train.py 30.9 KB
Newer Older
1 2
import argparse
import ast
G
guosheng 已提交
3 4
import copy
import logging
5
import multiprocessing
Y
Yu Yang 已提交
6
import os
7 8 9 10

if os.environ.get('FLAGS_eager_delete_tensor_gb', None) is None:
    os.environ['FLAGS_eager_delete_tensor_gb'] = '0'

G
guosheng 已提交
11
import six
G
guosheng 已提交
12
import sys
13
sys.path.append("../../")
Y
Yibing Liu 已提交
14
sys.path.append("../../models/neural_machine_translation/transformer/")
Y
Yu Yang 已提交
15
import time
Y
ying 已提交
16

Y
Yu Yang 已提交
17
import numpy as np
L
Luo Tao 已提交
18
import paddle.fluid as fluid
Y
ying 已提交
19

20
from models.model_check import check_cuda
Y
Yu Yang 已提交
21 22
import reader
from config import *
Y
Yibing Liu 已提交
23
from desc import *
24
from model import transformer, position_encoding_init
25 26 27
import dist_utils

num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


def parse_args():
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--src_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of source language.")
    parser.add_argument(
        "--trg_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of target language.")
    parser.add_argument(
        "--train_file_pattern",
        type=str,
        required=True,
        help="The pattern to match training data files.")
    parser.add_argument(
        "--val_file_pattern",
        type=str,
        help="The pattern to match validation data files.")
    parser.add_argument(
        "--use_token_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to "
        "produce batch data according to token number.")
    parser.add_argument(
        "--batch_size",
        type=int,
60
        default=4096,
61
        help="The number of sequences contained in a mini-batch, or the maximum "
62 63 64
        "number of tokens (include paddings) contained in a mini-batch. Note "
        "that this represents the number on single device and the actual batch "
        "size for multi-devices will multiply the device number.")
65 66 67
    parser.add_argument(
        "--pool_size",
        type=int,
68
        default=200000,
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        help="The buffer size to pool data.")
    parser.add_argument(
        "--sort_type",
        default="pool",
        choices=("global", "pool", "none"),
        help="The grain to sort by length: global for all instances; pool for "
        "instances in pool; none for no sort.")
    parser.add_argument(
        "--shuffle",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle instances in each pass.")
    parser.add_argument(
        "--shuffle_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle the data batches.")
    parser.add_argument(
        "--special_token",
        type=str,
        default=["<s>", "<e>", "<unk>"],
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
92 93
    parser.add_argument(
        "--token_delimiter",
G
guosheng 已提交
94
        type=lambda x: str(x.encode().decode("unicode-escape")),
95 96
        default=" ",
        help="The delimiter used to split tokens in source or target sentences. "
97
        "For EN-DE BPE data we provided, use spaces as token delimiter. ")
98 99 100 101 102
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
103 104 105 106 107 108 109 110 111 112 113
    parser.add_argument(
        '--local',
        type=ast.literal_eval,
        default=True,
        help='Whether to run as local mode.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help="The device type.")
G
fix  
gongweibao 已提交
114 115 116 117 118
    parser.add_argument(
        '--update_method',
        choices=("pserver", "nccl2"),
        default="pserver",
        help='Update method.')
Q
Qiao Longfei 已提交
119 120
    parser.add_argument(
        '--sync', type=ast.literal_eval, default=True, help="sync mode.")
G
guosheng 已提交
121 122 123
    parser.add_argument(
        "--enable_ce",
        type=ast.literal_eval,
124
        default=False,
G
guosheng 已提交
125 126
        help="The flag indicating whether to run the task "
        "for continuous evaluation.")
127 128 129
    parser.add_argument(
        "--use_mem_opt",
        type=ast.literal_eval,
G
guosheng 已提交
130
        default=True,
131 132 133 134 135 136
        help="The flag indicating whether to use memory optimization.")
    parser.add_argument(
        "--use_py_reader",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to use py_reader.")
G
fix  
gongweibao 已提交
137
    parser.add_argument(
G
guosheng 已提交
138 139 140 141
        "--fetch_steps",
        type=int,
        default=100,
        help="The frequency to fetch and print output.")
G
fix  
gongweibao 已提交
142

143
    args = parser.parse_args()
144 145 146 147 148 149 150 151 152 153 154
    # Append args related to dict
    src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    dict_args = [
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]),
        "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx",
        str(src_dict[args.special_token[2]])
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [TrainTaskConfig, ModelHyperParams])
155
    return args
156 157


158 159 160 161 162 163 164 165 166 167 168 169
def get_device_num():
    # NOTE(zcd): for multi-processe training, each process use one GPU card.
    if num_trainers > 1: return 1
    visible_device = os.environ.get('CUDA_VISIBLE_DEVICES', None)
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
        device_num = subprocess.check_output(
            ['nvidia-smi', '-L']).decode().count('\n')
    return device_num


G
guosheng 已提交
170 171
def append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                         current_endpoint):
172 173
    assert (trainer_id >= 0 and len(worker_endpoints) > 1 and
            current_endpoint in worker_endpoints)
G
fix  
gongweibao 已提交
174 175
    eps = copy.deepcopy(worker_endpoints)
    eps.remove(current_endpoint)
G
guosheng 已提交
176
    nccl_id_var = startup_prog.global_block().create_var(
177
        name="NCCLID", persistable=True, type=fluid.core.VarDesc.VarType.RAW)
G
guosheng 已提交
178
    startup_prog.global_block().append_op(
G
fix  
gongweibao 已提交
179 180 181 182 183 184 185 186 187
        type="gen_nccl_id",
        inputs={},
        outputs={"NCCLID": nccl_id_var},
        attrs={
            "endpoint": current_endpoint,
            "endpoint_list": eps,
            "trainer_id": trainer_id
        })
    return nccl_id_var
188

189

190 191 192 193
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
194
                   is_label=False,
195
                   return_attn_bias=True,
196 197
                   return_max_len=True,
                   return_num_token=False):
198 199
    """
    Pad the instances to the max sequence length in batch, and generate the
200 201 202 203
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
G
guosheng 已提交
204 205 206 207
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
208
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
209 210 211 212 213 214
    if is_label:  # label weight
        inst_weight = np.array(
            [[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts])
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
215
            list(range(0, len(inst))) + [0] * (max_len - len(inst))
216 217
            for inst in insts
        ])
218 219 220 221 222 223
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
224 225
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
226 227 228 229 230 231 232 233 234 235 236 237 238
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
239
    if return_num_token:
G
guosheng 已提交
240 241 242
        num_token = 0
        for inst in insts:
            num_token += len(inst)
243
        return_list += [num_token]
244 245 246
    return return_list if len(return_list) > 1 else return_list[0]


247 248
def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
                        n_head, d_model):
249 250
    """
    Put all padded data needed by training into a dict.
251
    """
252
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
G
guosheng 已提交
253
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
254 255
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
256
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
G
guosheng 已提交
257
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
258 259 260
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)

261 262
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
263

264
    lbl_word, lbl_weight, num_token = pad_batch_data(
265 266 267 268 269 270
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
271 272 273 274 275 276 277
        return_max_len=False,
        return_num_token=True)

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
            trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
278
        ]))
279

280
    return data_input_dict, np.asarray([num_token], dtype="float32")
281 282


283 284 285 286 287 288
def prepare_data_generator(args,
                           is_test,
                           count,
                           pyreader,
                           py_reader_provider_wrapper,
                           place=None):
Q
Qiao Longfei 已提交
289
    """
290 291
    Data generator wrapper for DataReader. If use py_reader, set the data
    provider for py_reader
Q
Qiao Longfei 已提交
292
    """
293 294 295 296
    # NOTE: If num_trainers > 1, the shuffle_seed must be set, because
    # the order of batch data generated by reader
    # must be the same in the respective processes.
    shuffle_seed = 1 if num_trainers > 1 else None
297 298
    data_reader = reader.DataReader(
        fpattern=args.val_file_pattern if is_test else args.train_file_pattern,
Q
Qiao Longfei 已提交
299 300
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
301
        token_delimiter=args.token_delimiter,
Q
Qiao Longfei 已提交
302
        use_token_batch=args.use_token_batch,
303
        batch_size=args.batch_size * (1 if args.use_token_batch else count),
Q
Qiao Longfei 已提交
304 305
        pool_size=args.pool_size,
        sort_type=args.sort_type,
306
        shuffle=args.shuffle,
307
        shuffle_seed=shuffle_seed,
308
        shuffle_batch=args.shuffle_batch,
Q
Qiao Longfei 已提交
309 310 311 312 313
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        clip_last_batch=False).batch_generator

    def stack(data_reader, count, clip_last=True):
        def __impl__():
            res = []
            for item in data_reader():
                res.append(item)
                if len(res) == count:
                    yield res
                    res = []
            if len(res) == count:
                yield res
            elif not clip_last:
                data = []
                for item in res:
                    data += item
                if len(data) > count:
                    inst_num_per_part = len(data) // count
                    yield [
                        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                        for i in range(count)
                    ]

        return __impl__

    def split(data_reader, count):
        def __impl__():
            for item in data_reader():
                inst_num_per_part = len(item) // count
                for i in range(count):
                    yield item[inst_num_per_part * i:inst_num_per_part * (i + 1
                                                                          )]

        return __impl__

    if not args.use_token_batch:
        # to make data on each device have similar token number
        data_reader = split(data_reader, count)
    if args.use_py_reader:
353 354 355 356 357 358
        train_reader = py_reader_provider_wrapper(data_reader, place)
        if num_trainers > 1:
            assert shuffle_seed is not None
            train_reader = fluid.contrib.reader.distributed_batch_reader(
                train_reader)
        pyreader.decorate_tensor_provider(train_reader)
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        data_reader = None
    else:  # Data generator for multi-devices
        data_reader = stack(data_reader, count)
    return data_reader


def prepare_feed_dict_list(data_generator, init_flag, count):
    """
    Prepare the list of feed dict for multi-devices.
    """
    feed_dict_list = []
    if data_generator is not None:  # use_py_reader == False
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        data = next(data_generator)
        for idx, data_buffer in enumerate(data):
            data_input_dict, num_token = prepare_batch_input(
                data_buffer, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
            feed_dict_list.append(data_input_dict)
    if init_flag:
        for idx in range(count):
            pos_enc_tables = dict()
            for pos_enc_param_name in pos_enc_param_names:
                pos_enc_tables[pos_enc_param_name] = position_encoding_init(
                    ModelHyperParams.max_length + 1, ModelHyperParams.d_model)
            if len(feed_dict_list) <= idx:
                feed_dict_list.append(pos_enc_tables)
            else:
                feed_dict_list[idx] = dict(
                    list(pos_enc_tables.items()) + list(feed_dict_list[idx]
                                                        .items()))

    return feed_dict_list if len(feed_dict_list) == count else None


396
def py_reader_provider_wrapper(data_reader, place):
397 398 399
    """
    Data provider needed by fluid.layers.py_reader.
    """
Q
Qiao Longfei 已提交
400

401 402 403 404 405 406 407 408
    def py_reader_provider():
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        for batch_id, data in enumerate(data_reader()):
            data_input_dict, num_token = prepare_batch_input(
                data, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
C
chengduo 已提交
409 410
            total_dict = dict(data_input_dict.items())
            yield [total_dict[item] for item in data_input_names]
411 412 413 414 415 416 417

    return py_reader_provider


def test_context(exe, train_exe, dev_count):
    # Context to do validation.
    test_prog = fluid.Program()
G
guosheng 已提交
418 419 420 421
    startup_prog = fluid.Program()
    if args.enable_ce:
        test_prog.random_seed = 1000
        startup_prog.random_seed = 1000
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                use_py_reader=args.use_py_reader,
                is_test=True)
G
guosheng 已提交
443
    test_prog = test_prog.clone(for_test=True)
444
    test_data = prepare_data_generator(
445 446 447 448 449
        args,
        is_test=True,
        count=dev_count,
        pyreader=pyreader,
        py_reader_provider_wrapper=py_reader_provider_wrapper)
450

451 452 453 454 455 456
    exe.run(startup_prog)  # to init pyreader for testing
    if TrainTaskConfig.ckpt_path:
        fluid.io.load_persistables(
            exe, TrainTaskConfig.ckpt_path, main_program=test_prog)

    build_strategy = fluid.BuildStrategy()
Q
Qiao Longfei 已提交
457 458
    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
459
        main_program=test_prog,
460
        build_strategy=build_strategy,
Q
Qiao Longfei 已提交
461 462
        share_vars_from=train_exe)

463
    def test(exe=test_exe, pyreader=pyreader):
Q
Qiao Longfei 已提交
464 465
        test_total_cost = 0
        test_total_token = 0
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = test_data()
        while True:
            try:
                feed_dict_list = prepare_feed_dict_list(data_generator, False,
                                                        dev_count)
                outs = test_exe.run(fetch_list=[sum_cost.name, token_num.name],
                                    feed=feed_dict_list)
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break
Q
Qiao Longfei 已提交
483 484 485 486 487 488 489 490 491 492
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


493 494 495 496 497 498 499 500 501 502 503
def train_loop(exe,
               train_prog,
               startup_prog,
               dev_count,
               sum_cost,
               avg_cost,
               token_num,
               predict,
               pyreader,
               nccl2_num_trainers=1,
               nccl2_trainer_id=0):
Q
Qiao Longfei 已提交
504 505
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
506 507 508 509 510
        exe.run(startup_prog)  # to init pyreader for training
        logging.info("load checkpoint from {}".format(
            TrainTaskConfig.ckpt_path))
        fluid.io.load_persistables(
            exe, TrainTaskConfig.ckpt_path, main_program=train_prog)
Q
Qiao Longfei 已提交
511
    else:
G
fix  
gongweibao 已提交
512
        logging.info("init fluid.framework.default_startup_program")
513
        exe.run(startup_prog)
Q
Qiao Longfei 已提交
514

G
fix  
gongweibao 已提交
515
    logging.info("begin reader")
516
    train_data = prepare_data_generator(
517 518 519 520 521
        args,
        is_test=False,
        count=dev_count,
        pyreader=pyreader,
        py_reader_provider_wrapper=py_reader_provider_wrapper)
Q
Qiao Longfei 已提交
522

523 524
    # For faster executor
    exec_strategy = fluid.ExecutionStrategy()
525
    exec_strategy.num_iteration_per_drop_scope = int(args.fetch_steps)
Q
Qiao Longfei 已提交
526
    build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
527 528 529 530 531
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = True

    sum_cost.persistable = True
    token_num.persistable = True
Q
Qiao Longfei 已提交
532 533 534
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
G
guosheng 已提交
535
    # build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
C
chengduo 已提交
536
    build_strategy.fuse_all_optimizer_ops = True
G
fix  
gongweibao 已提交
537

538 539 540 541
    if num_trainers > 1 and args.use_py_reader and TrainTaskConfig.use_gpu:
        dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog)
        exec_strategy.num_threads = 1

G
fix  
gongweibao 已提交
542
    logging.info("begin executor")
Q
Qiao Longfei 已提交
543 544
    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
545 546 547
        loss_name=avg_cost.name,
        main_program=train_prog,
        build_strategy=build_strategy,
G
fix  
gongweibao 已提交
548
        exec_strategy=exec_strategy,
549 550
        num_trainers=nccl2_num_trainers,
        trainer_id=nccl2_trainer_id)
Q
Qiao Longfei 已提交
551 552

    if args.val_file_pattern is not None:
553
        test = test_context(exe, train_exe, dev_count)
Q
Qiao Longfei 已提交
554

G
guosheng 已提交
555 556 557 558 559 560
    # the best cross-entropy value with label smoothing
    loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
        (1. - TrainTaskConfig.label_smooth_eps
         )) + TrainTaskConfig.label_smooth_eps *
                        np.log(TrainTaskConfig.label_smooth_eps / (
                            ModelHyperParams.trg_vocab_size - 1) + 1e-20))
G
guosheng 已提交
561

M
minqiyang 已提交
562
    step_idx = 0
563
    init_flag = True
G
fix  
gongweibao 已提交
564
    logging.info("begin train")
G
guosheng 已提交
565
    for pass_id in six.moves.xrange(TrainTaskConfig.pass_num):
Q
Qiao Longfei 已提交
566
        pass_start_time = time.time()
567 568 569 570 571 572 573 574 575 576 577 578 579

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = train_data()

        batch_id = 0
        while True:
            try:
                feed_dict_list = prepare_feed_dict_list(data_generator,
                                                        init_flag, dev_count)
                outs = train_exe.run(
580
                    fetch_list=[sum_cost.name, token_num.name]
G
guosheng 已提交
581
                    if step_idx % args.fetch_steps == 0 else [],
582
                    feed=feed_dict_list)
583

G
guosheng 已提交
584
                if step_idx % args.fetch_steps == 0:
585 586
                    sum_cost_val, token_num_val = np.array(outs[0]), np.array(
                        outs[1])
G
fix  
gongweibao 已提交
587 588 589 590 591
                    # sum the cost from multi-devices
                    total_sum_cost = sum_cost_val.sum()
                    total_token_num = token_num_val.sum()
                    total_avg_cost = total_sum_cost / total_token_num

G
guosheng 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
                    if step_idx == 0:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)])))
                        avg_batch_time = time.time()
                    else:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f, speed: %.2f step/s" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)]),
                             args.fetch_steps / (time.time() - avg_batch_time)))
                        avg_batch_time = time.time()

                if step_idx % TrainTaskConfig.save_freq == 0 and step_idx > 0:
611 612 613 614 615 616 617 618 619
                    fluid.io.save_persistables(
                        exe,
                        os.path.join(TrainTaskConfig.ckpt_dir,
                                     "latest.checkpoint"), train_prog)
                    fluid.io.save_params(
                        exe,
                        os.path.join(TrainTaskConfig.model_dir,
                                     "iter_" + str(step_idx) + ".infer.model"),
                        train_prog)
G
guosheng 已提交
620

621 622 623 624 625 626 627 628
                init_flag = False
                batch_id += 1
                step_idx += 1
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break
G
guosheng 已提交
629 630

        time_consumed = time.time() - pass_start_time
631
        # Validate and save the persistable.
G
guosheng 已提交
632 633
        if args.val_file_pattern is not None:
            val_avg_cost, val_ppl = test()
G
fix  
gongweibao 已提交
634
            logging.info(
G
guosheng 已提交
635 636 637 638 639
                "epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
                " consumed %fs" % (pass_id, val_avg_cost,
                                   val_avg_cost - loss_normalizer, val_ppl,
                                   time_consumed))
        else:
G
fix  
gongweibao 已提交
640
            logging.info("epoch: %d, consumed %fs" % (pass_id, time_consumed))
641

G
guosheng 已提交
642 643 644 645 646 647
        if not args.enable_ce:
            fluid.io.save_persistables(
                exe,
                os.path.join(TrainTaskConfig.ckpt_dir,
                             "pass_" + str(pass_id) + ".checkpoint"),
                train_prog)
648

G
guosheng 已提交
649
    if args.enable_ce:  # For CE
650
        print("kpis\ttrain_cost_card%d\t%f" % (dev_count, total_avg_cost))
651 652
        if args.val_file_pattern is not None:
            print("kpis\ttest_cost_card%d\t%f" % (dev_count, val_avg_cost))
653
        print("kpis\ttrain_duration_card%d\t%f" % (dev_count, time_consumed))
Q
Qiao Longfei 已提交
654 655


656 657 658 659 660
def train(args):
    # priority: ENV > args > config
    is_local = os.getenv("PADDLE_IS_LOCAL", "1")
    if is_local == '0':
        args.local = False
G
fix  
gongweibao 已提交
661
    logging.info(args)
662

663 664
    if args.device == 'CPU':
        TrainTaskConfig.use_gpu = False
G
guosheng 已提交
665

666
    training_role = os.getenv("TRAINING_ROLE", "TRAINER")
G
guosheng 已提交
667

668 669 670 671
    if training_role == "PSERVER" or (not TrainTaskConfig.use_gpu):
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
672
        check_cuda(TrainTaskConfig.use_gpu)
C
chengduo 已提交
673 674
        gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
        place = fluid.CUDAPlace(gpu_id)
675
        dev_count = get_device_num()
676 677

    exe = fluid.Executor(place)
678

679 680
    train_prog = fluid.Program()
    startup_prog = fluid.Program()
G
guosheng 已提交
681

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
    if args.enable_ce:
        train_prog.random_seed = 1000
        startup_prog.random_seed = 1000

    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
Y
Yibing Liu 已提交
705
                ModelHyperParams.bos_idx,
706 707
                use_py_reader=args.use_py_reader,
                is_test=False)
708

709
            optimizer = None
G
fix bug  
gongweibao 已提交
710
            if args.sync:
711 712
                lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
                    ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)
713
                logging.info("before adam")
G
fix  
gongweibao 已提交
714 715 716 717

                with fluid.default_main_program()._lr_schedule_guard():
                    learning_rate = lr_decay * TrainTaskConfig.learning_rate

718
                optimizer = fluid.optimizer.Adam(
G
fix  
gongweibao 已提交
719
                    learning_rate=learning_rate,
720 721 722
                    beta1=TrainTaskConfig.beta1,
                    beta2=TrainTaskConfig.beta2,
                    epsilon=TrainTaskConfig.eps)
G
fix bug  
gongweibao 已提交
723
            else:
724 725 726
                optimizer = fluid.optimizer.SGD(0.003)
            optimizer.minimize(avg_cost)

727
    if args.local:
728
        logging.info("local start_up:")
729 730
        train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
                   token_num, predict, pyreader)
731
    else:
G
fix  
gongweibao 已提交
732 733 734 735 736 737 738 739 740 741 742 743
        if args.update_method == "nccl2":
            trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
            port = os.getenv("PADDLE_PORT")
            worker_ips = os.getenv("PADDLE_TRAINERS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            trainers_num = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            if trainer_id == 0:
                logging.info("train_id == 0, sleep 60s")
                time.sleep(60)
744 745 746
            logging.info("trainers_num:{}".format(trainers_num))
            logging.info("worker_endpoints:{}".format(worker_endpoints))
            logging.info("current_endpoint:{}".format(current_endpoint))
G
guosheng 已提交
747 748 749 750 751
            append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                                 current_endpoint)
            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader, trainers_num,
                       trainer_id)
G
fix  
gongweibao 已提交
752 753
            return

754 755 756 757 758 759 760 761 762
        port = os.getenv("PADDLE_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
G
fix  
gongweibao 已提交
763

764 765 766 767 768
        logging.info("pserver_endpoints:{}".format(pserver_endpoints))
        logging.info("current_endpoint:{}".format(current_endpoint))
        logging.info("trainer_id:{}".format(trainer_id))
        logging.info("pserver_ips:{}".format(pserver_ips))
        logging.info("port:{}".format(port))
G
fix  
gongweibao 已提交
769

770
        t = fluid.DistributeTranspiler()
771 772 773 774 775 776
        t.transpile(
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers,
            program=train_prog,
            startup_program=startup_prog)
777 778

        if training_role == "PSERVER":
G
fix bug  
gongweibao 已提交
779
            logging.info("distributed: pserver started")
780 781 782
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_PORT")
            if not current_endpoint:
783
                logging.critical("need env SERVER_ENDPOINT")
784 785 786 787 788 789 790 791
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)

            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
G
fix bug  
gongweibao 已提交
792
            logging.info("distributed: trainer started")
793
            trainer_prog = t.get_trainer_program()
G
fix  
gongweibao 已提交
794

795 796
            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader)
797
        else:
798 799
            logging.critical(
                "environment var TRAINER_ROLE should be TRAINER os PSERVER")
G
fix  
gongweibao 已提交
800
            exit(1)
801 802 803


if __name__ == "__main__":
G
fix  
gongweibao 已提交
804
    LOG_FORMAT = "[%(asctime)s %(levelname)s %(filename)s:%(lineno)d] %(message)s"
805 806
    logging.basicConfig(
        stream=sys.stdout, level=logging.DEBUG, format=LOG_FORMAT)
807
    logging.getLogger().setLevel(logging.INFO)
G
fix  
gongweibao 已提交
808

809
    args = parse_args()
810
    train(args)