Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
d68732b7
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d68732b7
编写于
8月 24, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
convert data structure for prefix from map to trie tree
上级
bbbc9885
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
492 addition
and
115 deletion
+492
-115
deep_speech_2/deploy.py
deep_speech_2/deploy.py
+5
-4
deep_speech_2/deploy/ctc_decoders.cpp
deep_speech_2/deploy/ctc_decoders.cpp
+139
-111
deep_speech_2/deploy/decoder_utils.cpp
deep_speech_2/deploy/decoder_utils.cpp
+70
-0
deep_speech_2/deploy/decoder_utils.h
deep_speech_2/deploy/decoder_utils.h
+14
-0
deep_speech_2/deploy/path_trie.cpp
deep_speech_2/deploy/path_trie.cpp
+153
-0
deep_speech_2/deploy/path_trie.h
deep_speech_2/deploy/path_trie.h
+59
-0
deep_speech_2/deploy/scorer.cpp
deep_speech_2/deploy/scorer.cpp
+39
-0
deep_speech_2/deploy/scorer.h
deep_speech_2/deploy/scorer.h
+13
-0
未找到文件。
deep_speech_2/deploy.py
浏览文件 @
d68732b7
...
...
@@ -18,7 +18,7 @@ import time
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--num_samples"
,
default
=
32
,
default
=
5
,
type
=
int
,
help
=
"Number of samples for inference. (default: %(default)s)"
)
parser
.
add_argument
(
...
...
@@ -79,7 +79,7 @@ parser.add_argument(
"(default: %(default)s)"
)
parser
.
add_argument
(
"--beam_size"
,
default
=
20
0
,
default
=
20
,
type
=
int
,
help
=
"Width for beam search decoding. (default: %(default)d)"
)
parser
.
add_argument
(
...
...
@@ -104,7 +104,7 @@ parser.add_argument(
help
=
"Parameter associated with word count. (default: %(default)f)"
)
parser
.
add_argument
(
"--cutoff_prob"
,
default
=
0.99
,
default
=
1.0
,
type
=
float
,
help
=
"The cutoff probability of pruning"
"in beam search. (default: %(default)f)"
)
...
...
@@ -183,7 +183,8 @@ def infer():
vocabulary
=
data_generator
.
vocab_list
,
blank_id
=
len
(
data_generator
.
vocab_list
),
cutoff_prob
=
args
.
cutoff_prob
,
ext_scoring_func
=
ext_scorer
,
)
# ext_scoring_func=ext_scorer,
)
batch_beam_results
+=
[
beam_result
]
else
:
batch_beam_results
=
ctc_beam_search_decoder_batch
(
...
...
deep_speech_2/deploy/ctc_decoders.cpp
浏览文件 @
d68732b7
...
...
@@ -4,11 +4,13 @@
#include <utility>
#include <cmath>
#include <limits>
#include "fst/fstlib.h"
#include "ctc_decoders.h"
#include "decoder_utils.h"
#include "path_trie.h"
#include "ThreadPool.h"
typedef
double
log_prob_type
;
typedef
float
log_prob_type
;
std
::
string
ctc_best_path_decoder
(
std
::
vector
<
std
::
vector
<
double
>
>
probs_seq
,
std
::
vector
<
std
::
string
>
vocabulary
)
...
...
@@ -89,24 +91,30 @@ std::vector<std::pair<double, std::string> >
exit
(
1
);
}
// initialize
// two sets containing selected and candidate prefixes respectively
std
::
map
<
std
::
string
,
log_prob_type
>
prefix_set_prev
,
prefix_set_next
;
// probability of prefixes ending with blank and non-blank
std
::
map
<
std
::
string
,
log_prob_type
>
log_probs_b_prev
,
log_probs_nb_prev
;
std
::
map
<
std
::
string
,
log_prob_type
>
log_probs_b_cur
,
log_probs_nb_cur
;
static
log_prob_type
NUM_MAX
=
std
::
numeric_limits
<
log_prob_type
>::
max
();
prefix_set_prev
[
"
\t
"
]
=
0.0
;
log_probs_b_prev
[
"
\t
"
]
=
0.0
;
log_probs_nb_prev
[
"
\t
"
]
=
-
NUM_MAX
;
for
(
int
time_step
=
0
;
time_step
<
num_time_steps
;
time_step
++
)
{
prefix_set_next
.
clear
();
log_probs_b_cur
.
clear
();
log_probs_nb_cur
.
clear
();
std
::
vector
<
double
>
prob
=
probs_seq
[
time_step
];
static
log_prob_type
POS_INF
=
std
::
numeric_limits
<
log_prob_type
>::
max
();
static
log_prob_type
NEG_INF
=
-
POS_INF
;
static
log_prob_type
NUM_MIN
=
std
::
numeric_limits
<
log_prob_type
>::
min
();
// init
PathTrie
root
;
root
.
_log_prob_b_prev
=
0.0
;
root
.
_score
=
0.0
;
std
::
vector
<
PathTrie
*>
prefixes
;
prefixes
.
push_back
(
&
root
);
if
(
ext_scorer
!=
nullptr
&&
!
ext_scorer
->
is_character_based
())
{
if
(
ext_scorer
->
dictionary
==
nullptr
)
{
// TODO: init dictionary
}
auto
fst_dict
=
static_cast
<
fst
::
StdVectorFst
*>
(
ext_scorer
->
dictionary
);
fst
::
StdVectorFst
*
dict_ptr
=
fst_dict
->
Copy
(
true
);
root
.
set_dictionary
(
dict_ptr
);
auto
matcher
=
std
::
make_shared
<
FSTMATCH
>
(
*
dict_ptr
,
fst
::
MATCH_INPUT
);
root
.
set_matcher
(
matcher
);
}
for
(
int
time_step
=
0
;
time_step
<
num_time_steps
;
time_step
++
)
{
std
::
vector
<
double
>
prob
=
probs_seq
[
time_step
];
std
::
vector
<
std
::
pair
<
int
,
double
>
>
prob_idx
;
for
(
int
i
=
0
;
i
<
prob
.
size
();
i
++
)
{
prob_idx
.
push_back
(
std
::
pair
<
int
,
double
>
(
i
,
prob
[
i
]));
...
...
@@ -132,113 +140,134 @@ std::vector<std::pair<double, std::string> >
std
::
vector
<
std
::
pair
<
int
,
log_prob_type
>
>
log_prob_idx
;
for
(
int
i
=
0
;
i
<
cutoff_len
;
i
++
)
{
log_prob_idx
.
push_back
(
std
::
pair
<
int
,
log_prob_type
>
(
prob_idx
[
i
].
first
,
log
(
prob_idx
[
i
].
second
)));
(
prob_idx
[
i
].
first
,
log
(
prob_idx
[
i
].
second
+
NUM_MIN
)));
}
// extend prefix
for
(
std
::
map
<
std
::
string
,
log_prob_type
>::
iterator
it
=
prefix_set_prev
.
begin
();
it
!=
prefix_set_prev
.
end
();
it
++
)
{
std
::
string
l
=
it
->
first
;
if
(
prefix_set_next
.
find
(
l
)
==
prefix_set_next
.
end
())
{
log_probs_b_cur
[
l
]
=
log_probs_nb_cur
[
l
]
=
-
NUM_MAX
;
}
// loop over chars
for
(
int
index
=
0
;
index
<
log_prob_idx
.
size
();
index
++
)
{
auto
c
=
log_prob_idx
[
index
].
first
;
log_prob_type
log_prob_c
=
log_prob_idx
[
index
].
second
;
//log_prob_type log_probs_prev;
for
(
int
index
=
0
;
index
<
log_prob_idx
.
size
();
index
++
)
{
int
c
=
log_prob_idx
[
index
].
first
;
log_prob_type
log_prob_c
=
log_prob_idx
[
index
].
second
;
log_prob_type
log_probs_prev
;
for
(
int
i
=
0
;
i
<
prefixes
.
size
()
&&
i
<
beam_size
;
i
++
)
{
auto
prefix
=
prefixes
[
i
];
// blank
if
(
c
==
blank_id
)
{
log_probs_prev
=
log_sum_exp
(
log_probs_b_prev
[
l
],
log_probs_nb_prev
[
l
]);
log_probs_b_cur
[
l
]
=
log_sum_exp
(
log_probs_b_cur
[
l
],
log_prob_c
+
log_probs_prev
);
}
else
{
std
::
string
last_char
=
l
.
substr
(
l
.
size
()
-
1
,
1
);
std
::
string
new_char
=
vocabulary
[
c
];
std
::
string
l_plus
=
l
+
new_char
;
if
(
prefix_set_next
.
find
(
l_plus
)
==
prefix_set_next
.
end
())
{
log_probs_b_cur
[
l_plus
]
=
-
NUM_MAX
;
log_probs_nb_cur
[
l_plus
]
=
-
NUM_MAX
;
prefix
->
_log_prob_b_cur
=
log_sum_exp
(
prefix
->
_log_prob_b_cur
,
log_prob_c
+
prefix
->
_score
);
continue
;
}
// repeated character
if
(
c
==
prefix
->
_character
)
{
prefix
->
_log_prob_nb_cur
=
log_sum_exp
(
prefix
->
_log_prob_nb_cur
,
log_prob_c
+
prefix
->
_log_prob_nb_prev
);
}
// get new prefix
auto
prefix_new
=
prefix
->
get_path_trie
(
c
);
if
(
prefix_new
!=
nullptr
)
{
float
log_p
=
NEG_INF
;
if
(
c
==
prefix
->
_character
&&
prefix
->
_log_prob_b_prev
>
NEG_INF
)
{
log_p
=
log_prob_c
+
prefix
->
_log_prob_b_prev
;
}
else
if
(
c
!=
prefix
->
_character
)
{
log_p
=
log_prob_c
+
prefix
->
_score
;
}
if
(
last_char
==
new_char
)
{
log_probs_nb_cur
[
l_plus
]
=
log_sum_exp
(
log_probs_nb_cur
[
l_plus
],
log_prob_c
+
log_probs_b_prev
[
l
]
);
log_probs_nb_cur
[
l
]
=
log_sum_exp
(
log_probs_nb_cur
[
l
],
log_prob_c
+
log_probs_nb_prev
[
l
]
);
}
else
if
(
new_char
==
" "
)
{
float
score
=
0.0
;
if
(
ext_scorer
!=
NULL
&&
l
.
size
()
>
1
)
{
score
=
ext_scorer
->
get_score
(
l
.
substr
(
1
),
true
);
// language model scoring
if
(
ext_scorer
!=
nullptr
&&
(
c
==
space_id
||
ext_scorer
->
is_character_based
())
)
{
PathTrie
*
prefix_to_score
=
nullptr
;
// don't score the space
if
(
ext_scorer
->
is_character_based
())
{
prefix_to_score
=
prefix_new
;
}
else
{
prefix_to_score
=
prefix
;
}
log_probs_prev
=
log_sum_exp
(
log_probs_b_prev
[
l
],
log_probs_nb_prev
[
l
]);
log_probs_nb_cur
[
l_plus
]
=
log_sum_exp
(
log_probs_nb_cur
[
l_plus
],
score
+
log_prob_c
+
log_probs_prev
);
}
else
{
log_probs_prev
=
log_sum_exp
(
log_probs_b_prev
[
l
],
log_probs_nb_prev
[
l
]);
log_probs_nb_cur
[
l_plus
]
=
log_sum_exp
(
log_probs_nb_cur
[
l_plus
],
log_prob_c
+
log_probs_prev
);
double
score
=
0.0
;
std
::
vector
<
std
::
string
>
ngram
;
ngram
=
ext_scorer
->
make_ngram
(
prefix_to_score
);
score
=
ext_scorer
->
get_log_cond_prob
(
ngram
)
*
ext_scorer
->
alpha
;
log_p
+=
score
;
log_p
+=
ext_scorer
->
beta
;
}
prefix_set_next
[
l_plus
]
=
log_sum_exp
(
log_probs_nb_cur
[
l_plus
],
log_probs_b_cur
[
l_plus
]
);
prefix_new
->
_log_prob_nb_cur
=
log_sum_exp
(
prefix_new
->
_log_prob_nb_cur
,
log_p
);
}
}
prefix_set_next
[
l
]
=
log_sum_exp
(
log_probs_b_cur
[
l
],
log_probs_nb_cur
[
l
]);
}
// end of loop over chars
prefixes
.
clear
();
// update log probabilities
root
.
iterate_to_vec
(
prefixes
);
// sort prefixes by score
if
(
prefixes
.
size
()
>=
beam_size
)
{
std
::
nth_element
(
prefixes
.
begin
(),
prefixes
.
begin
()
+
beam_size
,
prefixes
.
end
(),
prefix_compare
);
for
(
size_t
i
=
beam_size
;
i
<
prefixes
.
size
();
i
++
)
{
prefixes
[
i
]
->
remove
();
}
}
}
for
(
size_t
i
=
0
;
i
<
beam_size
&&
i
<
prefixes
.
size
();
i
++
)
{
double
approx_ctc
=
prefixes
[
i
]
->
_score
;
// remove word insert:
std
::
vector
<
int
>
output
;
prefixes
[
i
]
->
get_path_vec
(
output
);
size_t
prefix_length
=
output
.
size
();
// remove language model weight:
if
(
ext_scorer
!=
nullptr
)
{
// auto words = split_labels(output);
// approx_ctc = approx_ctc - path_length * ext_scorer->beta;
// approx_ctc -= (_lm->get_sent_log_prob(words)) * ext_scorer->alpha;
}
log_probs_b_prev
=
log_probs_b_cur
;
log_probs_nb_prev
=
log_probs_nb_cur
;
std
::
vector
<
std
::
pair
<
std
::
string
,
log_prob_type
>
>
prefix_vec_next
(
prefix_set_next
.
begin
(),
prefix_set_next
.
end
());
std
::
sort
(
prefix_vec_next
.
begin
(),
prefix_vec_next
.
end
(),
pair_comp_second_rev
<
std
::
string
,
log_prob_type
>
);
int
num_prefixes_next
=
prefix_vec_next
.
size
();
int
k
=
beam_size
<
num_prefixes_next
?
beam_size
:
num_prefixes_next
;
prefix_set_prev
=
std
::
map
<
std
::
string
,
log_prob_type
>
(
prefix_vec_next
.
begin
(),
prefix_vec_next
.
begin
()
+
k
);
prefixes
[
i
]
->
_approx_ctc
=
approx_ctc
;
}
// post processing
std
::
vector
<
std
::
pair
<
double
,
std
::
string
>
>
beam_result
;
for
(
std
::
map
<
std
::
string
,
log_prob_type
>::
iterator
it
=
prefix_set_prev
.
begin
();
it
!=
prefix_set_prev
.
end
();
it
++
)
{
if
(
it
->
second
>
-
NUM_MAX
&&
it
->
first
.
size
()
>
1
)
{
log_prob_type
log_prob
=
it
->
second
;
std
::
string
sentence
=
it
->
first
.
substr
(
1
);
// scoring the last word
if
(
ext_scorer
!=
NULL
&&
sentence
[
sentence
.
size
()
-
1
]
!=
' '
)
{
log_prob
=
log_prob
+
ext_scorer
->
get_score
(
sentence
,
true
);
}
if
(
log_prob
>
-
NUM_MAX
)
{
std
::
pair
<
double
,
std
::
string
>
cur_result
(
log_prob
,
sentence
);
beam_result
.
push_back
(
cur_result
);
}
// allow for the post processing
std
::
vector
<
PathTrie
*>
space_prefixes
;
if
(
space_prefixes
.
empty
())
{
for
(
size_t
i
=
0
;
i
<
beam_size
&&
i
<
prefixes
.
size
();
i
++
)
{
space_prefixes
.
push_back
(
prefixes
[
i
]);
}
}
// sort the result and return
std
::
sort
(
beam_result
.
begin
(),
beam_result
.
end
(),
pair_comp_first_rev
<
double
,
std
::
string
>
);
return
beam_result
;
}
std
::
sort
(
space_prefixes
.
begin
(),
space_prefixes
.
end
(),
prefix_compare
);
std
::
vector
<
std
::
pair
<
double
,
std
::
string
>
>
output_vecs
;
for
(
size_t
i
=
0
;
i
<
beam_size
&&
i
<
space_prefixes
.
size
();
i
++
)
{
std
::
vector
<
int
>
output
;
space_prefixes
[
i
]
->
get_path_vec
(
output
);
// convert index to string
std
::
string
output_str
;
for
(
int
j
=
0
;
j
<
output
.
size
();
j
++
)
{
output_str
+=
vocabulary
[
output
[
j
]];
}
std
::
pair
<
double
,
std
::
string
>
output_pair
(
space_prefixes
[
i
]
->
_score
,
output_str
);
output_vecs
.
emplace_back
(
output_pair
);
}
return
output_vecs
;
}
std
::
vector
<
std
::
vector
<
std
::
pair
<
double
,
std
::
string
>>>
...
...
@@ -250,8 +279,7 @@ std::vector<std::vector<std::pair<double, std::string>>>
int
num_processes
,
double
cutoff_prob
,
Scorer
*
ext_scorer
)
{
)
{
if
(
num_processes
<=
0
)
{
std
::
cout
<<
"num_processes must be nonnegative!"
<<
std
::
endl
;
exit
(
1
);
...
...
deep_speech_2/deploy/decoder_utils.cpp
浏览文件 @
d68732b7
...
...
@@ -10,3 +10,73 @@ size_t get_utf8_str_len(const std::string& str) {
}
return
str_len
;
}
//-------------------------------------------------------
// Overriding less than operator for sorting
//-------------------------------------------------------
bool
prefix_compare
(
const
PathTrie
*
x
,
const
PathTrie
*
y
)
{
if
(
x
->
_score
==
y
->
_score
)
{
if
(
x
->
_character
==
y
->
_character
)
{
return
false
;
}
else
{
return
(
x
->
_character
<
y
->
_character
);
}
}
else
{
return
x
->
_score
>
y
->
_score
;
}
}
//---------- End path_compare ---------------------------
// --------------------------------------------------------------
// Adds word to fst without copying entire dictionary
// --------------------------------------------------------------
void
add_word_to_fst
(
const
std
::
vector
<
int
>&
word
,
fst
::
StdVectorFst
*
dictionary
)
{
if
(
dictionary
->
NumStates
()
==
0
)
{
fst
::
StdVectorFst
::
StateId
start
=
dictionary
->
AddState
();
assert
(
start
==
0
);
dictionary
->
SetStart
(
start
);
}
fst
::
StdVectorFst
::
StateId
src
=
dictionary
->
Start
();
fst
::
StdVectorFst
::
StateId
dst
;
for
(
auto
c
:
word
)
{
dst
=
dictionary
->
AddState
();
dictionary
->
AddArc
(
src
,
fst
::
StdArc
(
c
,
c
,
0
,
dst
));
src
=
dst
;
}
dictionary
->
SetFinal
(
dst
,
fst
::
StdArc
::
Weight
::
One
());
}
// ------------ End of add_word_to_fst -----------------------
// ---------------------------------------------------------
// Adds a word to the dictionary FST based on char_map
// ---------------------------------------------------------
bool
addWordToDictionary
(
const
std
::
string
&
word
,
const
std
::
unordered_map
<
std
::
string
,
int
>&
char_map
,
bool
add_space
,
int
SPACE
,
fst
::
StdVectorFst
*
dictionary
)
{
/*
auto characters = UTF8_split(word);
std::vector<int> int_word;
for (auto& c : characters) {
if (c == " ") {
int_word.push_back(SPACE);
} else {
auto int_c = char_map.find(c);
if (int_c != char_map.end()) {
int_word.push_back(int_c->second);
} else {
return false; // return without adding
}
}
}
if (add_space) {
int_word.push_back(SPACE);
}
add_word_to_fst(int_word, dictionary);
*/
return
true
;
}
// -------------- End of addWordToDictionary ------------
deep_speech_2/deploy/decoder_utils.h
浏览文件 @
d68732b7
...
...
@@ -2,6 +2,7 @@
#define DECODER_UTILS_H_
#include <utility>
#include "path_trie.h"
template
<
typename
T1
,
typename
T2
>
bool
pair_comp_first_rev
(
const
std
::
pair
<
T1
,
T2
>
&
a
,
const
std
::
pair
<
T1
,
T2
>
&
b
)
...
...
@@ -25,8 +26,21 @@ T log_sum_exp(const T &x, const T &y)
return
std
::
log
(
std
::
exp
(
x
-
xmax
)
+
std
::
exp
(
y
-
xmax
))
+
xmax
;
}
//-------------------------------------------------------
// Overriding less than operator for sorting
//-------------------------------------------------------
bool
prefix_compare
(
const
PathTrie
*
x
,
const
PathTrie
*
y
);
// Get length of utf8 encoding string
// See: http://stackoverflow.com/a/4063229
size_t
get_utf8_str_len
(
const
std
::
string
&
str
);
void
add_word_to_fst
(
const
std
::
vector
<
int
>&
word
,
fst
::
StdVectorFst
*
dictionary
);
bool
addWordToDictionary
(
const
std
::
string
&
word
,
const
std
::
unordered_map
<
std
::
string
,
int
>&
char_map
,
bool
add_space
,
int
SPACE
,
fst
::
StdVectorFst
*
dictionary
);
#endif // DECODER_UTILS_H
deep_speech_2/deploy/path_trie.cpp
0 → 100644
浏览文件 @
d68732b7
#include <algorithm>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "path_trie.h"
#include "decoder_utils.h"
PathTrie
::
PathTrie
()
{
float
lowest
=
-
1.0
*
std
::
numeric_limits
<
float
>::
max
();
_log_prob_b_prev
=
lowest
;
_log_prob_nb_prev
=
lowest
;
_log_prob_b_cur
=
lowest
;
_log_prob_nb_cur
=
lowest
;
_score
=
lowest
;
_ROOT
=
-
1
;
_character
=
_ROOT
;
_exists
=
true
;
_parent
=
nullptr
;
_dictionary
=
nullptr
;
_dictionary_state
=
0
;
_has_dictionary
=
false
;
_matcher
=
nullptr
;
// finds arcs in FST
}
PathTrie
::~
PathTrie
()
{
for
(
auto
child
:
_children
)
{
delete
child
.
second
;
}
}
PathTrie
*
PathTrie
::
get_path_trie
(
int
new_char
,
bool
reset
)
{
auto
child
=
_children
.
begin
();
for
(
child
=
_children
.
begin
();
child
!=
_children
.
end
();
++
child
)
{
if
(
child
->
first
==
new_char
)
{
break
;
}
}
if
(
child
!=
_children
.
end
()
)
{
if
(
!
child
->
second
->
_exists
)
{
child
->
second
->
_exists
=
true
;
float
lowest
=
-
1.0
*
std
::
numeric_limits
<
float
>::
max
();
child
->
second
->
_log_prob_b_prev
=
lowest
;
child
->
second
->
_log_prob_nb_prev
=
lowest
;
child
->
second
->
_log_prob_b_cur
=
lowest
;
child
->
second
->
_log_prob_nb_cur
=
lowest
;
}
return
(
child
->
second
);
}
else
{
if
(
_has_dictionary
)
{
_matcher
->
SetState
(
_dictionary_state
);
bool
found
=
_matcher
->
Find
(
new_char
);
if
(
!
found
)
{
// Adding this character causes word outside dictionary
auto
FSTZERO
=
fst
::
TropicalWeight
::
Zero
();
auto
final_weight
=
_dictionary
->
Final
(
_dictionary_state
);
bool
is_final
=
(
final_weight
!=
FSTZERO
);
if
(
is_final
&&
reset
)
{
_dictionary_state
=
_dictionary
->
Start
();
}
return
nullptr
;
}
else
{
PathTrie
*
new_path
=
new
PathTrie
;
new_path
->
_character
=
new_char
;
new_path
->
_parent
=
this
;
new_path
->
_dictionary
=
_dictionary
;
new_path
->
_dictionary_state
=
_matcher
->
Value
().
nextstate
;
new_path
->
_has_dictionary
=
true
;
new_path
->
_matcher
=
_matcher
;
_children
.
push_back
(
std
::
make_pair
(
new_char
,
new_path
));
return
new_path
;
}
}
else
{
PathTrie
*
new_path
=
new
PathTrie
;
new_path
->
_character
=
new_char
;
new_path
->
_parent
=
this
;
_children
.
push_back
(
std
::
make_pair
(
new_char
,
new_path
));
return
new_path
;
}
}
}
PathTrie
*
PathTrie
::
get_path_vec
(
std
::
vector
<
int
>&
output
)
{
return
get_path_vec
(
output
,
_ROOT
);
}
PathTrie
*
PathTrie
::
get_path_vec
(
std
::
vector
<
int
>&
output
,
int
stop
,
size_t
max_steps
/*= std::numeric_limits<size_t>::max() */
)
{
if
(
_character
==
stop
||
_character
==
_ROOT
||
output
.
size
()
==
max_steps
)
{
std
::
reverse
(
output
.
begin
(),
output
.
end
());
return
this
;
}
else
{
output
.
push_back
(
_character
);
return
_parent
->
get_path_vec
(
output
,
stop
,
max_steps
);
}
}
void
PathTrie
::
iterate_to_vec
(
std
::
vector
<
PathTrie
*>&
output
)
{
if
(
_exists
)
{
_log_prob_b_prev
=
_log_prob_b_cur
;
_log_prob_nb_prev
=
_log_prob_nb_cur
;
_log_prob_b_cur
=
-
1.0
*
std
::
numeric_limits
<
float
>::
max
();
_log_prob_nb_cur
=
-
1.0
*
std
::
numeric_limits
<
float
>::
max
();
_score
=
log_sum_exp
(
_log_prob_b_prev
,
_log_prob_nb_prev
);
output
.
push_back
(
this
);
}
for
(
auto
child
:
_children
)
{
child
.
second
->
iterate_to_vec
(
output
);
}
}
//-------------------------------------------------------
// Effectively removes node
//-------------------------------------------------------
void
PathTrie
::
remove
()
{
_exists
=
false
;
if
(
_children
.
size
()
==
0
)
{
auto
child
=
_parent
->
_children
.
begin
();
for
(
child
=
_parent
->
_children
.
begin
();
child
!=
_parent
->
_children
.
end
();
++
child
)
{
if
(
child
->
first
==
_character
)
{
_parent
->
_children
.
erase
(
child
);
break
;
}
}
if
(
_parent
->
_children
.
size
()
==
0
&&
!
_parent
->
_exists
)
{
_parent
->
remove
();
}
delete
this
;
}
}
void
PathTrie
::
set_dictionary
(
fst
::
StdVectorFst
*
dictionary
)
{
_dictionary
=
dictionary
;
_dictionary_state
=
dictionary
->
Start
();
_has_dictionary
=
true
;
}
using
FSTMATCH
=
fst
::
SortedMatcher
<
fst
::
StdVectorFst
>
;
void
PathTrie
::
set_matcher
(
std
::
shared_ptr
<
FSTMATCH
>
matcher
)
{
_matcher
=
matcher
;
}
deep_speech_2/deploy/path_trie.h
0 → 100644
浏览文件 @
d68732b7
#ifndef PATH_TRIE_H
#define PATH_TRIE_H
#pragma once
#include <algorithm>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include <fst/fstlib.h>
using
FSTMATCH
=
fst
::
SortedMatcher
<
fst
::
StdVectorFst
>
;
class
PathTrie
{
public:
PathTrie
();
~
PathTrie
();
PathTrie
*
get_path_trie
(
int
new_char
,
bool
reset
=
true
);
PathTrie
*
get_path_vec
(
std
::
vector
<
int
>
&
output
);
PathTrie
*
get_path_vec
(
std
::
vector
<
int
>&
output
,
int
stop
,
size_t
max_steps
=
std
::
numeric_limits
<
size_t
>::
max
());
void
iterate_to_vec
(
std
::
vector
<
PathTrie
*>
&
output
);
void
set_dictionary
(
fst
::
StdVectorFst
*
dictionary
);
void
set_matcher
(
std
::
shared_ptr
<
FSTMATCH
>
matcher
);
bool
is_empty
()
{
return
_ROOT
==
_character
;
}
void
remove
();
float
_log_prob_b_prev
;
float
_log_prob_nb_prev
;
float
_log_prob_b_cur
;
float
_log_prob_nb_cur
;
float
_score
;
float
_approx_ctc
;
int
_ROOT
;
int
_character
;
bool
_exists
;
PathTrie
*
_parent
;
std
::
vector
<
std
::
pair
<
int
,
PathTrie
*>
>
_children
;
fst
::
StdVectorFst
*
_dictionary
;
fst
::
StdVectorFst
::
StateId
_dictionary_state
;
bool
_has_dictionary
;
std
::
shared_ptr
<
FSTMATCH
>
_matcher
;
};
#endif // PATH_TRIE_H
deep_speech_2/deploy/scorer.cpp
浏览文件 @
d68732b7
...
...
@@ -175,3 +175,42 @@ double Scorer::get_score(std::string sentence, bool log) {
}
return
final_score
;
}
//--------------------------------------------------
// Turn indices back into strings of chars
//--------------------------------------------------
std
::
vector
<
std
::
string
>
Scorer
::
make_ngram
(
PathTrie
*
prefix
)
{
/*
std::vector<std::string> ngram;
PathTrie* current_node = prefix;
PathTrie* new_node = nullptr;
for (int order = 0; order < _max_order; order++) {
std::vector<int> prefix_vec;
if (_is_character_based) {
new_node = current_node->get_path_vec(prefix_vec, ' ', 1);
current_node = new_node;
} else {
new_node = current_node->getPathVec(prefix_vec, ' ');
current_node = new_node->_parent; // Skipping spaces
}
// reconstruct word
std::string word = vec2str(prefix_vec);
ngram.push_back(word);
if (new_node->_character == -1) {
// No more spaces, but still need order
for (int i = 0; i < max_order - order - 1; i++) {
ngram.push_back("<s>");
}
break;
}
}
std::reverse(ngram.begin(), ngram.end());
*/
std
::
vector
<
std
::
string
>
ngram
;
ngram
.
push_back
(
"this"
);
return
ngram
;
}
//---------------- End makeNgrams ------------------
deep_speech_2/deploy/scorer.h
浏览文件 @
d68732b7
...
...
@@ -4,10 +4,12 @@
#include <string>
#include <memory>
#include <vector>
#include <unordered_map>
#include "lm/enumerate_vocab.hh"
#include "lm/word_index.hh"
#include "lm/virtual_interface.hh"
#include "util/string_piece.hh"
#include "path_trie.h"
const
double
OOV_SCOER
=
-
1000.0
;
const
std
::
string
START_TOKEN
=
"<s>"
;
...
...
@@ -49,18 +51,29 @@ public:
void
reset_params
(
float
alpha
,
float
beta
);
// get the final score
double
get_score
(
std
::
string
,
bool
log
=
false
);
// make ngram
std
::
vector
<
std
::
string
>
make_ngram
(
PathTrie
*
prefix
);
// expose to decoder
double
alpha
;
double
beta
;
// fst dictionary
void
*
dictionary
;
protected:
void
load_LM
(
const
char
*
filename
);
double
get_log_prob
(
const
std
::
vector
<
std
::
string
>&
words
);
private:
void
_init_char_list
();
void
_init_char_map
();
void
*
_language_model
;
bool
_is_character_based
;
size_t
_max_order
;
std
::
vector
<
std
::
string
>
_char_list
;
std
::
unordered_map
<
char
,
int
>
_char_map
;
std
::
vector
<
std
::
string
>
_vocabulary
;
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录