deploy.py 6.9 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12
"""Deployment for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import gzip
import distutils.util
import multiprocessing
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model import deep_speech2
13
from deploy.swig_decoders_wrapper import *
Y
Yibing Liu 已提交
14 15
from error_rate import wer
import utils
16
import time
Y
Yibing Liu 已提交
17 18 19 20

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    "--num_samples",
21
    default=4,
Y
Yibing Liu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    type=int,
    help="Number of samples for inference. (default: %(default)s)")
parser.add_argument(
    "--num_conv_layers",
    default=2,
    type=int,
    help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
    "--num_rnn_layers",
    default=3,
    type=int,
    help="RNN layer number. (default: %(default)s)")
parser.add_argument(
    "--rnn_layer_size",
    default=512,
    type=int,
    help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
    "--use_gpu",
    default=True,
    type=distutils.util.strtobool,
    help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
    "--num_threads_data",
    default=multiprocessing.cpu_count(),
    type=int,
    help="Number of cpu threads for preprocessing data. (default: %(default)s)")
49 50 51 52 53
parser.add_argument(
    "--num_processes_beam_search",
    default=multiprocessing.cpu_count(),
    type=int,
    help="Number of cpu processes for beam search. (default: %(default)s)")
Y
Yibing Liu 已提交
54 55 56 57 58 59 60 61 62 63 64 65
parser.add_argument(
    "--mean_std_filepath",
    default='mean_std.npz',
    type=str,
    help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
    "--decode_manifest_path",
    default='datasets/manifest.test',
    type=str,
    help="Manifest path for decoding. (default: %(default)s)")
parser.add_argument(
    "--model_filepath",
Y
Yibing Liu 已提交
66
    default='checkpoints/params.latest.tar.gz',
Y
Yibing Liu 已提交
67 68 69 70 71 72 73 74 75 76 77
    type=str,
    help="Model filepath. (default: %(default)s)")
parser.add_argument(
    "--vocab_filepath",
    default='datasets/vocab/eng_vocab.txt',
    type=str,
    help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
    "--decode_method",
    default='beam_search',
    type=str,
78 79
    help="Method for ctc decoding: beam_search or beam_search_batch. "
    "(default: %(default)s)")
Y
Yibing Liu 已提交
80 81
parser.add_argument(
    "--beam_size",
82
    default=20,
Y
Yibing Liu 已提交
83 84 85 86 87 88 89 90 91
    type=int,
    help="Width for beam search decoding. (default: %(default)d)")
parser.add_argument(
    "--num_results_per_sample",
    default=1,
    type=int,
    help="Number of output per sample in beam search. (default: %(default)d)")
parser.add_argument(
    "--language_model_path",
92 93
    default="/home/work/liuyibing/lm_bak/common_crawl_00.prune01111.trie.klm",
    #default="ptb_all.arpa",
Y
Yibing Liu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107
    type=str,
    help="Path for language model. (default: %(default)s)")
parser.add_argument(
    "--alpha",
    default=0.26,
    type=float,
    help="Parameter associated with language model. (default: %(default)f)")
parser.add_argument(
    "--beta",
    default=0.1,
    type=float,
    help="Parameter associated with word count. (default: %(default)f)")
parser.add_argument(
    "--cutoff_prob",
108
    default=1.0,
Y
Yibing Liu 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    type=float,
    help="The cutoff probability of pruning"
    "in beam search. (default: %(default)f)")
args = parser.parse_args()


def infer():
    """Deployment for DeepSpeech2."""
    # initialize data generator
    data_generator = DataGenerator(
        vocab_filepath=args.vocab_filepath,
        mean_std_filepath=args.mean_std_filepath,
        augmentation_config='{}',
        num_threads=args.num_threads_data)

    # create network config
    # paddle.data_type.dense_array is used for variable batch input.
    # The size 161 * 161 is only an placeholder value and the real shape
    # of input batch data will be induced during training.
    audio_data = paddle.layer.data(
        name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
    text_data = paddle.layer.data(
        name="transcript_text",
        type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
    output_probs = deep_speech2(
        audio_data=audio_data,
        text_data=text_data,
        dict_size=data_generator.vocab_size,
        num_conv_layers=args.num_conv_layers,
        num_rnn_layers=args.num_rnn_layers,
        rnn_size=args.rnn_layer_size,
        is_inference=True)

    # load parameters
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open(args.model_filepath))

    # prepare infer data
    batch_reader = data_generator.batch_reader_creator(
        manifest_path=args.decode_manifest_path,
        batch_size=args.num_samples,
        min_batch_size=1,
        sortagrad=False,
        shuffle_method=None)
    infer_data = batch_reader().next()

    # run inference
    infer_results = paddle.infer(
        output_layer=output_probs, parameters=parameters, input=infer_data)
    num_steps = len(infer_results) // len(infer_data)
    probs_split = [
        infer_results[i * num_steps:(i + 1) * num_steps]
        for i in xrange(len(infer_data))
    ]

    # targe transcription
    target_transcription = [
        ''.join(
            [data_generator.vocab_list[index] for index in infer_data[i][1]])
        for i, probs in enumerate(probs_split)
    ]

Y
Yibing Liu 已提交
171
    # external scorer
172 173
    ext_scorer = Scorer(
        alpha=args.alpha, beta=args.beta, model_path=args.language_model_path)
Y
Yibing Liu 已提交
174

Y
Yibing Liu 已提交
175
    ## decode and print
176
    time_begin = time.time()
Y
Yibing Liu 已提交
177
    wer_sum, wer_counter = 0, 0
178 179 180 181 182 183 184 185 186
    batch_beam_results = []
    if args.decode_method == 'beam_search':
        for i, probs in enumerate(probs_split):
            beam_result = ctc_beam_search_decoder(
                probs_seq=probs,
                beam_size=args.beam_size,
                vocabulary=data_generator.vocab_list,
                blank_id=len(data_generator.vocab_list),
                cutoff_prob=args.cutoff_prob,
187
                ext_scoring_func=ext_scorer, )
188 189 190 191
            batch_beam_results += [beam_result]
    else:
        batch_beam_results = ctc_beam_search_decoder_batch(
            probs_split=probs_split,
192 193 194
            beam_size=args.beam_size,
            vocabulary=data_generator.vocab_list,
            blank_id=len(data_generator.vocab_list),
195
            num_processes=args.num_processes_beam_search,
196 197
            cutoff_prob=args.cutoff_prob,
            ext_scoring_func=ext_scorer, )
Y
Yibing Liu 已提交
198

199
    for i, beam_result in enumerate(batch_beam_results):
Y
Yibing Liu 已提交
200 201 202 203 204 205 206
        print("\nTarget Transcription:\t%s" % target_transcription[i])
        print("Beam %d: %f \t%s" % (0, beam_result[0][0], beam_result[0][1]))
        wer_cur = wer(target_transcription[i], beam_result[0][1])
        wer_sum += wer_cur
        wer_counter += 1
        print("cur wer = %f , average wer = %f" %
              (wer_cur, wer_sum / wer_counter))
207

208 209
    time_end = time.time()
    print("total time = %f" % (time_end - time_begin))
Y
Yibing Liu 已提交
210 211 212 213 214 215 216 217 218 219


def main():
    utils.print_arguments(args)
    paddle.init(use_gpu=args.use_gpu, trainer_count=1)
    infer()


if __name__ == '__main__':
    main()