Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
348d6bba
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
348d6bba
编写于
6月 29, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add deploy.py
上级
724b0fb2
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
194 addition
and
0 deletion
+194
-0
deep_speech_2/deploy.py
deep_speech_2/deploy.py
+194
-0
未找到文件。
deep_speech_2/deploy.py
0 → 100644
浏览文件 @
348d6bba
"""Deployment for DeepSpeech2 model."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
gzip
import
distutils.util
import
multiprocessing
import
paddle.v2
as
paddle
from
data_utils.data
import
DataGenerator
from
model
import
deep_speech2
from
swig_ctc_beam_search_decoder
import
*
from
swig_scorer
import
Scorer
from
error_rate
import
wer
import
utils
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--num_samples"
,
default
=
100
,
type
=
int
,
help
=
"Number of samples for inference. (default: %(default)s)"
)
parser
.
add_argument
(
"--num_conv_layers"
,
default
=
2
,
type
=
int
,
help
=
"Convolution layer number. (default: %(default)s)"
)
parser
.
add_argument
(
"--num_rnn_layers"
,
default
=
3
,
type
=
int
,
help
=
"RNN layer number. (default: %(default)s)"
)
parser
.
add_argument
(
"--rnn_layer_size"
,
default
=
512
,
type
=
int
,
help
=
"RNN layer cell number. (default: %(default)s)"
)
parser
.
add_argument
(
"--use_gpu"
,
default
=
True
,
type
=
distutils
.
util
.
strtobool
,
help
=
"Use gpu or not. (default: %(default)s)"
)
parser
.
add_argument
(
"--num_threads_data"
,
default
=
multiprocessing
.
cpu_count
(),
type
=
int
,
help
=
"Number of cpu threads for preprocessing data. (default: %(default)s)"
)
parser
.
add_argument
(
"--mean_std_filepath"
,
default
=
'mean_std.npz'
,
type
=
str
,
help
=
"Manifest path for normalizer. (default: %(default)s)"
)
parser
.
add_argument
(
"--decode_manifest_path"
,
default
=
'datasets/manifest.test'
,
type
=
str
,
help
=
"Manifest path for decoding. (default: %(default)s)"
)
parser
.
add_argument
(
"--model_filepath"
,
default
=
'ds2_new_models_0628/params.pass-51.tar.gz'
,
type
=
str
,
help
=
"Model filepath. (default: %(default)s)"
)
parser
.
add_argument
(
"--vocab_filepath"
,
default
=
'datasets/vocab/eng_vocab.txt'
,
type
=
str
,
help
=
"Vocabulary filepath. (default: %(default)s)"
)
parser
.
add_argument
(
"--decode_method"
,
default
=
'beam_search'
,
type
=
str
,
help
=
"Method for ctc decoding: best_path or beam_search. (default: %(default)s)"
)
parser
.
add_argument
(
"--beam_size"
,
default
=
500
,
type
=
int
,
help
=
"Width for beam search decoding. (default: %(default)d)"
)
parser
.
add_argument
(
"--num_results_per_sample"
,
default
=
1
,
type
=
int
,
help
=
"Number of output per sample in beam search. (default: %(default)d)"
)
parser
.
add_argument
(
"--language_model_path"
,
default
=
"lm/data/en.00.UNKNOWN.klm"
,
type
=
str
,
help
=
"Path for language model. (default: %(default)s)"
)
parser
.
add_argument
(
"--alpha"
,
default
=
0.26
,
type
=
float
,
help
=
"Parameter associated with language model. (default: %(default)f)"
)
parser
.
add_argument
(
"--beta"
,
default
=
0.1
,
type
=
float
,
help
=
"Parameter associated with word count. (default: %(default)f)"
)
parser
.
add_argument
(
"--cutoff_prob"
,
default
=
0.99
,
type
=
float
,
help
=
"The cutoff probability of pruning"
"in beam search. (default: %(default)f)"
)
args
=
parser
.
parse_args
()
def
infer
():
"""Deployment for DeepSpeech2."""
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
mean_std_filepath
=
args
.
mean_std_filepath
,
augmentation_config
=
'{}'
,
num_threads
=
args
.
num_threads_data
)
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
type
=
paddle
.
data_type
.
dense_array
(
161
*
161
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
data_generator
.
vocab_size
))
output_probs
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
data_generator
.
vocab_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
,
is_inference
=
True
)
# load parameters
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
args
.
model_filepath
))
# prepare infer data
batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
decode_manifest_path
,
batch_size
=
args
.
num_samples
,
min_batch_size
=
1
,
sortagrad
=
False
,
shuffle_method
=
None
)
infer_data
=
batch_reader
().
next
()
# run inference
infer_results
=
paddle
.
infer
(
output_layer
=
output_probs
,
parameters
=
parameters
,
input
=
infer_data
)
num_steps
=
len
(
infer_results
)
//
len
(
infer_data
)
probs_split
=
[
infer_results
[
i
*
num_steps
:(
i
+
1
)
*
num_steps
]
for
i
in
xrange
(
len
(
infer_data
))
]
# targe transcription
target_transcription
=
[
''
.
join
(
[
data_generator
.
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
for
i
,
probs
in
enumerate
(
probs_split
)
]
ext_scorer
=
Scorer
(
args
.
alpha
,
args
.
beta
,
args
.
language_model_path
)
## decode and print
wer_sum
,
wer_counter
=
0
,
0
for
i
,
probs
in
enumerate
(
probs_split
):
beam_result
=
ctc_beam_search_decoder
(
probs
.
tolist
(),
args
.
beam_size
,
data_generator
.
vocab_list
,
len
(
data_generator
.
vocab_list
),
args
.
cutoff_prob
,
ext_scorer
,
)
print
(
"
\n
Target Transcription:
\t
%s"
%
target_transcription
[
i
])
print
(
"Beam %d: %f
\t
%s"
%
(
0
,
beam_result
[
0
][
0
],
beam_result
[
0
][
1
]))
wer_cur
=
wer
(
target_transcription
[
i
],
beam_result
[
0
][
1
])
wer_sum
+=
wer_cur
wer_counter
+=
1
print
(
"cur wer = %f , average wer = %f"
%
(
wer_cur
,
wer_sum
/
wer_counter
))
def
main
():
utils
.
print_arguments
(
args
)
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
1
)
infer
()
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录