deploy.py 6.1 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12
"""Deployment for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import gzip
import distutils.util
import multiprocessing
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model import deep_speech2
13
from deploy.swig_decoders import *
Y
Yibing Liu 已提交
14
from swig_scorer import Scorer
Y
Yibing Liu 已提交
15 16
from error_rate import wer
import utils
17
import time
Y
Yibing Liu 已提交
18 19 20 21

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    "--num_samples",
Y
Yibing Liu 已提交
22
    default=10,
Y
Yibing Liu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    type=int,
    help="Number of samples for inference. (default: %(default)s)")
parser.add_argument(
    "--num_conv_layers",
    default=2,
    type=int,
    help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
    "--num_rnn_layers",
    default=3,
    type=int,
    help="RNN layer number. (default: %(default)s)")
parser.add_argument(
    "--rnn_layer_size",
    default=512,
    type=int,
    help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
    "--use_gpu",
    default=True,
    type=distutils.util.strtobool,
    help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
    "--num_threads_data",
    default=multiprocessing.cpu_count(),
    type=int,
    help="Number of cpu threads for preprocessing data. (default: %(default)s)")
parser.add_argument(
    "--mean_std_filepath",
    default='mean_std.npz',
    type=str,
    help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
    "--decode_manifest_path",
    default='datasets/manifest.test',
    type=str,
    help="Manifest path for decoding. (default: %(default)s)")
parser.add_argument(
    "--model_filepath",
Y
Yibing Liu 已提交
62
    default='checkpoints/params.latest.tar.gz',
Y
Yibing Liu 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    type=str,
    help="Model filepath. (default: %(default)s)")
parser.add_argument(
    "--vocab_filepath",
    default='datasets/vocab/eng_vocab.txt',
    type=str,
    help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
    "--decode_method",
    default='beam_search',
    type=str,
    help="Method for ctc decoding: best_path or beam_search. (default: %(default)s)"
)
parser.add_argument(
    "--beam_size",
78
    default=200,
Y
Yibing Liu 已提交
79 80 81 82 83 84 85 86 87
    type=int,
    help="Width for beam search decoding. (default: %(default)d)")
parser.add_argument(
    "--num_results_per_sample",
    default=1,
    type=int,
    help="Number of output per sample in beam search. (default: %(default)d)")
parser.add_argument(
    "--language_model_path",
88
    default="lm/data/common_crawl_00.prune01111.trie.klm",
Y
Yibing Liu 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    type=str,
    help="Path for language model. (default: %(default)s)")
parser.add_argument(
    "--alpha",
    default=0.26,
    type=float,
    help="Parameter associated with language model. (default: %(default)f)")
parser.add_argument(
    "--beta",
    default=0.1,
    type=float,
    help="Parameter associated with word count. (default: %(default)f)")
parser.add_argument(
    "--cutoff_prob",
    default=0.99,
    type=float,
    help="The cutoff probability of pruning"
    "in beam search. (default: %(default)f)")
args = parser.parse_args()


def infer():
    """Deployment for DeepSpeech2."""
    # initialize data generator
    data_generator = DataGenerator(
        vocab_filepath=args.vocab_filepath,
        mean_std_filepath=args.mean_std_filepath,
        augmentation_config='{}',
        num_threads=args.num_threads_data)

    # create network config
    # paddle.data_type.dense_array is used for variable batch input.
    # The size 161 * 161 is only an placeholder value and the real shape
    # of input batch data will be induced during training.
    audio_data = paddle.layer.data(
        name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
    text_data = paddle.layer.data(
        name="transcript_text",
        type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
    output_probs = deep_speech2(
        audio_data=audio_data,
        text_data=text_data,
        dict_size=data_generator.vocab_size,
        num_conv_layers=args.num_conv_layers,
        num_rnn_layers=args.num_rnn_layers,
        rnn_size=args.rnn_layer_size,
        is_inference=True)

    # load parameters
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open(args.model_filepath))

    # prepare infer data
    batch_reader = data_generator.batch_reader_creator(
        manifest_path=args.decode_manifest_path,
        batch_size=args.num_samples,
        min_batch_size=1,
        sortagrad=False,
        shuffle_method=None)
    infer_data = batch_reader().next()

    # run inference
    infer_results = paddle.infer(
        output_layer=output_probs, parameters=parameters, input=infer_data)
    num_steps = len(infer_results) // len(infer_data)
    probs_split = [
        infer_results[i * num_steps:(i + 1) * num_steps]
        for i in xrange(len(infer_data))
    ]

    # targe transcription
    target_transcription = [
        ''.join(
            [data_generator.vocab_list[index] for index in infer_data[i][1]])
        for i, probs in enumerate(probs_split)
    ]

Y
Yibing Liu 已提交
166
    # external scorer
Y
Yibing Liu 已提交
167
    ext_scorer = Scorer(args.alpha, args.beta, args.language_model_path)
Y
Yibing Liu 已提交
168

Y
Yibing Liu 已提交
169
    ## decode and print
170
    time_begin = time.time()
Y
Yibing Liu 已提交
171 172 173
    wer_sum, wer_counter = 0, 0
    for i, probs in enumerate(probs_split):
        beam_result = ctc_beam_search_decoder(
174 175 176 177 178 179
            probs_seq=probs,
            beam_size=args.beam_size,
            vocabulary=data_generator.vocab_list,
            blank_id=len(data_generator.vocab_list),
            cutoff_prob=args.cutoff_prob,
            ext_scoring_func=ext_scorer, )
Y
Yibing Liu 已提交
180 181 182 183 184 185 186 187

        print("\nTarget Transcription:\t%s" % target_transcription[i])
        print("Beam %d: %f \t%s" % (0, beam_result[0][0], beam_result[0][1]))
        wer_cur = wer(target_transcription[i], beam_result[0][1])
        wer_sum += wer_cur
        wer_counter += 1
        print("cur wer = %f , average wer = %f" %
              (wer_cur, wer_sum / wer_counter))
188 189
    time_end = time.time()
    print("total time = %f" % (time_end - time_begin))
Y
Yibing Liu 已提交
190 191 192 193 194 195 196 197 198 199


def main():
    utils.print_arguments(args)
    paddle.init(use_gpu=args.use_gpu, trainer_count=1)
    infer()


if __name__ == '__main__':
    main()