emb_param_names
[
1
])
dec_output
=
decoder
(
...
...
@@ -576,29 +515,20 @@ def wrap_decoder(trg_vocab_size,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
caches
,
)
dropout_rate
,
)
# Return logits for training and probs for inference.
if
weight_sharing
:
predict
=
layers
.
reshape
(
x
=
layers
.
matmul
(
x
=
dec_output
,
y
=
fluid
.
get_var
(
word_emb_param_names
[
0
]),
transpose_y
=
True
),
shape
=
[
-
1
,
trg_vocab_size
],
act
=
"softmax"
if
dec_inputs
is
None
else
None
)
predict
=
layers
.
matmul
(
x
=
dec_output
,
y
=
fluid
.
get_var
(
word_emb_param_names
[
0
]),
transpose_y
=
True
)
predict
=
layers
.
softmax
(
predict
)
else
:
predict
=
layers
.
reshape
(
x
=
layers
.
fc
(
input
=
dec_output
,
size
=
trg_vocab_size
,
bias_attr
=
False
,
num_flatten_dims
=
2
),
shape
=
[
-
1
,
trg_vocab_size
],
act
=
"softmax"
if
dec_inputs
is
None
else
None
)
predict
=
layers
.
fc
(
input
=
dec_output
,
size
=
trg_vocab_size
,
bias_attr
=
False
,
num_flatten_dims
=
2
,
act
=
'softmax'
)
return
predict
...
...
@@ -625,11 +555,11 @@ def fast_decode(
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
weight_sharing
)
start_tokens
,
init_scores
,
trg_src_attn_bias
,
trg_data_shape
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
\
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
\
attn_pre_softmax_shape_delta
,
attn_post_softmax_shape_delta
=
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
\
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
\
attn_pre_softmax_shape_delta
,
attn_post_softmax_shape_delta
=
\
make_all_inputs
(
fast_decoder_data_input_fields
+
fast_decoder_util_input_fields
)
fast_decoder_util_input_fields
)
def
beam_search
():
max_len
=
layers
.
fill_constant
(
...
...
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
be5c8e56
...
...
@@ -180,34 +180,23 @@ def pad_batch_data(insts,
return
return_list
if
len
(
return_list
)
>
1
else
return_list
[
0
]
def
prepare_batch_input
(
insts
,
data_input_names
,
util_input_names
,
src
_pad_idx
,
trg_pad_idx
,
n_head
,
d_model
):
def
prepare_batch_input
(
insts
,
data_input_names
,
src_pad_idx
,
trg
_pad_idx
,
n_head
,
d_model
):
"""
Put all padded data needed by training into a dict.
"""
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
n_head
,
is_target
=
False
)
src_word
=
src_word
.
reshape
(
-
1
,
src_max_len
,
1
)
src_pos
=
src_pos
.
reshape
(
-
1
,
src_max_len
,
1
)
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_max_len
=
pad_batch_data
(
[
inst
[
1
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
is_target
=
True
)
trg_word
=
trg_word
.
reshape
(
-
1
,
trg_max_len
,
1
)
trg_pos
=
trg_pos
.
reshape
(
-
1
,
trg_max_len
,
1
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
trg_max_len
,
1
]).
astype
(
"float32"
)
# These shape tensors are used in reshape_op.
src_data_shape
=
np
.
array
([
-
1
,
src_max_len
,
d_model
],
dtype
=
"int32"
)
trg_data_shape
=
np
.
array
([
-
1
,
trg_max_len
,
d_model
],
dtype
=
"int32"
)
src_slf_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
src_slf_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
src_slf_attn_post_softmax_shape
=
np
.
array
(
[
-
1
]
+
list
(
src_slf_attn_bias
.
shape
[
1
:]),
dtype
=
"int32"
)
trg_slf_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
trg_slf_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
trg_slf_attn_post_softmax_shape
=
np
.
array
(
[
-
1
]
+
list
(
trg_slf_attn_bias
.
shape
[
1
:]),
dtype
=
"int32"
)
trg_src_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
trg_src_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
trg_src_attn_post_softmax_shape
=
np
.
array
(
[
-
1
]
+
list
(
trg_src_attn_bias
.
shape
[
1
:]),
dtype
=
"int32"
)
lbl_word
,
lbl_weight
,
num_token
=
pad_batch_data
(
[
inst
[
2
]
for
inst
in
insts
],
trg_pad_idx
,
...
...
@@ -223,15 +212,7 @@ def prepare_batch_input(insts, data_input_names, util_input_names, src_pad_idx,
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
]))
util_input_dict
=
dict
(
zip
(
util_input_names
,
[
src_data_shape
,
src_slf_attn_pre_softmax_shape
,
src_slf_attn_post_softmax_shape
,
trg_data_shape
,
trg_slf_attn_pre_softmax_shape
,
trg_slf_attn_post_softmax_shape
,
trg_src_attn_pre_softmax_shape
,
trg_src_attn_post_softmax_shape
]))
return
data_input_dict
,
util_input_dict
,
np
.
asarray
(
[
num_token
],
dtype
=
"float32"
)
return
data_input_dict
,
np
.
asarray
([
num_token
],
dtype
=
"float32"
)
def
read_multiple
(
reader
,
count
,
clip_last
=
True
):
...
...
@@ -317,12 +298,11 @@ def test_context(train_progm, avg_cost, train_exe, dev_count, data_input_names,
for
place_id
,
data_buffer
in
enumerate
(
split_data
(
data
,
num_part
=
dev_count
)):
data_input_dict
,
util_input_dict
,
_
=
prepare_batch_input
(
data_input_dict
,
_
=
prepare_batch_input
(
data_buffer
,
data_input_names
,
util_input_names
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
feed_list
.
append
(
dict
(
data_input_dict
.
items
()
+
util_input_dict
.
items
()))
feed_list
.
append
(
data_input_dict
)
outs
=
exe
.
run
(
feed
=
feed_list
,
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
])
...
...
@@ -380,7 +360,6 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
data_input_names
=
encoder_data_input_fields
+
decoder_data_input_fields
[:
-
1
]
+
label_data_input_fields
util_input_names
=
encoder_util_input_fields
+
decoder_util_input_fields
if
args
.
val_file_pattern
is
not
None
:
test
=
test_context
(
train_progm
,
avg_cost
,
train_exe
,
dev_count
,
...
...
@@ -404,13 +383,12 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
for
place_id
,
data_buffer
in
enumerate
(
split_data
(
data
,
num_part
=
dev_count
)):
data_input_dict
,
util_input_dict
,
num_token
=
prepare_batch_input
(
data_buffer
,
data_input_names
,
util_input_names
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
data_input_dict
,
num_token
=
prepare_batch_input
(
data_buffer
,
data_input_names
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
total_num_token
+=
num_token
feed_kv_pairs
=
data_input_dict
.
items
()
+
util_input_dict
.
items
(
)
feed_kv_pairs
=
data_input_dict
.
items
()
if
args
.
local
:
feed_kv_pairs
+=
{
lr_scheduler
.
learning_rate
.
name
:
lr_rate
...
...
@@ -460,7 +438,7 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
fluid
.
io
.
save_inference_model
(
os
.
path
.
join
(
TrainTaskConfig
.
model_dir
,
"pass_"
+
str
(
pass_id
)
+
".infer.model"
),
data_input_names
[:
-
2
]
+
util_input_names
,
[
predict
],
exe
)
data_input_names
[:
-
2
],
[
predict
],
exe
)
if
args
.
enable_ce
:
# For CE
print
(
"kpis
\t
train_cost_card%d
\t
%f"
%
(
dev_count
,
total_avg_cost
))
print
(
"kpis
\t
test_cost_card%d
\t
%f"
%
(
dev_count
,
val_avg_cost
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录