deploy.py 5.9 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
"""Deployment for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import gzip
import distutils.util
import multiprocessing
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model import deep_speech2
from swig_ctc_beam_search_decoder import *
from swig_scorer import Scorer
from error_rate import wer
import utils

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    "--num_samples",
    default=100,
    type=int,
    help="Number of samples for inference. (default: %(default)s)")
parser.add_argument(
    "--num_conv_layers",
    default=2,
    type=int,
    help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
    "--num_rnn_layers",
    default=3,
    type=int,
    help="RNN layer number. (default: %(default)s)")
parser.add_argument(
    "--rnn_layer_size",
    default=512,
    type=int,
    help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
    "--use_gpu",
    default=True,
    type=distutils.util.strtobool,
    help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
    "--num_threads_data",
    default=multiprocessing.cpu_count(),
    type=int,
    help="Number of cpu threads for preprocessing data. (default: %(default)s)")
parser.add_argument(
    "--mean_std_filepath",
    default='mean_std.npz',
    type=str,
    help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
    "--decode_manifest_path",
    default='datasets/manifest.test',
    type=str,
    help="Manifest path for decoding. (default: %(default)s)")
parser.add_argument(
    "--model_filepath",
    default='ds2_new_models_0628/params.pass-51.tar.gz',
    type=str,
    help="Model filepath. (default: %(default)s)")
parser.add_argument(
    "--vocab_filepath",
    default='datasets/vocab/eng_vocab.txt',
    type=str,
    help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
    "--decode_method",
    default='beam_search',
    type=str,
    help="Method for ctc decoding: best_path or beam_search. (default: %(default)s)"
)
parser.add_argument(
    "--beam_size",
    default=500,
    type=int,
    help="Width for beam search decoding. (default: %(default)d)")
parser.add_argument(
    "--num_results_per_sample",
    default=1,
    type=int,
    help="Number of output per sample in beam search. (default: %(default)d)")
parser.add_argument(
    "--language_model_path",
    default="lm/data/en.00.UNKNOWN.klm",
    type=str,
    help="Path for language model. (default: %(default)s)")
parser.add_argument(
    "--alpha",
    default=0.26,
    type=float,
    help="Parameter associated with language model. (default: %(default)f)")
parser.add_argument(
    "--beta",
    default=0.1,
    type=float,
    help="Parameter associated with word count. (default: %(default)f)")
parser.add_argument(
    "--cutoff_prob",
    default=0.99,
    type=float,
    help="The cutoff probability of pruning"
    "in beam search. (default: %(default)f)")
args = parser.parse_args()


def infer():
    """Deployment for DeepSpeech2."""
    # initialize data generator
    data_generator = DataGenerator(
        vocab_filepath=args.vocab_filepath,
        mean_std_filepath=args.mean_std_filepath,
        augmentation_config='{}',
        num_threads=args.num_threads_data)

    # create network config
    # paddle.data_type.dense_array is used for variable batch input.
    # The size 161 * 161 is only an placeholder value and the real shape
    # of input batch data will be induced during training.
    audio_data = paddle.layer.data(
        name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
    text_data = paddle.layer.data(
        name="transcript_text",
        type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
    output_probs = deep_speech2(
        audio_data=audio_data,
        text_data=text_data,
        dict_size=data_generator.vocab_size,
        num_conv_layers=args.num_conv_layers,
        num_rnn_layers=args.num_rnn_layers,
        rnn_size=args.rnn_layer_size,
        is_inference=True)

    # load parameters
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open(args.model_filepath))

    # prepare infer data
    batch_reader = data_generator.batch_reader_creator(
        manifest_path=args.decode_manifest_path,
        batch_size=args.num_samples,
        min_batch_size=1,
        sortagrad=False,
        shuffle_method=None)
    infer_data = batch_reader().next()

    # run inference
    infer_results = paddle.infer(
        output_layer=output_probs, parameters=parameters, input=infer_data)
    num_steps = len(infer_results) // len(infer_data)
    probs_split = [
        infer_results[i * num_steps:(i + 1) * num_steps]
        for i in xrange(len(infer_data))
    ]

    # targe transcription
    target_transcription = [
        ''.join(
            [data_generator.vocab_list[index] for index in infer_data[i][1]])
        for i, probs in enumerate(probs_split)
    ]

    ext_scorer = Scorer(args.alpha, args.beta, args.language_model_path)
    ## decode and print

    wer_sum, wer_counter = 0, 0
    for i, probs in enumerate(probs_split):
        beam_result = ctc_beam_search_decoder(
            probs.tolist(),
            args.beam_size,
            data_generator.vocab_list,
            len(data_generator.vocab_list),
            args.cutoff_prob,
            ext_scorer, )

        print("\nTarget Transcription:\t%s" % target_transcription[i])
        print("Beam %d: %f \t%s" % (0, beam_result[0][0], beam_result[0][1]))
        wer_cur = wer(target_transcription[i], beam_result[0][1])
        wer_sum += wer_cur
        wer_counter += 1
        print("cur wer = %f , average wer = %f" %
              (wer_cur, wer_sum / wer_counter))


def main():
    utils.print_arguments(args)
    paddle.init(use_gpu=args.use_gpu, trainer_count=1)
    infer()


if __name__ == '__main__':
    main()